
Spatio-temporal variability of marine primary and

export production in three global coupled climate

carbon cycle models

B. Schneider, L. Bopp, M. Gehlen, J. Segschneider, T. L. Frölicher, F. Joos, P.
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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00330246




BGD

4, 1877–1921, 2007

Marine productivity

in coupled climate

models

B. Schneider et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Biogeosciences Discuss., 4, 1877–1921, 2007

www.biogeosciences-discuss.net/4/1877/2007/

© Author(s) 2007. This work is licensed

under a Creative Commons License.

Biogeosciences
Discussions

Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences

Spatio-temporal variability of marine

primary and export production in three

global coupled climate carbon cycle

models

B. Schneider
1
, L. Bopp

1
, M. Gehlen

1
, J. Segschneider

2
, T. L. Frölicher
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Abstract

This study compares spatial and temporal variability in net primary productivity (PP)

and particulate organic carbon (POC) export production (EP) from three different cou-

pled climate carbon cycle models (IPSL, MPIM, NCAR) with observation-based es-

timates derived from satellite measurements of ocean colour and inverse modelling.5

Satellite observations of ocean colour have shown that temporal variability of PP on

the global scale is largely dominated by the permanently stratified, low-latitude ocean

(Behrenfeld et al., 2006) with stronger stratification (higher SSTs) leading to negative

PP anomalies and vice versa. Results from all three coupled models confirm the role

of the low-latitude, permanently stratified ocean for global PP anomalies. Two of the10

models also reproduce the inverse relationship between stratification (SST) and PP,

especially in the equatorial Pacific. With the help of the model results we are able to

explain the chain of cause and effect leading from stratification (SST) through nutrient

concentrations to PP and finally to EP. There are significant uncertainties in observa-

tional PP and especially EP. Our finding of a good agreement between independent15

estimates from coupled models and satellite observations provides increased confi-

dence that such models can be used as a first basis to estimate the impact of future

climate change on marine productivity and carbon export.

1 Introduction

Marine net primary productivity (PP) is a key process in the global carbon cycle, con-20

trolling the uptake of dissolved inorganic carbon (DIC) in the sunlit surface waters of

the ocean and its transfer into organic carbon (OC). Subsequent gravitational sinking

of detrital particulate organic carbon (POC) through the water column results in the

export of POC (EP) from the surface into the ocean’s interior, where it becomes partly

or entirely remineralised and eventually transported back to the surface. The export of25

organic matter leads to a depletion in DIC and nutrients in the surface and an enrich-
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ment in the deep. Without this biological cycle, surface water pCO2 and consequently

atmospheric CO2 would be higher than observed (Volk and Hoffert, 1985). However,

neither absolute values for global annual PP and EP nor their spatial and temporal

variability are well known from observations. Changes in ocean circulation and nutrient

cycling, as they will occur as a consequence of climate change, will impact PP and EP5

differently, demanding a better understanding of the mechanisms involved.

Satellite measurements of ocean colour have been used to derive surface water

chlorophyll concentrations (Chl), carbon biomass and PP (Behrenfeld et al., 2006,

1997; Carr et al., 2006). These methods have the advantage in that they provide large

spatial and temporal coverage of vast ocean areas. Reference measurements from10

ship-based observations, however, are still sparse. Complex algorithms lead stepwise

from ocean colour measurements to Chl concentrations, and from Chl, light, and tem-

perature to PP and sometimes even further to EP estimates. These include a number

of assumptions concerning, for example, vertical and temporal resolution of the param-

eters to be determined, which increases the uncertainty for the results obtained after15

each step. For example, Carr et al. (2006) examined results from 24 different methods

to determine PP from ocean colour and 7 general circulation models (GCMs), finding

a factor of two difference between global bulk estimates for PP, that range from 35 to

70 GtC/yr. Nevertheless, patterns of spatial and temporal variability of PP are similar

between different approaches, giving a first indication of the spatio-temporal variability20

of PP.

Export fluxes of organic carbon (OC) are even harder to constrain than PP. They

are difficult to be measured directly and in some approaches have to be referred to a

certain depth level, which is defined differently across studies (Oschlies and Kähler,

2004; Laws et al., 2000; Schlitzer, 2000). This complicates the comparison of such25

results. Observation-based estimates suggest that global POC export production is

in the range of 11 to 22 GtC/yr (Laws et al, 2000; Schlitzer et al., 2000; Eppley and

Peterson, 1979).

Ocean circulation and mixing is an important governing factor for biological produc-
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tivity and organic matter export. It controls the transport of nutrients into the euphotic

zone and thus nutrient availability for marine biological production. Najjar et al. (2007)

found that the global carbon export (POC and DOC) varied from 9 to 28 GtC/yr in 13

different ocean circulation models using the same biogeochemical model (OCMIP-2).

The importance of realistic physics has also been highlighted by Doney et al. (2004)5

using the same ocean models. The export of organic matter is, however, an important

quantity to constrain as it describes the amount of OC that is transported from the sur-

face ocean to depth, causing a vertical gradient of dissolved inorganic carbon (DIC) in

the water column (Volk and Hoffert, 1985). Potential changes in export may change

the uptake of anthropogenic carbon from the atmosphere.10

A quantitative understanding of the processes that control PP and EP and their im-

plementation in coupled climate biogeochemical models is essential to project the ef-

fect of future climate change on marine productivity, carbon export fluxes (Bopp et al.,

2005; Plattner et al., 2001; Joos et al.,1999; Maier-Reimer et al., 1996) and their possi-

ble feedbacks on the climate system (Friedlingstein et al., 2006). Unfortunately, produc-15

tivity and export are not well constrained by observations, making it difficult to validate

corresponding results from climate models. Productivity estimates from coupled mod-

els and satellite observations are to a large degree independent in construction, and

cross-comparison of the two approaches provides a promising way to assess jointly

their overall skill and identify the main underlying mechanisms that control PP and EP20

variability. To do so, this study investigates results from three different fully coupled

climate carbon cycle models (IPSL, MPIM, NCAR) that include interactions between

the atmosphere, ocean circulation and sea-ice, marine biogeochemical cycles and the

terrestrial biosphere. As all three models differ in their major components (atmosphere,

ocean, terrestrial and marine biospheres), the aim of this study is to give a description25

of the present day situation of marine PP and EP as simulated by coupled models.

Note that it would not be sufficient to investigate the primary and export production in

a (far cheaper) set of forced ocean-only model experiments, since climate in the fully

coupled models (e.g. ocean currents and resulting nutrient distributions, cloud cover
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and resulting insolation) will most likely differ from any reanalysed state.

