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émanant des établissements d’enseignement et de
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ABSTRACT 

This paper introduces an algorithm dedicated to the detection of the axes of cylindrical objects in a 

3-D block. The proposed algorithm performs the 3-D axis detection without prior segmentation of 

the block. This approach is specifically appropriate when the grey levels of the cylindrical objects 

are not homogeneous and thus difficult to distinguish from the background. The method relies on 

gradient and curvature estimation and operates in two main steps. The first one selects candidate 

voxels for the axes and the second one refines the determination of the axis of each cylindrical 

object. Applied to fiber reinforced composite materials, this algorithm allows detecting the axes of 

fibers in order to obtain the geometrical characteristics of the reinforcement. Knowing the 

reinforcement characteristics is an important issue in the quality control of the material but also in 

the prediction of the thermal and mechanical performance. In this paper, the various steps of the 

algorithm are detailed. Then, some results are presented, obtained with both synthetic blocks and 

real data acquired by synchrotron X-ray micro tomography on carbon-fiber reinforced carbon 

composites. 
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1. INTRODUCTION 

Composite materials (Figure 1) are increasingly used in many industrial applications. These 

materials usually consist in the combination of a matrix providing a coating on a reinforcement made 

of cylindrical fibers. The reinforcement geometry is one of the most significant properties in order to 

assess the mechanical and thermal behavior of a composite material. Among the relevant 

geometrical characteristics of reinforcement, one can quote its fiber location, diameter, orientation, 

or curvature. These characteristics can also be used as a priori data for 2-D or 3-D numerical 

predictions of the thermal and mechanical performances of the material. Even if some of these 

geometrical characteristics can be estimated using 2-D imaging techniques
 
[1], 3-D data offer a more 

extensive characterization of the reinforcement [2]. Estimation of geometrical properties of cylinders 

in a 3-D block has also been studied in other contexts, such as medical imaging [3].  

Estimating the geometrical properties of cylindrical objects in 3-D blocks can be achieved using 

either top-down or bottom-up approaches. Top-down approaches consist of three steps:  

• Separation of the cylinders from the “background” of the 3-D block; this step is usually done 

using segmentation techniques. 

• Labeling of each cylinder. 

• Estimation of geometrical properties of each cylinder; mathematical morphology operators 

such as thinning or 3-D skeletonizing [4], or other approaches like Hough transform [5] can 

help to fulfill this task. 

On another hand, bottom-up approaches consist in directly extracting the axes from the 3-D data. 

Then, knowing the axes, orientation, curvature and location of the cylinders can be estimated. Even 

the reinforcement volume ratio can be obtained from the axes detection if the cylinder radii are a 

priori known. Otherwise, a segmentation step based on region growing [6] or active contours [7],[8] 

can be done, using the known axes locations and orientations as an initialization step. 

This paper is focused on the bottom-up approaches which are specially attractive if the segmentation 

of the fibers is difficult or if the knowledge provided by the axis is sufficient to characterize the 

material. 

Most algorithms dedicated to axis detection of tubular structures are related to medical imaging, for 

vessel segmentation purposes [3], [9-13]. The axis detection step of these methods relies on the 

computation of eigenvectors or eigenvalues ( 1u
r

, 1λ ; 2u
r

, 2λ ; 3u
r

, 3λ  with 1 2 3λ λ λ> > ) of the Hessian 

matrix. On one hand, the eigenvectors provide with the orientation across and along to the line 

structure [9]. Line detection filters can then be processed along the expected line direction. On 

another hand, the eigenvalues reflecting the second derivative of the grey level profile, they indicate 

the kind of local geometrical structure (plane, line…) of which a voxel belongs [10-12]. In 2000, 

Krissian [3] improved these methods taking into account the local gradients. At first, using the 

eigenvalues ( 2λ , 3λ ), Krissian selects voxels expected to be close to the vessel axis. Then, for each 

selected voxel, a circle is defined in the plane given by the eigenvectors 2u
r

, 3u
r

. The circle is 

centered on the current selected voxel, and its radius can vary, thus allowing a multi-scale scheme. 

