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Abstract. In climate studies, detecting spatial patterns that
largely deviate from the sample mean still remains a sta-
tistical challenge. Although a Principal Component Analy-
sis (PCA), or equivalently a Empirical Orthogonal Functions
(EOF) decomposition, is often applied for this purpose, it
provides meaningful results only if the underlying multivari-
ate distribution is Gaussian. Indeed, PCA is based on op-
timizing second order moments, and the covariance matrix
captures the full dependence structure of multivariate Gaus-
sian vectors. Whenever the application at hand can not sat-
isfy this normality hypothesis (e.g. precipitation data), alter-
natives and/or improvements to PCA have to be developed
and studied.

To go beyond this second order statistics constraint, that
limits the applicability of the PCA, we take advantage of the
cumulant function that can produce higher order moments
information. The cumulant function, well-known in the sta-
tistical literature, allows us to propose a new, simple and fast
procedure to identify spatial patterns for non-Gaussian data.
Our algorithm consists in maximizing the cumulant function.
Three families of multivariate random vectors, for which ex-
plicit computations are obtained, are implemented to illus-
trate our approach. In addition, we show that our algorithm
corresponds to selecting the directions along which projected
data display the largest spread over the marginal probability
density tails.

1 Introduction

In geosciences, Principal Component Analysis (PCA) has
been an essential and powerful tool at detecting spatial struc-
tures amongst time series recorded at different locations.
PCA is a dimensionality reduction technique that extracts
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(a.bernacchia@gmail.com)

relevant components of data, those responsible for the largest
proportion of variability (Rencher, 1998). PCA builds decor-
related components of the data and it finds the spatial patterns
that maximize the variance. Hence, second order moments
are the foundation of PCA. But relying exclusively on sec-
ond moments implies that PCA is only optimal when applied
to multivariate Gaussian vectors. Although rarely stated and
even more rarely checked, this underlined normality assump-
tion is not always satisfied in practice.

Recently, different approaches have been tested to extend
the applicability of PCA in geosciences. NonLinear PCA
(NLPCA) has been applied to several geophysical datasets
(e.g. Hsieh, 2004; Monahan et al., 2001). In the NLPCA
algorithm, data are considered as the input of an auto-
associative neural network with five layers, with a bottleneck
in the third layer (Kramer, 1991). Through the minimiza-
tion of a cost function, the output is forced to be as close as
possible to the input, and the bottleneck layer is a low di-
mensional representation of the input. Since this neural net-
work is nonlinear, NLPCA goes automatically beyond corre-
lations. However, NLPCA suffers the intrinsic limitations of
multilayered networks (e.g. Christiansen, 2005; Malthouse,
1998): it is computationally expensive and does not always
converge to a global solution. Independent Component Anal-
ysis (ICA) has been also applied in the geosciences (Aires
et al., 2000). ICA builds independent (rather than uncorre-
lated) components of the data, if any exist, by minimizing the
entropy of the marginal density in the general non-Gaussian
case (Bell and Sejnowski, 1995; Hyvarinen and Oja, 2000).
Here we pursue a less ambitious aim: instead of trying to find
decompositions that can explain the entire body of data with
respect to a criterion, we focus on the part of data responsible
for large anomalous behaviors.

In contrast to PCA, our approach tends to give maximal
weight to data points which largely deviate from the mean,
and to find the corresponding representative spatial patterns,
i.e. the directions along which such points are prominently
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distributed. The key element in our procedure is the expan-
sion of the cumulant function that can provide information
beyond the first two moments. By maximizing the cumulant
function (Kenney and Keeping, 1951) over growing hyper-
spheres in the data space, a set of components can be de-
rived. We first illustrate our procedure by the application to
three synthetic types of multivariate random vectors (Nor-
mal, Skew-Normal, Gamma). Then we demonstrate that,
for any multivariate distribution, a larger cumulant function
along a given direction is implied by a fatter tail of the corre-
sponding marginal probability density. Hence, our algorithm
provide the directions along which anomalies are mostly ex-
pected.

We show that the first principal component of PCA is a
special case of our approach whenever the Gaussian assump-
tion is satisfied. Besides the Gaussian case we show that, for
any probability density, the solution derived from the cumu-
lant function can be transformed to the first principal com-
ponent by decreasing the radius of the hypersphere. Other
principal components could be found as well, by a general-
ization of the proposed method. Our method is computation-
ally cheap, and the solutions are found in the form of unit
(normalized) vectors, as in the case of PCA, allowing a uni-
dimensional projection with an easy geometrical interpreta-
tion.