Modelled circulation fields are compared with observations of temperature (T), salin-

ity (S), mixed layer depth (MLD) and water mass transports of the Atlantic Meridional

Overturning Circulation (AMOC). To assess the models’ capability to reproduce El Nino

Southern Oscillation (ENSO) variability, maximum entropy power spectra of sea sur-5

face temperatures (SST) from the equatorial Pacific are computed. The representation

of marine biogeochemical cycles is assessed by comparing modelled with observed

PO4 concentrations, which in the current study are fully prognostic in contrast to the

former model simulations of the OCMIP-2 study, where PO4 was restored (Najjar et al.,

2007). The evaluation of PP covers global annual mean fields, global integrals, sea-10

sonal cycle and interannual variability. We compare model results with PP derived from

satellite measurements of ocean colour and explain the main mechanisms causing in-

terannual variability of simulated PP. Global annual mean fields and global integrals for

EP from the models are also compared with observation-based estimates. Thereby,

we identify regions where EP reacts most sensitive to interannual climate variability.15

The present day situation of PP and EP from our results can be taken as a basis for a

first guess of the impact of future climate change on marine PP and EP, which will be

investigated in more detail in a complementary study.

2 Methodology

2.1 Data sets20

Results for temperature (T), salinity (S) and PO4 distributions are compared with ob-

served climatological values from the World Ocean Atlas (WOA; Collier and Durack,

2006; Conkright et al., 2002) to assess the reliability of modelled ocean circulation

fields and biogeochemical cycles. Furthermore, the representation of the maximum

mixed layer depth, which is a dynamically important variable for water mass formation,25

light limitation, and nutrient entrainment, is assessed by comparison with observations
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from Boyer-Montégut et al. (2004). Modelled fields of PP are compared with PP de-

rived from ocean colour (Behrenfeld et al., 2006) (http://web.science.oregonstate.edu/

ocean.productivity/onlineVgpmSWData.php) and EP distributions are compared with

results from (inverse) modelling, which refer to a depth of 133 m (Schlitzer, 2000) and

100 m (Laws et al., 2000), respectively. As neither for PP nor for EP approriate in-situ5

data are available, the latter is rather a comparison between different models.

2.2 Models

All models used in this study consist of fully coupled 3-D atmosphere-ocean climate

models that have also contributed to the IPCC Fourth Assessment Report (AR4;

Solomon et al., 2007; Meehl et al., 2007). The models were run with additional carbon10

cycle modules for the terrestrial and oceanic biospheres (Friedlingstein et al., 2006).

2.2.1 IPSL

The IPSL-CM4-LOOP (IPSL) model consists of the Laboratoire de Météorologie Dy-

namique atmospheric model (LMDZ-4) with a horizontal resolution of about 3
◦
×3

◦
and

19 vertical levels (Hourdin et al., 2006), coupled to the OPA-8 ocean model with a15

horizontal resolution of 2
◦
×2

◦
·cosφ and 31 vertical levels and the LIM sea ice model

(Madec et al., 1998). The terrestrial biosphere is represented by the global vegeta-

tion model ORCHIDEE (Krinner et al., 2005), the marine carbon cycle by the PISCES

model (Aumont et al., 2003). PISCES simulates the cycling of carbon, oxygen and

the major nutrients determining phytoplankton growth (PO4, NO3, NH4, Si, Fe). Phy-20

toplankton growth is limited by the availability of nutrients, temperature and light. The

model has two phytoplankton size classes (small and large), representing nanophy-

toplankton and diatoms, as well as two zooplankton size classes (small and large),

representing microzooplankton and mesozooplankton. For all species the C:N:P ra-

tios are assumed constant (122:16:1), while the internal ratios of Fe:C, Chl:C and Si:C25

of phytoplankton are predicted by the model. There are three non-living components
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of organic carbon in the model: semi-labile dissolved organic carbon (DOC), with a

lifetime of several weeks to years, as well as large and small detrital particles, which

are fueled by mortality, aggregation, fecal pellet production and grazing. Small detrital

particles sink through the water column with a constant sinking speed of 3 m/day, while

for large particles the sinking speed increases with depth from a value of 50 m/day5

at the depth of the mixed layer, increasing to a maximum sinking speed of 425 m/day

at 5000 m depth. For a more detailed description of the PISCES model see Amount

and Bopp (2006) and Gehlen et al. (2006). Further details and results from the fully

coupled model simulation of the IPSL-CM4-LOOP model are given in Friedlingstein et

al. (2006).10

2.2.2 MPIM

The Earth System Model employed at the Max-Planck-Institut für Meteorologie (MPIM)

consists of the ECHAM5 (Roeckner et al., 2006) atmospheric model in T63L31 res-

olution with embedded JSBACH terrestrial biosphere model and the MPIOM physical

ocean model, which further includes a sea-ice model (Marsland et al., 2003) and the15

HAMOCC5.1 marine biogeochemistry model (Maier-Reimer et al., 2005). The coupling

of the marine and atmospheric model components, and in particular the carbon cycles

is achieved by using the OASIS coupler.

HAMOCC5.1 is implemented into the MPIOM physical ocean model (Marsland et

al., 2003) using a curvilinear coordinate system with a 1.5
◦

nominal resolution where20

the North Pole is placed over Greenland, thus providing relatively high horizontal res-

olution in the Nordic Seas. The vertical resolution is 40 layers, with higher resolution

in the upper part of the water column (10 m at the surface to 13 m at 90 m). The ma-

rine biogeochemical model HAMOCC5.1 is designed to address large scale/long term

features of the marine carbon cycle, rather than to give a complete description of the25

marine ecosystem. Consequently, HAMOCC5.1 is a NPZD model with two phytoplank-

ton types (opal and calcite producers) and one zooplankton species. The carbonate

chemistry is identical to the one described in Maier-Reimer (1993). A more detailed
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description of HAMOCC5.1 can be found in Maier-Reimer et al. (2005), while here only

the main features relevant for the described experiments will be outlined.

Marine biological production is limited by the availability of phosphorous, nitrate and

iron. Silicate concentrations are used to distinguish the growth of diatoms and coccol-

ithophorides: if silicate is abundant, diatoms grow first, thereby reducing the amount of5

nutrients available for coccolithophoride growth. The production of calcium carbonate

shells occurs in a fixed ratio of the phytoplankton growth (0.2). The model also includes

cyanobacteria that take up nitrogen from the atmosphere and transform it immediately

into nitrate. Please note that biological production is temperature-independent, assum-

ing that phytoplankton acclimate to local conditions. Global dust deposition fields are10

used to define the source function of bioavailable iron. Removal of dissolved iron oc-

curs through biological uptake and export and by scavenging, which is described as

a relaxation to the deep ocean iron concentration of 0.6 nmol/m
3
. In the experiments

used here, export of particulate matter is simulated using prescribed settling velocities

for opal (30 m/day), calcite shells (30 m/day) and organic carbon (10 m/day). Reminer-15

alisation of organic matter depends on the availability of oxygen. In anoxic regions,

remineralisation using oxygen from denitrification takes place.

HAMOCC5.1 also includes an interactive module to describe the sediment flux at

the sea floor. This component simulates pore water chemistry, the solid sediment

fraction and interactions between the sediment and the oceanic bottom layer as well20

as between solid sediment and pore water constituents.