The local gradients of the grey levels, computed on these circles, provide a response function of 

which the local maxima are expected to be axis voxels. 
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This method relies on a strong hypothesis regarding the grey level section profile of the tubular 

structures. Indeed, the selection rule of the axis candidate voxels ( 2 0λ <  and 3 0λ < ), relies on a 

Gaussian profile assumption. For more complex, but realistic profile functions, this assumption is 

not valid. Furthermore, the local gradient computation in the cross section plane ( 2u
r

, 3u
r

) requires 

trilinear interpolations, since the cross section plan usually do not line up on the voxel grid. Finally, 

the multiscale scheme is not useful when the cylindrical structure radius is even roughly known, 

since the cylinder radii can then be accurately derived from the local curvature estimation. 

Therefore, a new approach for cylindrical object axis detection is proposed. It allows obtaining 

directly from gradient and curvature information the radius and the orientation of the cylindrical 

objects and aims at avoiding the shortcomings mentioned above. 

In the second section, the various steps of this approach are explained. The third section presents 

some results, first for synthetic 3-D blocks and then for experimental data acquired on fiber-

reinforced composite materials. 

2. AXIS DETECTION PROCESS 

The approach dedicated to the axis detection algorithm begins with an initialization step, mainly 

devoted to local gradient estimation. Then, it features two main steps (Figure 2), a coarse one and a 

fine one. The coarse step selects a set of candidate voxels for each axis. The fine step, starting from 

the previous set, determines the axis of each cylindrical object of the 3-D block. 

2.1 Initialization 

The objects of interest are supposed to be, at least locally, cylindrical isosurfaces centered on the real 

axis of the cylinder. In order to reduce the computation time, only the voxels belonging to a 

cylindrical isosurface are used for the next steps (Figure 2). To determine whether or not a voxel 

belongs to a cylindrical isosurface, a thesholding on the gradient norm is applied. The grey level 

variation induced by the noise being usually weaker than the object profile grey level variation, this 

threshold is manually tuned according to the noise level in the block. However, the value of the 

threshold is not critical and can be underestimated without major effect on the results. Indeed, since 

the gradients induced by the noise are not coherent in orientation, the structure tensor (section 2.2) 

will reduce the noise contribution to the axis orientation estimation. The resulting set of selected 

gradients is used as input data for the coarse stage of the axis detection process.  

Classical gradient masks can be found in the literature. Among them, Prewitt, Sobel or cross gradient 

masks are frequently used with 2-D images and can be easily extended to 3-D. However, they are 

not well adapted to orientation estimation in the case of cylindrical objects as they provide biased 

estimation. Other gradient estimators [14] have been optimized regarding some specific purpose, 

such as detecting a step profile in 1-D or 2-D data corrupted by white Gaussian noise.  

Herein, in order to optimize the axis detection process, a specific gradient-based optimal operator 

dedicated to accurate estimation of the direction toward the axis is proposed. 

The masks are estimated in 2-D case, for the detection of the center of disk objects, and then 

extended in 3-D case, for the estimation of the direction toward the axis of a cylinder. 
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The gradient estimation scheme relies on the modeling of the 1-D profile function of the cylinder, 

i.e. the evolution of the voxel intensity f(r) versus the radius r. Monomial profile functions have been 

considered: ( )2 2 2( )
n

f r x y z= + + , with (x,y,z) being the voxel coordinates and n the order of the 

profile function. Expressing the convolution between the gradient mask coefficients and the profile 

function gives no bias constraints. These constraints, associated with noise sensitivity 

considerations, allow computing the optimized gradient mask coefficients. The optimization scheme 

is detailed in [15]. The resulting 3-D convolution masks, xm , ym and zm  are referred to as G3D10 

(Figure 3).  

G3D10 masks offer unbiased estimations of the orientation toward the axis when the cylindrical 

object axis coincides with one the mask reference axis and for even order n for the profile function.   

In the general case, i.e. oblique cylinders and for any profile function, G3D10 masks still provide 

better estimations than Prewitt, Sobel or cross masks, thus appearing less biased and more robust 

with respect to noise influence than classical gradient operators (Figure 4). More results regarding 

G3D10 can be found in [15]. 