In summary, this paper focuses on the problem of char-
acterizing spatial patterns associated to large anomalies, i.e.
large deviations from the sample mean, when the data set
under study cannot be assumed to be normally distributed.

2 Maximizing the cumulant function

In the univariate case, the cumulant function of the random
variableX with finite moments is defined as the following
scalar function

log
{

E
[

exp(sX)
]

}

=
∞
∑

n=1

κn

sn

n!
,

wheres∈R, E(.) represents the mean function and the scalar
κn corresponds to thenth cumulant ofX.

The first two cumulantsκ1 and κ2 are simply the mean
and the variance ofX, respectively. The third and fourth cu-
mulants are classically called the skewness and the kurtosis
parameters. Concerning the existence of cumulants, we as-
sume in this paper that all the cumulant coefficients are finite
and that the cumulant function is always well defined. The
cumulant function and its coefficients have many interesting
properties. For example, ifX and Y are two independent
random variables, then then-th cumulant of the sumX+Y

is equal to the sum of then-th cumulant ofX and then-th
cumulant ofY for any integersn. If X follows a Gaussian
distribution, then all but the first two cumulants are equal to
zero. In a multivariate framework, the cumulant function of

the random vectorX=(X1, . . . , Xm)t is simply defined as

log
{

E
[

exp(stX)
]

}

, for all st = (s1, . . . , sm) ∈ R
m. (1)

As in the univariate case, the linear and Gaussian proper-
ties associated to the cumulant function defined by Eq. (1)
still hold, but the cumulant coefficients formulas are more
cumbersome to write down in a multivariate framework. For
more information about cumulants, we refer the reader to
Kenney and Keeping (1951).

To identify possible favorite projection directions with re-
spect to the multivariate cumulant function, we first rewrite
the vectors=(s1, . . . , sm)t in Eq. (1) as the products=|s|×θ ,
where |s|2=

∑

s2
i , the scalar|s| represents the norm (“ra-

dius”) ofsandθ is the unit “angular/direction” vector defined
asθi=si/|s| (note thatθ tθ=1). Secondly, the cumulant func-
tion for our vectorX=(X1, . . . , Xm)t projected along the di-
rection vectorθ is introduced as

G|s|(θ) = log
{

E
[

exp(|s| θ tX)
]

}

=
∞
∑

n=1

kn(θ)
|s|n

n!
. (2)

Our algorithmic strategy is to maximize the cumulant func-
tion, at fixed non-small|s|, with respect to the angular com-
ponentθ that varies over an unit hypersphere. Practically, we
have to find the optimalθ s directions defined by

θ s = argmax
[

G|s|(θ) such thatθ tθ = 1
]

(3)

for a fixed value of|s|. If the radius|s| is small enough, and
the meank1 is zero, the variancek2(θ) dominates the cumu-
lant function and the contributions of other cumulants can be
neglected. In this situation, finding the first PCA component
can be viewed as a special case of this optimization proce-
dure, because maximizing the cumulant function for small
|s| is equivalent to maximize the variance. As the value of
|s| grows, higher and higher order cumulants become more
dominant. Our main goal is to findθ s in Eq. (3) for the largest
admissible|s| and study their properties. We will call the so-
lutions of such an optimization scheme the “Maxima of the
Cumulant Function” (MCF) directions.

We anticipate that, since the scalar productθ tX is invari-
ant under orthogonal transformations, the cumulant function
is invariant as well. Given that the unit hypersphere is also
invariant, our algorithm is symmetric with respect to orthog-
onal transformations. For instance, if data vectors are rotated
by a given angle, the solutions of the algorithm, in terms of
θ , are rotated by the same amount. This symmetry implies
that if the probability density is isotropic, then the cumu-
lant function is isotropic as well, and no relative maxima of
G exist on the unit hypersphere. In that case no directions
are selected: for a rotationally symmetric distribution there
is indeed no preferred direction along which anomalies are
prominent, they are distributed uniformly over all angles.
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To illustrate our optimization procedure, we derive in
Sect. 3 explicit cumulant maximization schemes for three
special cases of multivariate family distributions. Finally, in
Sect. 4 we demonstrate that, in the general case, if a direction
exists for which the marginal probability density of projected
data display a larger tail than in other directions, our proce-
dure is able to select that direction, which corresponds to the
maximum of the cumulant function. Hence, our algorithm
provide the directions along which anomalies are mostly ex-
pected. For assessing the outputs of our algorithm when ap-
plied to real data, we refer the reader to the second part of
this paper (Bernacchia et al., 2008).