2.2.3 NCAR

The physical core of the NCAR CSM1.4 carbon climate model (Doney et al., 2006;

Fung et al., 2005) is a modified version of the NCAR CSM1.4 coupled physical model,

consisting of ocean, atmosphere, land and sea-ice components integrated via a flux25

coupler without flux adjustments (Bolville et al., 2001; Bolville and Gent, 1998). The

atmospheric model CCM3 is run with a spectral truncation resolution of 3.75
◦

(T31) and

18 levels in the vertical (Kiehl et al., 1998). The ocean model is the NCAR CSM Ocean
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Model (NCOM) with 25 levels in the vertical and a resolution of 3.6
◦

in longitude and

0.8
◦

to 1.8
◦

in latitude (T31×3) (Gent et al., 1998). The water cycle is closed through

a river runoff scheme, and modifications have been made to the ocean horizontal and

vertical diffusivity’s and viscosity’s from the original version (CSM1.0) to improve the

equatorial ocean circulation and interannual variability. The sea ice component model5

runs at the same resolution as the ocean model, and the land surface model runs at

the same resolution as the atmospheric model.

The CSM1.4-carbon model includes a modified version of the terrestrial biogeo-

chemistry model CASA (Carnegie-Ames-Stanford Approach) (Randerson et al., 1997),

and a derivate of the OCMIP-2 (Ocean Carbon-Cycle Model Intercomparison Project10

Phase 2) oceanic biogeochemistry model (see Najjar, R. G. and Orr, J. C., 1999,

unpublished manuscript, OCMIP-2 Biotic-HOWTO; available online at http://www.ipsl.

jussieu.fr/OCMIP/). In the ocean model the biological source-sink term has been

changed from a nutrient restoring formulation to a prognostic formulation, thus bio-

logical productivity is modulated by temperature, surface solar irradiance, mixed layer15

depth, and macro- and micronutrients. Following the OCMIP-2 protocols (Najjar et al.,

2007), total biological productivity is partitioned 1/3 into sinking POC flux, equivalent

to EP, and 2/3 into the formation of dissolved or suspended organic matter, much of

which is remineralised within the model euphotic zone. Total productivity thus contains

both new and regenerated production, though the regenerated contribution is probably20

lower than in the real ocean. While not strictly equivalent to primary production as

measured by
14

C methods, rather net nutrient uptake, NCAR PP is a reasonable proxy

for the time and space variability of PP if somewhat underestimating the absolute mag-

nitude. Please note that in this study for reasons of simplicity net nutrient uptake for

NCAR is labelled and treated as PP, even though it is not essentially the same. The25

ocean biogeochemical model includes in simplified form the main processes of the

organic and inorganic carbon cycle within the ocean, and air-sea CO2 flux. A param-

eterisation of the marine iron cycle has also been introduced (Doney et al., 2006). It

includes atmospheric dust deposition/iron dissolution, biological uptake, vertical parti-
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cle transport and scavenging. The prognostic variables in the ocean model are phos-

phate (PO4), total dissolved inorganic Fe, dissolved organic phosphorus (DOP), DIC,

alkalinity and O2. The CSM1.4-carbon source code is available electronically (see

http://www.ccsm.ucar.edu/working groups/Biogeo/csm1 bgc/) and described in detail

in Doney (2006).5

2.3 Experiments

All results of the current study are obtained from simulations with the coupled climate

carbon cycle models explained above (IPSL, MPIM, NCAR), that simulate fully coupled

interactions between the atmosphere, ocean circulation, sea-ice, marine biogeochem-

ical cycles and terrestrial biosphere. The models are a subset of the models that10

contributed to the C4MIP project (Friedlingstein et al.,2006) and follow the C4MIP pro-

tocols. Two of the models (IPSL, MPIM) are only forced by the historical development

of anthropogenic CO2 emissions due to fossil fuel burning and land-use changes from

preindustrial to present and the A2 scenario from the year 2000 on. In addition to

that, NCAR is also forced by CH4, N2O, CFCs, volcanic emissions and changes in so-15

lar radiation. The ocean circulation models have been spun up for several hundreds

of years, and the fully coupled versions were integrated for at least an additional one

hundred years before starting the transient simulation over the industrial period from

1820 (MPIM and NCAR) and 1860 (IPSL) until the year 2100. During the time period

investigated (1985–2005), the anthropogenic CO2 emissions increase from about 7.520

to 8.6 GtC/yr, resulting in a cumulative emission of about 170 Gt of carbon during this

interval. For a joint analysis of the model results and for comparison with observation-

based estimates, all variables have been interpolated onto a 1
◦
×1

◦
grid using a gaus-

sian interpolation and climatological mean values have been computed over the period

from 1985 to 2005. This study focuses on results from those two decades to de-25

scribe the present day PP and EP as obtained from coupled model simulations and

observation-based estimates.
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3 Results and discussion

3.1 Ocean circulation and biogeochemical cycling

In a Taylor diagram, all three models show good agreement for 3-D global annual mean

distributions of temperature (Fig. 1). Global SST distributions including the seasonal

cycle are even better reproduced, reaching correlation coefficients above R=0.98 and5

normalised standard deviations very close to 1. Salinity distributions are known to be

less well reproduced by coupled climate models, which is largely attributed to deficien-

cies in the hydrological cycle of the atmosphere models (Schneider et al., 2007). This

is also the case for the models of the current study. However, correlation coefficients

for both the global annual mean 3-D salinity distributions and the SSS values including10

the seasonal cycle are still on the order of R=0.78–0.90. In contrast to temperature,

the agreement between modelled and observed salinity distributions is poorer when

going from the global annual mean 3-D field to seasonal surface water values, which

is due to a stronger influence of possible misfits from the atmospheric hydrological cy-

cle, as mentioned above. While correlation coefficients remain similar, the normalised15

standard deviations are considerably higher than observed. Generally, in terms of T

and S all three models of the present study perform at least as well as the majority of

models that contributed to the IPCC AR4 (Meehl et al., 2007; Schneider et al., 2007).

The mixed layer depth (MLD) is a dynamically important variable for upper ocean wa-

ter mass transport (Gnanadesikan et al., 2002), and especially the maximum (MLDmax)20

during winter time strongly affects the formation of mode, intermediate, deep and bot-

tom waters. Furthermore, ocean mixing plays an important role in surface ocean nutri-

ent availability and thus biological productivity (Najjar et al., 2007). Observation-based

estimates of MLD, however, are uncertain, and different methods to determine MLD

yield different results for both models and observations (Boyer-Montégut et al., 2004).25

MPIM strongly overestimates MLDmax in the Southern Ocean, while the other models

show too shallow mixing in this area as compared to climatological MLD observations

(Boyer-Montégut et al., 2004; Fig. 2). In the low latitudes, all models correspond very
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well to the observations, but in the intermediate and high northern latitudes from 20–

70
◦
N the models overestimate zonal average MLDmax up to a factor of two. Spatial

correlations of modelled and observed MLDmax are only moderate and on the order

of R=0.3–0.4. The tendency towards too deep mixing is expressed by high ratios of

normalised standard deviations (stdmod/stdobs) in a Taylor-diagram (Fig. 1). For MPIM5

the overestimation of MLDmax in the Southern Ocean is known to be caused by too little

ice cover in the Weddell Sea (Marsland et al., 2003). This misfit leads to a normalised

standard deviation above 6.5 in a Taylor diagram (not shown). However, when applying

the definition of MLD as used in Schneider et al. (2007) to temperature and salinity data

from the models and the climatological observations (Conkright et al., 2002) the result-10

ing correspondence of MLDmax distributions is not considerably better (not shown).