2.2 Coarse stage: selection of candidate voxels 

Orientation estimation 

The G3D10 masks give the estimation of the gradient for each voxel belonging to a cylindrical 

isosurface. An orientation tensor [16] is then applied on the resulting gradient. For each voxel, this 

tensor consists in the correlation matrix built using gradient vectors neighboring the current voxel. 

From this tensor, the eigenvalues 321 ,, λλλ  with 321 λλλ >> , and corresponding eigenvectors 

321 ,, uuu
rrr

 are computed. Thus, the tensor provides the orientation 1u
r

 toward the axis, but also the 

orientation 3u
r

 of the axis (see Figure 5). Moreover, a coplanarity index ),,( 321 λλλµ f=  is derived 

from the eigenvalues. It will be used later as a confidence index in order to favor the orientations 

estimated from coplanar vectors. 

Distance to the axis 

For each voxel belonging to a cylindrical isosurface, using the orientation toward the axis, it is 

possible to estimate the distance between this voxel and the corresponding cylinder axis. For this 

purpose, the Hessian matrix H is built using the vectors ( )1 , ,
x y z

u I I I=
r

 in the neighborhood of the 

voxel under consideration: 
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The principal local curvatures [17] are then computed from the following equations. 
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( )2 2

1

1
max ( ) 4( )

2

T T T T T

nk a Ha b Hb a Ha b Hb a Hb
 

= − + ± − + 
 

( )2 2

2

1
min ( ) 4( )

2

T T T T T

nk a Ha b Hb a Ha b Hb a Hb
 

= − + ± − + 
 

 (2) 

with: 
2 2 2 2 2

2
1

( ) 4

y z

x z

x y z y z

x y

I I

a I I
I I I I I

I I

 
 

= − + + +  − 

r
 and 1b a u= ∧

r r r
 ( ∧  denotes the vectorial product). 

The distance to the axis 
1

1

nk
R =  is then obtained from the maximal principal curvature. 

The minimal principal curvature 2nk  is not used for the detection of cylinder axes but it can provide 

with useful knowledge about the local warping of the cylindrical object. 

Candidate voxels of the axis and average orientation 

Thanks to the previous steps, the knowledge, for each voxel M belonging to a cylindrical isosurface 

delivers a set of candidate locations iC for the axis, given its orientation 1u
r

 toward the axis and 

distance R to the axis (Figure 6). 

 1uRCM ii

r
×=  (3) 

The pair ),( 3u
r

µ is then associated to the nearest voxel from the candidate location. With this 

approach, each voxel M of a cylinder provides the information ),( 3u
r

µ to one candidate voxel Ci. 

Thus, a candidate voxel Ci will be related to many cylinder voxels M, and with their associated pair 

),( 3u
r

µ . Therefore, for each candidate voxel Ci, the following tensor (4) is built in order to take all 

pairs ),( 3u
r

µ  into account during the estimation of the axis orientation. 
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 (4) 

with ℑ is the initial set of voxels belonging to cylindrical isosurfaces 

This tensor provides an average orientation iaxis of the various vectors used for its construction. 

Labeling the candidate voxels 

At this stage, the candidate voxels of a given axis form a connected component. Therefore, a hybrid 

object labeling is carried out [18]. This hybrid labeling combines recursion with iterative scanning 

and can be directly substituted into any program already using recursion technique. Compared with 

other methods, recursive or not, performance are improved and speed increased.  
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Each cylindrical object can then be processed independently through this connected component. 

In the case of perfect cylinders, the connected components match exactly the cylinder axes. 

Unfortunately, noise and shape distortion can yield some perturbations. In this case, the connected 

components are thicker and form elongated clouds inside which the axis is supposed to lie. 