3 Theoretical examples

To study the properties of the maximization method devel-
oped in Sect. 2, three examples of distribution functions are
considered in this paper. We choose these three families be-
cause explicit results can be derived and they have been clas-
sically used in the statistical modeling of temperatures and
precipitation data.

Without loss of generality, some relevant matrices are di-
agonal thereafter. However, since the solutions covary with
orthogonal transformations, they may be rotated along with
the corresponding coordinate change. Analytical calcula-
tions are performed for the general multivariate case, while
figures are given for the bivariate case.

3.1 Multivariate Gaussian vectors

Suppose that the data at hand can be appropriately fitted by
a multivariate Gaussian vector. We assume that the observa-
tions have been centered (zero) mean and we denote the co-
variance matrix as6. The cumulant function of the centered
Gaussian vector (e.g.Kenney and Keeping, 1951) is equal to

log
{

E
[

exp(stX)
]

}

=
1

2
st6s.

Hence, it is easy to show that all cumulants but the second
are equal to zero. The decomposition in Eq. (2),s=|s|×θ ,
implies that the cumulant function becomes

G|s|(θ) =
|s|2

2
k2(θ) =

|s|2

2
θ t6θ

Our optimization problem is to maximizeG|s|(θ) under the
constraintθ tθ=1. To find the optimalθ s defined by Eq. (3),
we introduce a functionL to be maximized, constrained by
the Lagrange multiplierλ, as

L(λ, θ) =
|s|2

2
θ t6θ − λ(θ tθ − 1).

Setting the derivative ofL with respect toλ to zero gives the
constraintθ tθ=1, while setting the gradient with respect to
θ to zero gives

∇θL = |s|26θ − 2λθ = 0. (4)

−5 0 5

−5

0 

5

PC1=MCF1MCF2

Fig. 1. Isoprobability contours of the bivariate Gaussian distribu-
tion, with zero mean and variances 1.2 and 0.5143 (entries of the di-
agonal covariance matrix). The first principal component is shown
(PC1), together with the two (opposite) maxima of the cumulant
function (MCF1 and MCF2), for any value of|s|. All vectors are
in arbitrary scale. The maxima of cumulant function are parallel to
the first principal component, all pointing towards the large anoma-
lies, in terms of high probability (at fixed vector norm). Probability
contours are 10−1, 10−3, 10−5 . . . 10−11.

Let λ6 be the largest eigenvalue of the covariance matrix

6 andθ6 its associated eigenvector. Introducingλs= |s|2
2 λ6 ,

we can write|s|26θ6=2λsθ6 . Since the eigenvalueλs is the
largest one, for a fixed|s|, θ6 is the maxima of the cumulant
function. Note thatθ6 depends on6 but not on|s|. The
optimal direction, for the Gaussian case, isθ s=θ6 , and it
corresponds to the classical first principal component.

To illustrate this result, a bivariate vector of the normal
distribution is presented in Fig. 1 (in which a contour plot
is drawn in logarithmic scale). The matrix6 is assumed to
be diagonal, with entries 1.2 and 0.5143. The first princi-
pal component (PC1), corresponding to the eigenvalue 1.2
is horizontal, while the second principal component, corre-
sponding to the eigenvalue 0.5143 is vertical, and is not dis-
played. The two maxima of the cumulant function (for any
value of|s|), MCF1 and MCF2, are just the positive and neg-
ative part of PC1. Indeed, bothθ6 and−θ6 are solutions of
Eq. (4). While this is always true for PCA, the maxima of
the cumulant function may in general neither be parallel nor
orthogonal.