A further approach to assess the modelled ocean circulation fields is a comparison

of modelled and observed water mass transports (Schneider et al., 2007; Schmittner et

al., 2006; Large et al., 1997). The Atlantic Meridional Overturning Circulation (AMOC)

is an important measure for ocean circulation, quantifying the amount of deep waters15

formed in the North Atlantic, which is of high climatic relevance for the global redistri-

bution of heat and energy by the ocean. In the current study AMOC is defined as the

maximum meridional water mass transport below 300 m depth in the North Atlantic,

given in Sverdrup (1 Sv=10
6

m
3

s
−1

). In MPIM the simulated water mass transport lies

well within the range of equally defined observation-based estimates for the 1990ies,20

whereas in IPSL the AMOC is low and in NCAR high, but within the error-bars of one

standard deviation both also match the observed range (IPSL: 11.4±1.3 Sv; MPIM:

18.1±0.9 Sv; NCAR: 23.6±1.0 Sv, OBS: 11.5–22.9 Sv; Smethie and Fine, 2001; Talley

et al., 2003).

The fully coupled carbon-cycle climate models used in the current study generate25

their own internal climate variability including coupled ocean-atmosphere modes such

as El Nino Southern Oscillation (ENSO). To assess the models’ capability to reproduce

ENSO variability, the power spectra of SSTs averaged over the Nino3 Box (150
◦
W–

90
◦
W, 5

◦
S–5

◦
N) are calculated (Fig. 3). For IPSL and NCAR there are maxima of the
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power spectra between two and seven years, which is the typical range of El Nino fre-

quency (Randall et al., 2007), while MPIM does not show a maximum, but also strongly

increasing power within this range. This may still be reasonable, as this analysis was

performed over a 20 year time-period, which may be too short to exhibit representative

ENSO dynamics.5

Phosphate concentrations (PO4) are a good indicator for biogeochemical cycling in

the models, as PO4 is not affected by air-sea gas exchange, which is treated differently

in the models. Furthermore, in the current study PO4 is a fully prognostic tracer in

contrast to the models contributing to the OCMIP-2 study, where surface PO4 was re-

stored (Najjar et al., 2007). The comparison with climatological PO4 values (Conkright10

et al., 2002) reveals a good reproduction of annual mean PO4 fields by all models with

correlation coefficients around R∼0.85. IPSL and MPIM perform especially very well

with normalised standard deviations close to 1 (Fig. 1). For all models the agreement

gets weaker when going from the annual mean 3-D distribution of PO4 to surface water

values including the seasonal cycle. Maps of surface water PO4 concentrations, av-15

eraged over the top 0–100 m, show that all models roughly match the general pattern

of observed PO4 distributions with lower values in the oligotrophic subtropical gyres

and higher values in the high latitudes, particularly in the Southern Ocean, and also

in the equatorial and continental upwelling regions (Fig. 4). MPIM underestimates the

surface water PO4 gradient from high towards low latitudes. The NCAR model over-20

estimates surface PO4 in the tropical Pacific because excessive iron limitation overly

reduces biological phosphate uptake (Fig. 5).

In all models vertically integrated PO4 concentrations (not shown) are low in the

North Atlantic and increase along the conveyor-belt circulation pathway, ending up with

a high PO4 inventory in the North Pacific (Sarmiento et al., 2003). However, all models25

in general have too high PO4 concentrations in the North Atlantic. The deviations in the

North Pacific PO4 inventories, which in IPSL and NCAR are too low and in MPIM too

high, are probably caused by circulation misfits in the surface water and the thermocline

with too weak (IPSL, NCAR) or too strong (MPIM) North Pacific Intermediate Water
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formation.

The factors that limit phytoplankton growth in the models are computed from

Michaelis-Menten equations for nutrient concentrations, according to MM=N/(N+K),

whereby N is the nutrient concentration (PO4, NO3, iron and silicate) and K is the

respective half-saturation constant as used in each model. The nutrient yielding the5

lowest MM-value is considered to be the most limiting. Other factors (temperature and

light) are assumed to be limiting when MM of the limiting nutrient is still above 0.7.

In Fig. 5 the limiting factors are shown when the respective variable is limiting phyto-

plankton growth during at least one month of the year, showing that in some regions

different variables may limit productivity at different times of the year. In the MPIM10

model iron limitation is even stronger than in NCAR and occurs almost everywhere. In

IPSL iron is mostly limiting in the equatorial east Pacific, the Southern Ocean and the

North Pacific, which are known to be high nitrate low chlorophyll areas (HNLC) that are

strongly iron limited. Furthermore, in IPSL NO3 is the most limiting factor in the inter-

mediate to low latitudes. In the high latitudes also temperature and light are important15

for nanophytoplankton growth and diatom production is also limited by the availability

of silicate.

In summary, all models show a reasonable agreement with observations of temper-

ature and salinity fields, MLD max, PO4 concentrations and also with estimates of water

mass transports, giving confidence in the models that the simulated circulation fields20

and biogeochemical cycles are reasonable and comparable to those of other state-of-

the-art coupled climate models (Meehl et al., 2007; Randall et al., 2007).

3.2 Annual mean and seasonal cycle of primary productivity and export production

Vertical integrals of PP have been computed over the entire depth of the water column

in order to compare with estimates from satellite observations of ocean colour and to25

derive global integrals for PP (Table 1). In MPIM PP is operationally restricted to 0–

90 m and in NCAR to 0–75 m, while in IPSL it can reach below 100 m water depth in the

oligotrophic subtropical gyres. The global annual amount of PP ranges from 24 GtC/yr
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(MPIM) to 31 GtC/yr (IPSL), and is considerably lower than satellite-based estimates

of around 48 GtC/yr (Behrenfeld et al., 2006). Carr et al. (2006) reported a factor of

two between global integrals for PP (35–70 GtC/yr) obtained from different algorithms

that derive PP from ocean colour, indicating that there is still some uncertainty among

those methods. PP from the coupled models is still lower than the low-end satellite5

estimates. Despite their large spread the different PP algorithms for the observations

show patterns of spatial and temporal variability that are similar between different ap-

proaches (Carr et al., 2006) and can therefore be used for comparison with results from

climate models.