2.3 Fine stage: Axis detection 

The aim of this stage is to find, inside each connected component, the axis of the corresponding 

cylinder. For this purpose, the axis going through the center of gravity of each cross-section of a 

given connected component is assumed to correspond to the real axis of the cylindrical object. As 

connected components may be bent, the axis detection can not result from a linear regression directly 

computed from the connected component. Therefore, an approach which detects the axis voxel by 

voxel has been preferred. For a similar purpose, Krissian [3] proposes, for each selected voxel, to 

consider the cross section plane of the tubular object. However, since the cylinder axis does not 

usually match any of the reference frame axes (Figure 7), working with such a cross section requires 

many trilinear interpolations and increases significantly the computing cost. In order to avoid this 

computational burden, the estimation is done using the most orthogonal plane to the cylinder axis. 

The current axis point ),,( GGG zyx  is then estimated by computing the center of gravity of the 

connected component voxels ),,( iiii zyxM = which belong to the most orthogonal plane kP⊥  to the 

axis vector 
1−kGaxis chosen in { }yzxzxy ,, . For each axis point, the corresponding orientation is 

estimated by averaging the orientations iaxis of the voxels used to estimate this center (Figure 8). 
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For each connected component, the recursive approach is applied starting from one extremity of the 

component. Then, it operates plane by plane all along the connected component, taking benefits of 

the results (center and orientation) of the previous stage. 

3. RESULTS 

3.1 Synthetic cylindrical object 

In order to validate this approach, a synthetic 3-D block containing one cylinder has been built. As 

no assumption has been made on the profile function )(df  of the cylinders, Bernstein functions are 

used, since they are sufficiently general and allow testing various situations: 

 

( )( )

n

k 0
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where d is the axis distance, n is the order of the Bernstein function, α  a positive parameter and 

!

!( )!

n n

k k n k

 
= 

− 
are the binomial coefficients. 

The ka values are chosen in order to obtain realistic profile functions, considering fiber grey level 

profiles. In this paper, the ka values are 25.1,4,6..1 with 1,5.1 870 ===== aaiaa i , and 

8,5.0 == nα . 

Comparison with Krissian approach 

The first step of Krissian approach consists in pre-selecting voxels that are expected to be near the 

axes structures. For this purpose, Krissian selects the voxels for which the two lowest eigenvalues 

are negatives. In the case of Gaussian profile function (Figure 10), the first step of the Krissian 

method consists in selecting voxels around the axes. Considering the lowest eigenvalue of each 

voxel as a function, the computation of the local minima of this function for the whole 3-D block 

provides the axes voxels (Figure 10 a).  

Using the method introduced in this paper, the axis voxels (Figure 10 b) are detected with the same 

accuracy.  

However, in the case of Bernstein profile function (Figure 11), the Gaussian profile assumption 

being invalid, the voxels selected using Krissian approach are located both on the axis and on the 

edges of the object.  

Using the method introduced in this paper, only the axis voxels are selected, since no assumption 

regarding the profile function has been necessary. (Figure 11 b). 

Results for synthetic fibers 

Various cases have been considered in order to estimate the location accuracy. In the ideal case, the 

cylinder is taken along x, y or z, without noise. Then, the detected axis matches exactly the real axis 

of the cylinder.  

Table 1 provides the location error, i.e. the average distance between the detected axis voxels and the 

real axis, in the cases of noisy profile functions and oblique axes. The Signal to Noise Ratio is 

SNR=20.log(S/B)), where S is the signal amplitude and B the noise amplitude. The noise is Gaussian 

and additive. Figure 12 shows the case of an oblique axis orientation, SNR=12dB and the error is 

less than 1 voxel. 

3.2 Results on a fiber-reinforced composite material 

The approach has also been applied to real 3-D data, obtained from a partially densified 

carbon/carbon (C/C) composite material [18]. This fiber-reinforced material is composed of three 

phases (Figure 13): 

• A fibrous reinforcement made of quasi-cylindrical fibers. 

• A matrix (the coating used to bind the fibers). 