PC1 is indeed the direction along which large anomalies
are distributed in the Gaussian case. In order to derive PC2
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−5 0 5 10

−5

0 

5

PC1

MCF1

MCF2

Fig. 2. Isoprobability contours of the bivariate Skew-Normal dis-
tribution, with parametersα=(4.365, −1.455) and the matrix6 is
chosen to be diagonal with entries 1.2 and 0.5143. The first prin-
cipal component is shown (PC1), together with the two maxima of
the cumulant function (MCF1 and MCF2), for large|s|. All vectors
are in arbitrary scale. In this case, the two maxima of the cumulant
function do not correspond to the first principal component, they are
neither parallel nor orthogonal, and point towards the (local) large
anomalies, in terms of high probability (at fixed, and large, vector
norm). Probability contours are 10−1, 10−3, 10−5 . . . 10−19.

and other higher principal components from the cumulant
function, one would have to determine not only its maxima,
but also its minima and saddle points.

3.2 Multivariate Skew-Normal vectors

To introduce skewness to the Gaussian density, while keep-
ing some of valuable properties of the normal distribution,
Azzalini and his co-authors have extended the normal den-
sity to a larger class, called the Skew-Normal (SN) density
(e.g. Azzalini and Dalla Valle, 1996; Azzalini and Capitanio,
1999; Gonzalez-Farias et al., 2004), that is defined as

f (x) = 2φ6(x)8(αtx) (5)

whereφ is a multivariate Normal probability density func-
tion with zero mean and covariance matrix6, and8 is the
cumulative density function of an univariate Gaussian ran-
dom variable with zero mean and unit variance. The vector
α corresponds to the degree of skewness. Whenα=0, there
is no skewness, and the SN distribution reduces to the Gaus-
sian case. From Eq. (5), it is possible to derive the cumulant

function (e.g Azzalini and Dalla Valle, 1996) of a SN vector

log
{

E
[

exp(stX)
]

}

=
1

2
st6s+ log

[

28(
√

π
2 µts)

]

.

whereµ represents the mean vector, and is equal to

µ =
6α

√

π
2 (1 + αt6α)

.

Note that the covariance matrix of the SN distribution is not
6 but6−µµt (Azzalini and Capitanio, 1999).

A bivariate example of the SN distribution is presented
in Fig. 2, in which a contour plot is drawn in logarithmic
scale. The matrix6 is chosen to be diagonal with entries 1.2
and 0.5143. The skewness vectorα is taken to be equal to
(4.365, −1.455). The distribution in Fig. 2 has been centered
such that the mean vector is zero, i.e. the original distribution
is translated byµ, which is equal to(0.8367, −0.1195).

From the SN cumulant function (Azzalini and Capitanio,
1999), we can write the cumulant function of the centered
vector(X−µ) as

G|s|(θ) = −|s|µtθ +
|s|2

2
θ t6θ + log

[

28(
√

π
2 |s|µtθ)

]

(6)

While it is not possible to find explicit solutions of the max-
imization problem defined by Eq. (3) for Eq. (6), one can
provide valuable approximated solutions for both small and
large|s|. In the former case, the following two Taylor expan-
sions are the key elements to derive our results

log(1 + s) = 1 + s −
s2

2
+ o(s3) and (7)

1 + erf(s) = 1 +
2s
√

π
+ o(s3) (8)

where erf corresponds to the error function defined by

28(s) = 1 + erf
( s
√

2

)

.

Then we can write the following approximation

log
[

28(
√

π
2 |s|µtθ)

]

= log
[

1 + erf(
√

π
2 |s|µtθ)

]

= log
[

1 + |s|µtθ + o(|s|3)
]

, by (7),

= |s|µtθ−
|s|2

2
θ tµµtθ+o(|s|3), by (8).

From Eq. (6), it follows that the cumulant functionG|s|(θ) is
approximately equal to

G|s|(θ) ≃
|s|2

2
θ t (6 − µµt )θ , for small|s|. (9)
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As previously noticed, the matrix6−µµt represents the
covariance of the SN distribution (Azzalini and Capitanio,
1999). Hence, the maximization of the right hand side of
Eq. (9) is equivalent to solving the system defined by Eq. (4),
but instead of working with6, we just need to replace6 by
6−µµt in Eq. (4). Consequently, the solution to maximize
the SN cumulant function in the neighborhood of zero is the
largest eigenvector of the matrix6−µµt , i.e. the PC1 of the
SN covariance matrix.

For large|s|, this result does not hold and different direc-
tions are obtained. We need to recall the asymptotic expan-
sion of the error function

1+ erf(s) ≃

{

− 1
s

√
π

exp(−s2)
[

1 + o(s−3)
]

, ass ↓ −∞,

2 , ass ↑ +∞.