The spatial distributions of modelled PP agree moderately well with the pattern of10

observation-based PP (Fig. 6). In general, satellite-based and model PP are high in

the equatorial upwelling regime, especially the equatorial east Pacific and the equa-

torial east Atlantic. PP is also elevated in the North Atlantic and the Southern Ocean

north of the polar front, while it is low in the subtropical oligotrophic gyres. High PP

values as derived from observations for the coastal zones are strongly underestimated15

by all three models, which is a known fact from coarse resolution models. This under-

estimation of modelled PP in the coastal regions is mainly responsible for the lower

than observed global annual PP. For MPIM and NCAR the fairly low PP suggests that

iron limitation in the models is too strong (Fig. 5). In the MPIM model this causes too

high PP in the low-latitude Atlantic and too little elsewhere. Furthermore, dust input in20

MPIM is at the lower end of observed values (Timmreck and Schulz, 2004), leading

to low iron deposition from the atmosphere, which further increases the iron stress for

marine productivity. The lower PP values in the NCAR model also reflect the fact that

the calculated productivity is intermediate between new and primary production, which

also partly explains the lower than observed PP values (Fig. 6).25

The seasonal variability of PP is shown in Hovmöller diagrams with the zonally aver-

aged PP plotted versus time from observations and models (Fig. 6). Areas of highest

productivity are observed in the North Atlantic, where also seasonal variability is high-

est. In the oligotrophic gyres PP is low throughout the year and variability is also
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reduced. Along the equator observed PP has moderate values with low seasonal vari-

ability, while in the southern intermediate latitudes (30–50
◦
S) a secondary maximum

with high PP and high variability occurs. The models capture the general distribution

of higher absolute PP values and higher seasonal variability in the intermediate to high

latitudes. IPSL has too high PP values around the equator and too little meridional ex-5

tension of the oligotrophic gyres. Also in the Southern Ocean PP is overestimated and

extending farther southwards than in the observations. In MPIM the periods of high

productivity in the higher latitudes are very short, indicating that here PP occurs in very

short (strong) pulses, while in the equatorial region PP is higher than the observations

with some moderate seasonal variability. The pattern of spatio-temporal variability in10

NCAR is very similar to the one from the observations, but like in IPSL, PP in the inter-

mediate southern latitudes is biased high and the area of oligotrophic gyres is reduced.

The latter is a signal which is arises in the Atlantic, while in the Pacific the expansion

of the gyres is too large (Fig. 6).

As mentioned above, the derivation of PP from satellite data entails large uncer-15

tainties, as it is a stepwise approach from measurements of ocean colour over the

determination of chlorophyll concentrations (and sometimes organic carbon biomass)

to PP. While the first steps consider concentrations, PP is a time-dependent rate, re-

quiring even more complicated assumptions about the underlying mechanisms. With

each further step from ocean colour to PP the errors propagate, leading to consider-20

able uncertainty in the value of global annual PP, reflected in the factor of 2 spread in

the study of Carr et al. (2006). For IPSL, where chlorophyll concentrations are avail-

able, a comparison of modelled and satellite-based chlorophyll distributions shows a

better agreement than PP values (Fig. 7). Although the model slightly underestimates

the surface Chl concentrations, especially in high (northern) latitudes and around the25

equator, the pattern and the order of magnitude of spatial variability for Chl are slightly

closer to observations than those obtained for PP estimates (Fig. 8).

Export Production (EP) describes the amount of particulate organic carbon (POC)

that is transported from the surface ocean to depth across a certain depth level (IPSL:
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100 m; MPIM: 90 m; NCAR: 75 m). In this study only the material settling through

gravitational sinking is regarded, while the total export also encompasses subduction

and mixing of suspended particles and dissolved organic matter (DOM) due to water

mass transports. The fields of annual mean EP have similar patterns to those of PP for

all three models (not shown), i.e. as a first approximation those areas with higher PP5

also have higher EP. In NCAR this relation is prescribed by using a fixed ratio (1/3) of

PP that is exported as POC, while for the other models the amount of EP and its ratio

to PP is less straightforward, depending on particle flux and food-web dynamics. The

global annual rates of modelled EP are given in Table 1, ranging from 5 GtC/yr (MPIM)

to 9 GtC/yr (NCAR), being thus below observation-based estimates reaching from 1110

to 22 GtC/yr (Schlitzer, 2000; Laws et al., 2000; Eppley and Peterson, 1979).

Highest EP in IPSL and NCAR occurs in the intermediate to high latitudes be-

tween 40–60
◦
North and South, respectively (Fig. 9). A secondary maximum is situ-

ated around the equator, where upwelling of nutrient rich deep waters permits high PP

(Fig. 6) and thus high EP. Between those areas, in the latitude band of the oligotrophic15

subtropical gyres (∼10–40
◦
North and South) EP is low. In MPIM, zonal average EP

increases from low values in the high latitudes to its maximum around the equator, how-

ever, in general EP seems to be underestimated everywhere except for the equatorial

region if compared to the other models and the observation-based estimates. This dis-

tribution will also be caused by the strong iron stress due to too little atmospheric iron20

deposition (Fig. 5).

In a Taylor diagram the correlation coefficients for the spatial distributions of annual

mean EP from the models are rather poor with highest values for IPSL (R=0.35). These

correlations are lower than those determined for PP (Fig. 8). One problem for the com-

parison of different EP estimates are the different reference levels, depending on the25

definition of EP, as mentioned above. Consequently, the shallowest estimate (NCAR,

75 m) should give highest values and the deepest estimate (Schlitzer, 133 m) lowest

export fluxes, which, however, is not the case (Table 1). Another probable reason for

the mismatch between modelled and observation-based EP is the large uncertainty of
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observation-based estimates for EP. Similar to the PP estimates, they also vary by a

factor of two, from global annual mean values of 11 to 22 GtC/yr. Furthermore, the

two estimates of Schlitzer (2000) and Laws et al. (2000), which have about the same

amount of EP (11 GtC/yr), show very different spatial distributions (Fig. 9) and also

spatial correlations between the two are not better than those from comparison with5

modelled EP (Fig. 8).

3.3 Interannual variability

Primary production is known to be sensitive to climate impacts like for example El Nino

Southern Oscillation (ENSO). Consequently, during an El Nino period PP in the trop-

ical Pacific is reduced whereas at a La Nina situation it is enhanced (Behrenfeld et10

al., 2001; Chavez et al., 1999). From satellite observations it has also been shown

that the global signal of interannual PP variability can largely be attributed to the per-

manently stratified, low-latitude oceans (Behrenfeld et al., 2006). What is more, such

anomalies are highly correlated with shifts in the climate system in a way that stronger

stratification and the resulting surface ocean warming, which correspond to more El15

Nino-like conditions, lead to negative PP and chlorophyll anomalies globally over much

of the tropics and subtropics. At first sight this relation seems to be counter-intuitive,

as phytoplankton growth is positively related to rising temperatures (Eppley, 1972).

On the other hand, stronger stratification results in less nutrient supply from deep wa-

ters, which in turn limits phytoplankton growth. Algorithms that derive PP from ocean20

colour make only indirect assumptions about nutrient concentrations via the temper-

ature effect on PP. More detailed answers regardinig the links between stratification,

temperature, nutrients and biological productivity can be provided by ocean biogeo-

chemical models. All three models examined in the current study show exactly the

same behaviour which was described by Behrenfeld et al. (2006) with the global signal25

of PP anomalies largely controlled by the permanently stratified low-latitude oceans

that have annual average SSTs above 15
◦
C (Fig. 10). It is interesting to see that for

all models and the observation-based values the percentage of PP in the low-latitude,
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permanently stratified ocean (PPstrat) to global PP (PPglob) approximates the fraction

of the stratified areas to the global ocean surface area, while the anomalies of PPglob

and PPstrat are positively correlated (Table 1), which highlights the dominant role of the

low-latitude ocean in setting the global signal of PP variability.