• The porous space (neither fibers nor matrix). 
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3-D images of this material were acquired on ID19 beamline at ESRF (European Synchrotron 

Radiation Facility) by Synchrotron X-ray Micro Tomography (SXMT). The main characteristic of 

ID19 beamline is its length (145 m), which helps to obtain a strong coherent beam. The chosen 

resolution is mµ7.0 per pixel and the number of views is 1500 projections. Due to the coherence 

properties of the X-ray beam and to the nature of the composite material (low absorption contrast), 

phase contrast tomography mode was used [19]. The characteristics of the resulting blocks are a 

bright / dark alternation at the borders of the components. Inside these blocks, the fibers appear as 

cylindrical isosurfaces centered on the fiber axis. An interesting point is that the matrix is also 

composed of cylindrical isosurfaces that are locally centered on the fiber axis. 

For test purposes, a data set has been built from nine 3-D extracts of various size (200x200x198 

voxels, 200x200x32 voxels, 300x90x300 voxels), and for which the average density of fibers per 

slice varies from 9 to 48 per 10.000 pixels.  

In order to suppress some detection errors due to some cylindrical porous spaces, a preliminary 

segmentation first eliminates small pores lying inside the bundles of fibers (Figure 14).  

Table 2 shows ratio of detected fibers for this dataset. The detection ratio varies from 72% to 87%, 

with an average ratio of 82%. 

It should be noted that, for application purpose, fibers in contact with an edge of the block are not 

taken into account. 

Figure 15 shows the result obtained for a block from this dataset. The average density for this block 

is 48 fibers per 10.000 pixels per slide and the ratio of detected fibers is 87%. For the extract shown 

in Figure 16, the detection ratio is 87% for an average density of 22 fibers per 10.000 pixels per 

slide. In Figure 17, the extract fiber density is less than 15 fibers per 10.000 pixels per slide. 

Moreover Figure 17 fibers show clearly two distinct directions. Nevertheless, the axes are found 

whatever the orientation and 82% of the fibers are detected.  

For each block in the dataset, the detected axes are located closely to the actual axes of the fibers, 

according to expert perception. Nevertheless, even if the detection is mostly accurate, there are still 

two kinds of error.  

The first one is a lack of detection of the fiber axis. This occurs generally when the fiber can not be 

considered as cylindrical or when the limit between fibers can not be distinguished (Figure 18). 

The second one consists in erroneous detection of the fiber axis. In the ideal case, a fiber is detected 

all along the fiber axis by one axis with one label. Unfortunately, in some cases, the fiber is detected 

only on one part of the axis (Figure 19), or / and with two or more axes and labels (Figure 20). So 

some fiber axes can appear truncated. Fiber length will then be underestimated and some fibers will 

be counted several times. Nevertheless, these cases are infrequent, and some post processing stages 

can be used to complete the missing axis points and to merge coinciding axis labels for a given fiber. 

4. CONCLUSION 

This paper introduces a coarse-to-fine algorithm dedicated to the detection of the axes of cylindrical 

objects in 3-D images. The approach relies on the geometrical properties of the cylinder and uses 

gradient and curvature estimations. 
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An original gradient operator, G3D10 has been specifically designed. It provides optimized 

estimation of the orientation toward the axis of a cylinder in a 3-D block.  

Then, the axis detection operates in a coarse-to-fine scheme. The coarse step of the approach 

provides a set of connected components surrounding the actual axis of the fibers. This step is based 

on gradient estimation obtained using G3D10. At this stage, almost all fibers are detected, but the 

resulting axes lack of accuracy and appear as thick connected components. The second step then 

consists in computing the central axis inside each connected component. 

The various experiments made on both synthetic data and fiber-reinforced composite materials show 

that more than 80% of the fibers are detected and the axes are accurately located. Some detection 

errors appear, especially when the cylindrical assumption is not valid. Nevertheless, most errors can 

be corrected using simple post processing techniques. 