If µtθ < 0, the logarithm in Eq. (6) can be expanded as

log
[

28(
√

π
2 |s|µtθ)

]

= log
[

1 + erf(
√

π
2 |s|µtθ)

]

≃ −
π

2

|s|2

2
θ tµµtθ + O

(

log(|s|−1)
)

.

In this case, we haveG|s|(θ)≃ |s|2
2 θ t

(

6−π
2 µµt

)

θ . The di-

rection that maximizesG|s|(θ) is an eigenvector of the matrix
6−π

2 µµt , pointing towardsµtθ<0.
If µtθ≥0, we have

log
[

28(
√

π
2 |s|µtθ)

]

≃
{

log 2 , if µtθ > 0,

0 , if µtθ = 0.

The cumulant functionG|s|(θ) can be then approximated by

G|s|(θ)≃ |s|2
2 θ t6θ ; it is maximized by the largest eigenvector

of 6, pointing towardsµtθ≥0. In summary, depending on
the size of|s| (small or large) and the signµtθ (positive or
negative), the solutions of Eq. (3) for the SN distribution can
be viewed as the largest eigenvectors of each of three differ-
ent matrices,6−µµt , 6−π

2 µµt and6.
For the bivariate example of Fig. 2, the PC1 is shown (in

arbitrary scale), explaining 60% of the variance. The second
PC (40% of the variance) is orthogonal to PC1 and is not
displayed. Both maxima of the cumulant function for large
|s|, denoted as MCF1 and MCF2 (respectively forµtθ≥0 and
µtθ<0 ), are presented in Fig. 2 for the bivariate example
(same scale as PC1). The two local maxima point towards
the large anomalies of the distribution: this can be seen by
noting that a point at the upper-right end of PC1 corresponds
to a small probability, and hence is less likely to be found,
than a point at the right end of MCF1 (the two points being
of equal norm). Similarly, a point at the down-left end of
PC1 is less likely, in probability, than a point at the down end
of MCF2.

3.3 Multivariate Gamma vectors

This section investigates the multivariate Gamma distribu-
tion defined by Cheriyan and Ramabhadran (see Kotz et al.,

0 5 10 15
−5

0

5

10

15
PC1

MCF1

Fig. 3. Isoprobability contours of the bivariate Gamma distribution,
with parametersα0=2, α1=0.5, α2=4. The first principal compo-
nent is shown (PC1), together with the maximum of the cumulant
function (MCF1), for the largest admissible value of|s|=1/

√
2. All

vectors are in arbitrary scale. Again, the maximum of the cumulant
function is different from the first principal component, and points
towards the large anomalies, in terms of high probability (at fixed,
and large, vector norm). Probability contours are 10−1/2, 10−1,
10−3/2 . . ..

1998). Each component of the data vectorX is distributed
following a Gamma distribution, and the components depend
each other by means of an auxiliary variablez. The joint dis-
tribution is

f (x) =
∫

g(z; α0)

n
∏

i=1

g(xi − z; αi)dz (10)

whereg is a gamma distribution, i.e.

g(z, α) =
e−zzα−1

Ŵ(α)

for z≥0, equal to zero otherwise. A bivariate example is
presented in Fig. 3, withn=2, α0=2, α1=0.5 andα2=4 in
Eq. (10).

The cumulant function for this multivariate Gamma distri-
bution can be written as (Kotz et al., 1998)

log
{

E
[

exp(stX)
]

}

= −α0log
(

1−
n

∑

i=1

si

)

−
n

∑

i=1

αi log(1−si)
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and the mean of thei-th component isµi=α0+αi . By replac-
ing s by |s|×θ , the cumulant function of the centered vector
(X−µ) can be written as

G|s|(θ) = −α0log
(

1 − |s|
n

∑

i=1

θi

)

−
n

∑

i=1

αi log(1 − |s|θi) − |s|
n

∑

i=1

(α0 + αi)θi . (11)

For small|s|, the logarithms are approximated by the trun-
cated Taylor expansions, i.e.

n
∑

i=1

αi log
(

1 − |s|θi

)

≃ −|s|
n

∑

i=1

αiθi +
|s|2

2

n
∑

i=1

αiθ
2
i

and

α0log
(

1 − |s|
n

∑

i=1

θi

)

≃ −|s|
n

∑

i=1

α0θi +
|s|2

2
α0

(
n

∑

i=1

θi

)2
.