Observation-based PPstrat anomalies are negatively correlated with changes in strat-5

ification and SST over the same area (Fig. 10; Behrenfeld et al., 2006). Note that in

interpreting Fig. 10, one should focus on the magnitude and frequency of the PP vari-

ability, not the phasing of specific PP events. Because the models are fully coupled,

they each generate their own unique internal climate variability that can only statistically

be compared with other models and observations. For the model results, a stratification10

index (SI) was calculated as by Behrenfeld et al. (2006) as the density difference be-

tween the sea surface and 200 m water depth. In the IPSL model, PP integrated over

the entire domain of the low-latitude, stratified water is strongly anti-correlated with

SST and SI. In the NCAR simulation, the biological-physical anti-correlations are more

apparent when the analysis is restricted to the area of the Nino3 Box (150–90
◦
W, 5

◦
S–15

5
◦
N) (Table 2, Fig. 10). For MPIM no correlation can be found between the respective

anomalies of PP and stratification (SI) or SST, neither for the whole low-latitude, per-

manently stratified domain nor for any other individual sub region. This may be due

to the fact that in MPIM the equatorial Atlantic ocean is dominated by strongly oscillat-

ing predator-prey cycles, which lead to phase shifts in phytoplankton and zooplankton20

abundance. This can also explain the high amplitude and frequency of interannual

variability of PP simulated by MPIM (Fig. 10).

The slopes that can be derived from the anomalies of PPstrat versus stratification

(SSLOPE) and SST (TSLOPE) are very similar in IPSL and the observation-based

estimates (Fig. 11). In the satellite observations for the area of the permanently strat-25

ified oceans there is a PP anomaly of –876 TgC/month per unit stratification increase

(kg m
−3

) and a decrease of –151 TgC/month per degree SST increase (Table 1). For

IPSL SSLOPE is slightly weaker (–787 TgC/month) and TSLOPE somewhat stronger

(–246 TgC/month). In NCAR both slopes are weaker and correlations insignificant for
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the entire low-latitude, stratified domain, but considerably higher correlations are found

for the region of the Nino3 Box (Table 2). This area is, however, too small to explain the

bulk of the PP variability for the permanently stratified ocean, which governs the global

signal in the NCAR simulations. These results indicate that PP variability in NCAR

and MPIM, where no good relationship between PP and climate could be detected,5

acts differently in different areas, summing up to the common signal of the low-latitude,

stratified ocean. Mechanisms for PP variability in these two models may be different

or different sub regions of the low-latitude stratified ocean may dominate the signal at

different times.

A further step is to examine the mechanisms behind the climate-productivity cor-10

relations as found in IPSL for the entire low-latitude ocean domain and in NCAR for

the tropical East Pacific. As mentioned before, one might expected that PP increases

under higher SSTs due to the temperature sensitivity of phytoplankton growh rates (Ep-

pley, 1972). To find out which other mechanisms contribute to PP variability, maps of

cross correlations of different anomalies averaged over the whole region (Fig. 12) ver-15

sus the local PP variability are drawn, highlighting those regions in the models where

PP reacts most sensitive to changes in other variables like stratification, SST and sur-

face water nutrient concentrations. Here, the correlation coefficient R
2

is multiplied by

the sign of the regression slope to show next to its strength also the direction of the

correlation (positive or negative). To isolate the large scale climate impact on productiv-20

ity “anomalies” of temperature, stratification and nutrient concentrations are averaged

over the whole low-latitude, permanently stratified ocean, rather than showing the local

signal on each grid-point. The pattern found for anomalies of PP and stratification (SI)

in the IPSL model is very similar to the one seen in the observation-based estimates

with strongest anti-correlations (negative R
2
-values) occurring at the borders of the25

equatorial tongue (Fig. 12). High positive correlation coefficients (R
2
) between PP and

(NO3) concentrations in the same area indicate that stratification and SST changes in

the equatorial Pacific lead to changes in the upwelling of nutrients, which further leave

their imprint on PP. As the equatorial Pacific is known to be mainly iron limited (Fig. 5),
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one would assume to find also a strong impact of iron variability on PP towards the

center of the high productivity tongue. The absence of such a signal in IPSL, however,

may be caused by the formulation of the iron cycle in IPSL, where iron concentrations

are restored to a minimum value of 0.01 nM l
−1

. By doing so, the natural variability of

iron is suppressed, strongly dampening the signal that otherwise would be transferred5

into PP variability. Furthermore, as iron is strongly scavenged by sinking particles in

the surface ocean, the nutricline for iron is deeper than the one for NO3, so that for iron

stronger upwelling is needed to efficiently resupply the surface ocean with iron from

below. In NCAR, the highest anti-correlations for PP and SI anomalies are also found

in the equatorial Pacific (Fig. 12). Especially for the area of the Nino3 Box higher cor-10

relation coefficients between PP and SI/SST than for the entire low-latitude, stratified

domain have already been mentioned above. The respective correlation coefficients

are given in Table 2, showing also that in NCAR PP in the area of the Nino3 Box is

mainly controlled by iron availability, while there is no correlation to PO4 concentra-

tions. In MPIM there are no considerable correlations between anomalies of PP and15

PO4 concentrations, which can be attributed to the effect of too strong iron stress in the

model.

From the correlations and the signs of the regression slopes of the variability of PP

and SI (stratification index) versus different nutrient concentration anomalies, the chain

of cause and effect from climate impacts to nutrient concentrations and further to PP20

and finally to EP, may be tentatively reconstructed (Table 2). Accordingly, in IPSL the

global signal of PP variability is well explained by the behaviour of the entire perma-

nently stratified, low-latitude ocean. Even though in some cases there are moderate

correlations between PP and iron variability the slope is negative, which means in the

opposite direction than expected (Table 2). This shows the effect of restoring the iron25

concentrations on hiding the potential impact of iron limitation on PP variability. In-

stead, PP variability is dominated by NO3 and PO4 (Fig. 12, Table 2). Both nutrients

show high correlations with climate indicators like SI and SST as well as with PP for the

entire stratified, low-latitude domain and also for the Nino3 Box only (Table 2). In MPIM
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PP variability is largely independent of PO4 and other nutrients (Fig. 12), even though

the general feature that global PP variability is controlled by the low-latitude oceans

is also very well reproduced (Fig. 10). A similar behaviour is found for NCAR, where

the North Atlantic also contributes considerably to PP variability (Fig. 6), but this region

alone is also not able to explain large parts of the global PP variability. Iron is the main5

limiting nutrient for productivity in the low latitudes of the NCAR model (Fig. 5), and

especially in the area of the Nino3 Box there are high correlation coefficients between

stratification, SST and iron variability and further on for iron and PP variability (Table 2).

One reason for the absence of a higher correlation between the anomalies of PP and

nutrients of the whole low-latitude area maybe the fact that in the NCAR model PP10

stands for net nutrient uptake, which includes processes like grazing and heterotrophic

respiration.