Using the geometry of the detected axes, the characterization of a fibrous reinforcement becomes 

possible and allows obtaining valuable information such as fibers ratio in each direction, distribution 

of the length and radius of fibers, curvature. It can also provide useful data for physico-chemical 

numerical simulations. Moreover, the axis location can be used as the initial step of segmentation 

algorithms, such as region-growing algorithms or active contour methods.  
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Tables 
SBR 

 
Axis location 

∞  17 dB 12 dB 5 dB 3 dB 

Axis along z 

deg45=θ  deg45=ϕ  

0 voxel 0.01 voxel 0.57 voxel 1.3 voxels 1.5 voxels 

Oblique axis 

deg65=θ  deg65=ϕ  

0.4 voxel 0.67 voxel 0.71 voxel 1.27 voxels 2.5 voxels 

Table 1: axis detection error 

 

Block size 
(voxels) 

Fibers per slice,  
per 10000 pixels 

Fiber detection ratio 

200x200x198 9 80% 

200x200x198 11 72% 

200x200x198 15 82% 

200x200x198 22 87% 

200x200x98 13 83% 

200x200x98 13 81% 

200x200x98 23 82% 

300x90x300 48 87% 

Table 2: Ratio of detected fibers for blocks showing various fiber densities  
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Figures 

 
Figure 1: Extract of fiber-reinforced material observed at the ESRF (European Synchrotron 

Radiation Facility (ESRF, ID19 beam line) synchrotron X-ray micro tomography. 

 

 
Figure 2: Algorithm of axis detection for cylindrical objects. 
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Figure 3: Example of mask xm  for G3D10 in 3-D case: (a) 3-D representation; (b) mask coefficients 

in the plane ),,( 1 jkO
rr

 with )0,0,1(1 =O ; (c) mask coefficients in the plane ),,( 2 jkO
rr

 with 

)0,0,2(2 =O . Notes that here the coordinates of 2−O , 1−O , 1O and 2O are respectively )0,0,2(− , 

)0,0,1(− , )0,0,1( and )0,0,2( . For a complete representation of xm , the same sections exist 

respectively in 1−=i and 2−=i  with negative coefficients. 

 
Figure 4: Maximal angle error versus Signal to Noise Ratio (SNR) for G3D10, Prewitt, Sobel and 

cross masks, in a 3-D bloc showing a synthetic oblique cylinder (profile function order is n = 9); The 

orientation error is computed for pixels with the axis distance 5.03±=r for various Signal to Noise 

Ratio. θ = 90 deg. and ϕ = 63 deg. The signal is the gradient norm. The noise is additive, white and 

Gaussian. 
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Figure 5: Estimation of the direction “of the axis” ( 3u

r
) and “toward the axis” (

1u
r

) at voxel M 

 

 
Figure 6: Detection of a candidate axis voxel Ci from voxel Mi. 
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Figure 7: Setting the section of a cylinder: the most orthogonal plane to the axis vector s chosen in 

yzxzxy ,, . 

 

 
Figure 8: Estimation of an axis point and its corresponding orientation thanks to the connected 

component voxels in the section defined by the most orthogonal plane to the axis vector chosen in 

yzxzxy ,, . 
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Figure 9: (a) Bernstein profile function of cylinder (synthetic fiber); (b) Result of axis detection on 

synthetic fiber. 

 

 
Figure 10: Comparison of methods with Gaussian profile function a) Krissian approach and b) 

method introduced in this paper 
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Figure 11: Comparison of methods with Bernstein profile function a) Krissian approach and b) 

method introduced in this paper 

 

 
Figure 12: Results on oblique synthetic fiber with additive white Gaussian noise (SNR=12dB). 
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Figure 13: Composite material observed at the ESRF (European Synchrotron Radiation Facility 

(ESRF, ID19 beam line) synchrotron X-ray micro tomography. Various phases are shown: fibers, 

matrix and porous space. 

 

 
Figure 14: (a) Results of axes detection without preprocessing; (b) with preprocessing. The circled 

area consists in a small pore inside the bundle of fibers. 

 

 
Figure 15: Results of axes detection for a 3-D block extract of size 300x90x300. The fibers show the 

same direction. 
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Figure 16: Results of axes detection for a 3-D block extract of size 200x200x32 

 

 
Figure 17: Results of axes detection for a 3-D block of size 200x200x198 with fibers with various 

orientations. 

 

 
Figure 18: Undetected axes: the boundaries of the fibers are barely distinguishable. 
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Figure 19 Example of interrupted axes. The fiber is no more cylindrical at z=124. 
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Figure 20: Two axes detected for one single fiber. 

 