It follows that the cumulant function can be approximated by

G|s|(θ) ≃
|s|2

2
θ tCθ , (12)

where the covariance matrixC is defined by (Kotz et al.,
1998)

C =







α0 + α1 α0
. . .

α0 α0 + αn






.

Hence, for small|s|, the solution of Eq. (3) is the classical
PC1 eigenvector of the covariance matrixC associated with
the largest eigenvalue. It is plotted in Fig. 3 for the bivariate
example. The negative part of PC1 is not displayed, as well
as the second principal component which is just orthogonal
to the first.

For large|s|, the cumulant function is not defined, since
the logarithms in Eq. (11) must have positive arguments, for
all unit vectorsθ . In particular, the following two inequalities
have to be satisfied

|s|θi < 1 and |s|
n

∑

i=1

θi < 1.

In other words,

|s| < min

(

min

(

1

θi

)

, min

(

1
∑

i θi

))

.

However, we take the largest allowed value of|s|, which is
considered as a valid limit. Sinceθ is a unit vector, the max-
imum of each componentθi is 1, which holds when all the
other components are zero, while the maximum for the sum

∑

i θi is
√

n, which holds whenθ1=θ2= . . . =θn=1/
√

n.
The largest allowed value of|s| is then 1/

√
n: in that caseG

remains finite for allθ ’s, except forθ1=θ2= . . . =θn=1/
√

n,
where it diverges due to the first logarithm of Eq. (11) (all
the others remain finite). For larger values of|s|, G diverges
over subspaces larger than a single point. Hence the bound-
ary case|s|=1/

√
n is taken as representative for a “large”|s|

limit, and the pointθ1=θ2= . . . =θn=1/
√

n is taken as the
maximum of the cumulant function.

For the bivariate example the largest admissible value is
|s|=1/

√
2, and the maximum of the cumulant function is

plotted in Fig. 3, denoted as MCF1, and scaled to PC1. Note
that for high values of the probability distribution (e.g. the
inner contour), PC1 seems a representative direction of the
egg-like shape of the distribution, but for low probabilities it
becomes clear that MCF1 is responsible for the large devia-
tions. A point at the end of PC1 is indeed less probable than
a point at the end of MCF1.

This result is understood by noting that the joint density
(10) is the probability distribution of variablesxi defined as
xi=z0+zi , where the variablesz0, z1, . . . , zn are indepen-
dent and Gamma distributed with parametersα0, α1, . . . , αn.
Hence, a large deviation ofz0, which occurs independently
on othersz’s, corresponds to a large deviation ofx which is
placed on average along the linex1=x2= . . . =xn (that cor-
responds toθ1=θ2= . . . =θn for the cumulant function).

4 Maximizing the marginal density tail

We have seen that the multivariate cumulant function reduces
to the variance if the radius|s| tends to zero. In that case, its
maxima corresponds to the first principal component of data
set. If |s| grows, higher order cumulants come into play, but
is not clear what the corresponding maxima represent. In
order to clarify this point, we rewrite the cumulant function
defined by Eq. (2) in terms of the explicit integral over the
probability density

G|s|(θ) = log
∫

Rn

f (x) exp(|s| θ tx)dx

This expression can be reduced to an unidimensional in-
tegral, by defining the projected data asZ=θ tX, and the
marginal probability density of the projected data,fθ (z).
The cumulant function is then

G|s|(θ) = log
∫ +∞

−∞
fθ (z) exp(|s|z)dz, (13)

which corresponds to the cumulant function of the univariate
vectorZ=θ tX with distribution densityfθ (z). In the light
of this representation, our maximization procedure is better
understood: we are looking for directionsθ that correspond
to a marginal probability densityfθ (z) displaying maximal
cumulant function, at fixed|s|. We want to demonstrate
that if |s| grows, a larger cumulant function corresponds to
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a marginal density with a fatter tail. Hence our procedure
selects the directions corresponding to the marginal densities
with fatter tails, where the anomalous behaviour is expected.

Specifically, consider two different directionsθ andθ ′: we
want to demonstrate that if the marginal distribution alongθ

has a fatter tail than the distribution alongθ ′, then the cumu-
lant function has also a fatter tail alongθ with respect toθ ′.
More formally, we have the following theorem.