The pattern of the sensitivity of PP to climate is transferred into EP variability. EP

reacts most sensitive to changes in PP in those areas, where PP reacts most to climate

variability (Fig. 13). In IPSL, variability in EP is strongly correlated with the average PP15

variability at the borders of the high productivity tongue in the equatorial Pacific, a pat-

tern which is also reproduced by the EP correlations with NO3 anomalies (Fig. 13). In

MPIM there are no considerable correlations between EP and PP or other climate and

nutrient anomalies when regarding the entire low-latitude ocean. In the NCAR model,

EP shows the strongest correlation with PP variability in the North Atlantic, where PP20

(and thus EP) exhibits the strongest interannual variability. Correlation coefficients

different from 1 can be found, even though EP is fixed to be 1/3 of PP, as local EP

variability is correlated with PP variability averaged over the entire low-latitude, perma-

nently stratified domain. For the global integrals of PP and EP, however, the correlation

is 1 (Table 2). Surprisingly, neither IPSL nor NCAR show considerable correlations of25

EP with changes in the mixed layer depth.
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4 Conclusions

The current study has shown that while it is still difficult to reproduce absolute values

of observation-based annual mean PP with ocean biogeochemical models, both the

mechanisms and the amount of interannual variability are well captured by the models.

In good agreement with recent satellite observations, the global signal of modelled5

PP variability is largely dominated by the low-latitude, permanently stratified ocean

(Behrenfeld et al., 2006). This result is very robust across the models, even though

they perform differently in representing biogeochemical cycles (Fig. 5). The finding of

the dominating role of PP in the low-latitude ocean, however, has also be regarded with

some care, as both 3-D models and satellite observations may be biased towards lower10

latitudes. High-latitude satellite-derived PP values especially for the Southern Ocean

are less well constrained than those for the low-latitudes due to cloud coverage and the

poorer availability of reference measurements. The 3-D coupled models are sometimes

tuned to reproduce climate and biogeochemical variability in the low latitudes, while in

the high latitudes difficulties with sea-ice interactions may occur.15

In particular, in this study we are able to demonstrate that under more El Nino-like

conditions with surface ocean warming and stronger stratification in the low-latitude

ocean, nutrient supply to the surface ocean is reduced, and results in lower PP and

EP. In a future warming climate with permanent El Nino like conditions both PP and

EP probably will be reduced, which has already been shown by other climate model20

simulations (Sarmiento et al., 2004; Boyd and Doney, 2002; Bopp et al., 2001). TS-

LOPE was determined in the present study from observation-based estimates and the

IPSL model to quantify PP sensitivity to SST (Table 2). As the model simulations were

run until the year 2100 using the A2 scenario, results are available to check whether

TSLOPE also holds for the future impact of climate change on PP in the low-latitude25

ocean. Accordingly, one would expect PP (EP) in the low-latitude ocean to decrease

by 3 GtC/yr (0.6 GtC/yr) per 1
◦
C temperature increase. For this particular area the IPSL

model predicts an increase of the average SST of 1.6
◦
C from the years 1985–2005 until
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2090–2099. This should lead to a decrease in PP (EP) by 4.8 GtC/yr (1 GtC/yr), which

amounts to a decline of 27%. However, the model predicts PP over the same time

period and area to reduce only by 1.6 GtC/yr (–9%) and EP by 0.7 GtC/yr (–19%). This

shows that TSLOPE, which was derived from modelled interannual variability during

the two decades between 1985 and 2005, can not be used for extrapolation into future5

climate conditions. Consequently, to estimate the impact of future climate change on

marine productivity further mechanisms and, of course, also the high latitude ocean

will have to be considered, which will be done in a complementary study that analyses

the continuation of the here presented model simulations in a scenario of future climate

change (SRES A2) until the year 2100.10

In summary, the current study has illustrated a strong link between marine productiv-

ity and climate variability, both derived from satellite observations, with coupled climate

carbon cycle modelling. On the one hand observation-based estimates have been

used to constrain model results for ocean circulation and biogeochemical cycling, while

on the other hand results from the climate models have been used to interpret and re-15

construct the mechanisms that underly climate-driven shifts in marine productivity that

have been observed. The strong agreement between the areas and mechanisms that

dominate PP variability on the global scale for both types of investigation increases

confidence in results obtained by both models and observation-based estimates, and

it demonstrates the power and importance of model data intercomparisons on the way20

to better understand the links between climate and marine biogeochemical cycles.
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Krinner, G., Viovy, N., deNoblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais,

P., Sitch, S., and Prentice, C.: A dynamic global vegetation model for studies of the

coupled atmosphere-biosphere system, Global Biogeochem. Cycles, 19, GB1015, doi:

10.1029/2003GB002199, 2005.25

Large, W. G., Danabasoglu, G., Doney, S. C., and McWilliams, J. C.: Sensitivity to surface

forcing and boundary layer mixing in a global ocean model: annual-mean climatology, J.

Phys. Oceanogr., 27, 2418–2447, 1997.

Laws, E. A., Falkowski, P. G., Smith, W. O., and Ducklow, H.: Temperature effects on export

production in the open ocean, Global Biogeochem. Cycles, 14, 1231–1246, 2000.30
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Table 1. Depth integrated net primary production (PP) and Export of POC (EP) for the different

models and observation-based estimates. PPglob: global annual PP; PPstrat: global annual PP

in the area of the permanently stratified, low-latitude ocean; Areastrat: percentage of the perma-

nently stratified, low-latitude ocean to the global ocean domain; R
2

PPano correlation coefficient

for anomalies of PPglob versus anomalies of PPstrat; SSLOPEP P : slope of the regression line for

PPano (=difference of monthly PP value to the climatological mean of PP) and SIano (=difference

of monthly stratification value to climatological mean stratification); R
2

SSLOPEP P : correlation

coefficient for PPano and SIano; TSLOPEP P : slope of the regression line for PPano and SSTano;

R
2

TSLOPEP P : correlation coefficient for PPano and SSTano. Notation for EP correlations is

equivalent. Values in brackets correspond to one standard deviation.

Primary Production IPSL MPIM NCAR SEAWIFS

PPglob (GtC yr
−1

) 30.7 (3.1) 23.7 (8.6) 27.4 (3.3) 47.5 (2.4)

PPstrat (GtC yr
−1

) 17.7 (1.8) 17.7 (3.4) 17.8 (2.2) 34.6
1

(1.3)

PPstrat (%) 58 75 65 73
1

Areastrat (%) 62 67 66 72
1

R
2

PPano 0.88 0.85 0.78 0.69
1

SSLOPEP P (TgC kg
−1

m
−3

) –787 0 –143 –876

R
2

SSLOPEP P 0.70 0.04 0.02 0.69

TSLOPEP P (TgC
◦

C
−1

) –246 0 –65 –151

R
2

TSLOPEP P 0.67 0.03 0.05 0.85

POC Export IPSL MPIM NCAR Schlitzer Laws

EPglob (GtC yr
−1

) 8.6 (0.8) 5.0 (1.8) 9.0 (1.1) 11.4 11.1

EPstrat (GtC yr
−1

) 3.6 (0.3) 3.8 (0.7) 5.6 (0.7) 7.0
1

6.2
1

EPstrat (%) 42 75 62 61
1

56
1

R
2

EPano 0.65 0.91 0.78

SSLOPEEP (TgC kg
−1

m
−3

) –184 0 –57

R
2

SSLOPEEP 0.61 0.04 0.03

TSLOPE EP (TgC
◦

C
−1

) –47 0 –23

R
2

TSLOPE EP 0.61 0.04 0.06
1

SST data from Conkright et al. (2002).
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Table 2. Correlation coefficients (R
2
) and signs of regression slopes (+/–) of cross correlations

of local anomalies of PP and stratification (SI) versus the anomalies of different variables aver-

aged over the area of the low-latitude, stratified ocean (LL-STRAT) and the Nino3 Box (NINO3;

150
◦

W–90
◦

W, 5
◦

S–5
◦

N).