Theorem 1. Let θ andθ ′ be two directions. If there exists a
real z∗ such that the density distributionfθ (z) of the random
variableθ tX is strictly larger than the densityfθ

′(z) of the

random variableθ ′tX, for all z > z∗, i.e.

fθ (z) > fθ
′(z), for all z > z∗,

then there exists a radius|s|∗ such the cumulant function of
θ tX andθ ′tX satisfies

G|s|(θ) > G|s|(θ
′), for all |s| > |s|∗.

Proof. In order to prove the result, we start by noting that the
following inequality holds

exp(|s|z)
[

fθ (z) − fθ
′(z)

]

> exp(|s|z∗)
[

fθ (z) − fθ
′(z)

]

for all z>z∗, where we have replaced the exponen-
tial function with its minimum value in the interval
z∈(z∗, +∞). The inequality holds because the density dif-
ferencefθ (z)−fθ

′(z) is positive in this interval, by assump-
tion. Since the above inequality holds in the whole interval
z ∈ (z∗, +∞), it can be integrated over, i.e.

∫ +∞

z∗
exp(|s|z)

[

fθ (z) − fθ
′(z)

]

dz >

exp(|s|z∗)

∫ +∞

z∗

[

fθ (z) − fθ
′(z)

]

dz. (14)

The two densities are normalized, i.e.
∫ +∞

−∞
fθ (z)dz =

∫ +∞

−∞
fθ

′(z)dz = 1

Splitting the integrals byz∗, and rearranging terms, the nor-
malization condition is rewritten as
∫ +∞

z∗

[

fθ (z) − fθ
′(z)

]

dz =
∫ z∗

−∞

[

fθ
′(z) − fθ (z)

]

dz (15)

Note that since the left hand side (l.h.s.) is positive, by as-
sumption, the right hand side (r.h.s.) is positive as well.
Equation (15) can be substituted in the r.h.s. of the inequality
(14), giving
∫ +∞

z∗
exp(|s|z)

[

fθ (z) − fθ
′(z)

]

dz >

exp(|s|z∗)

∫ z∗

−∞

[

fθ
′(z) − fθ (z)

]

dz

A lower bound for the r.h.s. can be found, depending on the
value of|s|: in the following, we demonstrate that it exists an
|s|∗ such that, for all|s|>|s|∗,

exp(|s|z∗)

∫ z∗

−∞

[

fθ
′(z) − fθ (z)

]

dz > (16)

∫ z∗

−∞
exp(|s|z)

[

fθ
′(z) − fθ (z)

]

dz

where the value of|s|∗ must be determined. The theorem is
proven once we have demonstrated the last inequality (16),
since then we have, for all|s|>|s|∗,
∫ +∞

z∗
exp(|s|z)

[

fθ (z) − fθ
′(z)

]

dz >

∫ z∗

−∞
exp(|s|z)

[

fθ
′(z) − fθ (z)

]

dz.

By rearranging terms, this is equivalent toG|s|(θ)>G|s|(θ
′).

We rewrite the inequality (16) as
∫ z∗

−∞

[

fθ
′(z) − fθ (z)

]

dz >

∫ z∗

−∞
exp

(

|s|(z − z∗)
)[

fθ
′(z) − fθ (z)

]

dz

for all |s|>|s|∗. Note that even if the integral in the l.h.s. is
positive, its integrand, the density differencefθ

′(z)−fθ (z),
is not guaranteed to be positive for allz∈(−∞, z∗). If it was
positive as well, the inequality would hold trivially for all
values of|s|, because the exponential in the r.h.s. is smaller
then one. This corresponds to the case where additionally to
fθ (z)>fθ

′(z) ∀z>z∗, we assumefθ (z)<fθ
′(z) ∀z<z∗.

However, we do not need this additional request, and we just
note that it would help our procedure by leaving the problem
of using a large|s|. The integral in the l.h.s. is independent
on |s|, while the integral in the r.h.s. converges to zero for
|s| −→ +∞, as long as the density difference remains finite,
because the exponential tends to zero in the whole interval
z∈(−∞, z∗). If we define|s|∗ as the largest possible value of
|s| for which the two integrals are equal, then for all|s|>|s|∗
the integral in the l.h.s. is larger than that of r.h.s., and the
theorem is proven.