IPSL MPIM NCAR

LL-STRAT NINO3 LL-STRAT NINO3 LL-STRAT NINO3

R
2

+/– R
2

+/– R
2

+/– R
2

+/– R
2

+/– R
2

+/–

PP SI 0.70 – 0.86 – 0.04 – 0.01 – 0.02 – 0.54 –

SST 0.67 – 0.85 – 0.03 – 0.06 – 0.05 – 0.66 –

Iron 0.37 – 0.50 – 0.06 – 0.21 – 0.10 – 0.64 +

PO4 0.67 + 0.82 + 0.01 + 0.01 – 0.00 + 0.00 +

NO3 0.68 + 0.76 + 0.01 + 0.01 +

EP 0.73 + 0.87 + 0.18 + 0.18 + 1.00 + 1.00 +

SI SST 0.95 + 0.97 + 0.91 + 0.92 + 0.81 + 0.92 +

Iron 0.59 + 0.59 + 0.04 – 0.32 – 0.04 + 0.78 –

PO4 0.70 – 0.86 – 0.42 – 0.49 – 0.01 – 0.00 –

NO3 0.58 – 0.78 – 0.50 – 0.45 –

EP 0.61 – 0.79 – 0.04 – 0.01 – 0.03 – 0.59 –
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Fig. 1. Taylor diagram showing the correspondence between model results and observations

for 3-D fields of annual mean temperature (squares) and salinity (diamonds), 2-D fields of

MLDmax (triangles) and 3-D fields of annual mean PO4 concentration (circles). Grey symbols

for T and S show spatial correlations for sea surface temperature (SST) and sea surface salinity

(SSS) including the seasonal cycle, grey symbols for PO4 represent average surface water

(0–100 m) PO4 concentrations, also including the seasonal cycle (WOA: World Ocean Atlas).

For MLDmax in MPIM the normalised standard deviation is 6.5 (not shown here). The radial

coordinate indicates correlation coefficients (R), the x and y-axes show normalised standard

deviations (stdmodel/stdobs). A model perfectly matching the observations would reside in point

(1,1).
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Fig. 2. Modelled and observed climatological zonal average MLDmax.

1910

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/1877/2007/bgd-4-1877-2007-print.pdf
http://www.biogeosciences-discuss.net/4/1877/2007/bgd-4-1877-2007-discussion.html
http://www.egu.eu


BGD

4, 1877–1921, 2007

Marine productivity

in coupled climate

models

B. Schneider et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 3. Maximum entropy power spectra of modelled sea surface temperatures (SST) averaged

over the Nino3 Box (150
◦

W–90
◦

W, 5
◦

S–5
◦

N). The vertical lines correspond to periods of two

and seven years, respectively, corresponding to the typical range of ENSO frequency.
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Fig. 4. Maps of observed (top left) and modelled (left column) surface water PO4 concen-

trations, averaged over the top 0–100 m of the water column. Right column: Model minus

observation difference of surface water PO4 concentrations (WOA: World Ocean Atlas).
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Fig. 5. Maps of variables limiting phytoplankton growth in the models. Blue: iron; red: PO4;

green: NO3; yellow: silicate; black: temperature and light. Shown are areas where the respec-

tive variable is limiting during at least one month of the year. For nutrients the respective most

limiting nutrient is shown, while limitation due to other factors (temperature + light) is shown

when nutrients are not limiting, which means the value of the Michaelis-Menten term is above

0.7 (see explanations in the text).
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Fig. 6. Left column: maps of observation-based (top) and modelled (others) vertically inte-

grated primary production (PP). Right column: Hovmöller diagrams showing the seasonal vari-

ability of vertically integrated PP.
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Fig. 7. Left column: maps of surface water chlorophyll concentrations based on observations

(top) and modelled (bottom). Right column: Hovmöller diagrams showing the seasonal vari-

ability of surface water chlorophyll concentrations.
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Fig. 8. Taylor diagram showing the correspondence between model results and observation-

based estimates for primary production (PP), chlorophyll and export production (EP). White

symbols show results for annual mean 2-D fields, grey symbols include the seasonal cycle for

PP. The radial coordinate indicates correlation coefficients (R), the x and y-axes show nor-

malised standard deviations (stdmodel/stdobs). A model perfectly matching the observations

would reside in point (1,1).
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Fig. 9. Zonal average export production (EP) from models and observation-based estimates.

Please note that the different estimates refer to different depths (Schlitzer 133 m; Laws 100 m;

IPSL 100 m; MPIM 90 m; NCAR 75 m.
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Fig. 10. Left column: timeseries of observation-based (top) and modelled (others) primary pro-

duction (PP) anomalies for the global (black) and the low-latitude, permanently stratified ocean

(red), which has annual mean SSTs above 15
◦

C. The anomalies are calculated as the differ-

ence in the actual monthly PP value to the climatological mean of the corresponding month.

Right column: timeseries of the observation-based (top) and modelled (others) PP anomalies

for the permanently stratified ocean (black) overlain by anomalies for stratification (red) and

SST (blue). For the NCAR model results from the Nino3-Box are displayed, which yields PP

anomalies which are an order of magnitude lower than for the global and the low-latitude cases.

Please note that the scales for the latter two indices (SI, SST) have been inverted.
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Fig. 11. Top: Scatter plot of modelled and observation-based anomalies for stratification and

primary production (PP). Bottom: Scatter plot of modelled and observed anomalies for SST

and PP. Slopes and correlation coefficients for the regression lines are given in Table 1.
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Fig. 12. Maps of cross correlation coefficients (R
2
) of modelled and observation-based local

primary production (PP) anomalies versus variability of stratification and different nutrient con-

centrations averaged over the respective shaded area. The R
2
-values have been multiplied

with the sign of the regression slope, so that positive (red) values for R
2

indicate positive corre-

lations, negative (blue) values show anti-correlations. Please note that in the right column PP

is correlated with different nutrient concentrations, which are the most limiting for the respective

model (see also Fig. 5).
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Fig. 13. Maps of modelled cross correlation coefficients of local export production (EP) anoma-

lies versus variability in primary production (PP), different nutrients and MLD averaged over the

respective shaded areas. The R
2
-values have been multiplied with the sign of the regression

slope, so that positive (red) values for R
2

indicate positive correlations, negative (blue) values

show anti-correlations. Please note that in the middle column EP is correlated with different

nutrient concentrations, which are the most limiting for the respective model (see also Fig. 5).
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