5 Discussion

In this paper, we have introduced a novel method selecting
the spatial patterns representative for the large deviations in
the dataset. The method consists in finding the vectors in
the space of data for which the cumulant function is maxi-
mal. As in the case of PCA, the spatial patterns are found
as normalized directions in the space of data, and a linear
projection can be performed, with an easy geometrical inter-
pretation. However, while PCA accounts only for the mass of
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the distribution, the cumulant function can give information
also about its tails. If one is interested on the large devia-
tions, the projection allows to safely perform Extreme Value
Analysis (Coles, 2001). In both cases the subspaces are or-
dered: in PCA the order follows the fraction of variance of
each subspace; The maxima of the cumulant function are or-
dered by the value ofG, expressing the relative importance
of each marginal density tail.

Principal components are always symmetric, while large
anomalous patterns, if generated by nonlinear processes, are
expected to be neither specular nor orthogonal. Accord-
ingly, the maxima of the cumulant function are not necessar-
ily symmetric, since they account for the whole structure of
dependencies, and not only covariances. Vector solutions of
other nonsymmetric techniques, such as oblique Varimax ro-
tations (Horel, 1981), generally do not covary with the space
of data under orthogonal transformations. Hence, solutions
depend not only on the shape of the underlying probability
distribution, but also on its orientation: an undesirable prop-
erty for our purposes. The maxima of the cumulant function,
instead, covary with the probability density whose shape is
the only feature determining the maxima.

In the case of normally distributed data, the maximiza-
tion of cumulant function yields the first principal compo-
nent for all values of|s|: the elliptically symmetric distri-
bution is characterized by the two tails along the major axis
of the ellipse, i.e. the first principal component. When the
method is applied to Skew-Normal and Gamma distributions,
for non-small|s|, the maxima of the cumulant function de-
termine large anomalies: high probability directions far from
the center of mass. Note that the limit radius|s|→∞ is the
innovative key from a technical point of view, allowing for
analytical solutions. Using the limit, we were also able to
demonstrate that the solutions of our algorithm correspond,
in general, to the directions along which the marginal proba-
bility density display the fattest tails.

Using the cumulant function is computationally cheap,
there is no free parameter, and has the advantage of searching
for local solutions, all of which are of interest. When a solu-
tion is found, is always a valid local solution, in contrast with
neural networks applications, where local solutions are not of
interest. In real applications, the radius|s| must be taken as
large as possible, until the expected error in the estimate of
the cumulant function, due to the finite sample, reach a toler-
ance value (seeBernacchia et al., 2008). This corresponds to
maximize a combination of cumulants which is of the high-
est reliable order with the given amount of data, accounting
for the available set of anomalies.

The solutions of our algorithm are expected to transform
continuously as the radius|s| varies. Hence, even if the limit
|s|→∞ cannot be taken in practice, the solutions for a fi-
nite value of|s| are expected to represent a substantial de-
parture from the PCA solution, towards the formal solution
at |s|→∞. From the theoretical point of view, future work
could be devoted to study in detail the nature of solutions at

varying |s|. For instance, one could attempt to find under
which conditions and to what extent the solutions are in be-
tween the PCA solution and the formal solution at infinite
|s|. From the applicative point of view, we expect several
datasets to be fruitfully analyzed with our new method (e.g.
Bernacchia et al., 2008).

Note that the logarithm is taken for illustrative purposes:
the moment generating function could be used instead of the
cumulant function, since the maximization is invariant under
application of a monotonous function. The present definition
is however confortable in avoiding extremely large numbers.
Centering of data about the mean is also a practical step, re-
lated with the constraint of dealing with finite samples: if
the limit |s|→∞ could be really taken, the mean would be
irrelevant.

Results of our procedure are corrupted if variables are
standardized by a rescaling, since the relative scale of dif-
ferent directions is the key in detecting anomalies and com-
paring the size of tails. If variables are standardized, our pro-
cedure reduces to a special case of Independent Component
Analyisis (ICA, see Hyvarinen and Oja, 2000), detecting in-
dependent components rather than large anomalies. Results
are also corrupted if we try to estimate the cumulant function
when the underlying probability density decays slower than
exponential. In that case, the cumulant function diverge, and
the variance of the empirical estimate increases with the size
of the sample (Sornette, 2000), implying that the estimate is
always unreliable.
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