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Abstract. The spatial coherence of a measured variable (e.g.
temperature or pressure) is often studied to determine the re-
gions of high variability or to find teleconnections, i.e. cor-
relations between specific regions. While usual methods to
find spatial patterns, such as Principal Components Analysis
(PCA), are constrained by linear symmetries, the dependence
of variables such as temperature or pressure at different lo-
cations is generally nonlinear. In particular, large deviations
from the sample mean are expected to be strongly affected
by such nonlinearities. Here we apply a newly developed
nonlinear technique (Maxima of Cumulant Function, MCF)
for detection of typical spatial patterns that largely deviate
from the mean. In order to test the technique and to intro-
duce the methodology, we focus on the El Niño/Southern
Oscillation and its spatial patterns. We find nonsymmetric
temperature patterns corresponding to El Niño and La Nĩna,
and we compare the results of MCF with other techniques,
such as the symmetric solutions of PCA, and the nonsym-
metric solutions of Nonlinear PCA (NLPCA). We found that
MCF solutions are more reliable than the NLPCA fits, and
can capture mixtures of principal components. Finally, we
apply Extreme Value Theory on the temporal variations ex-
tracted from our methodology. We find that the tails of the
distribution of extreme temperatures during La Niña episodes
is bounded, while the tail during El Niños is less likely to be
bounded. This implies that the mean spatial patterns of the
two phases are asymmetric, as well as the behaviour of their
extremes.

Correspondence to:A. Bernacchia
(a.bernacchia@gmail.com)

1 Introduction

In geosciences, many datasets consist of multivariate time se-
ries (e.g. temperature, precipitation or pressure) measured at
different locations. Observations at different places are not
independent: they rather display dependencies that cannot
be fully understood by simple linear models. Usually, lin-
ear sample correlation is the main investigation tool for such
datasets: time series at two locations are taken and the corre-
lation is computed. If significantly different from zero, one
may conclude that there is some dependence in the two time
series. This approach is justified because non zero correla-
tions imply dependence. Of course, the converse is not true:
unsignificant correlations do not imply independence, espe-
cially when nonlinearities appear in the dynamics between
the variables.

Nonlinearities are usually the rule, rather than the excep-
tion, in dynamical processes involved in geosciences. This
is especially true in the study of extreme events, i.e. occur-
rences that largely deviate from the expected behaviour. Us-
ing simple linear models, such as correlations, or Principal
Component Analysis (PCA), does not give accurate results
in those cases. PCA finds global spatial patterns that are un-
correlated with each other (Rencher, 1998), and calculates
for each the corresponding variance. However, if the under-
lying probability distribution is not Gaussian, uncorrelated
patterns are not necessarily independent, and a large variance
does not necessarily imply the presence of extreme events.

Here we report an application of a nonlinear method, re-
cently developed by Bernacchia and Naveau (2008), de-
signed to find the spatial patterns responsible for large
anomalies. The method is based on the optimization of the
cumulant function: beyond the variance, higher order cumu-
lants are taken into account in determining the relevant spa-
tial patterns. In particular, by maximizing the cumulants of
the highest accessible order, given the fixed amount of data,
the algorithm is able to find the patterns whose projections
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Fig. 1. Data recording locations. Each point corresponds to a
location of data recordings in the central Pacific Ocean. The area
of interest lies between 25 S–20 N and 150 E–280 E, with 5 degrees
increments, it contains 9×27 points, a total of 243 locations. Data
consist of sea-surface temperatures (SST), monthly anomalies,
recorded from January 1948 to December 2005, for a total of 696
months1.

1 available at:
ftp://ftp.cdc.noaa.gov/Datasets/kaplansst/sst.mean.anom.nc.

display the marginal distributions with the fattest tails. As
demonstrated in Bernacchia and Naveau (2008), theMaxima
of Cumulant Function(MCF) are the spatial patterns charac-
terizing large anomalies.

In order to illustrate the methodology of MCF, we focus
on the El Nĩno/Southern Oscillation (ENSO) phenomenon
in the Equatorial Pacific. We consider sea-surface temper-
atures (SST) in the central Pacific, between 1948 and 2005
(see Sect. 2.1:Equatorial Pacific SST). ENSO has been the
focus of intense research in the last decades, since it domi-
nates the interannual climate signals and has great econom-
ical and societal impacts (Philander, 1990). It is charac-
terized by large temperature anomalies spanning vast dis-
tances across the surface of the entire tropical Pacific Ocean
(Wyrtky, 1985; Harrison and Larkin, 1996). The ENSO
phenomenon is related to the highly nonlinear dynamics of
the coupled ocean–atmosphere system (Bjerknes, 1969; Ghil
and Robertson, 2000; Neelin et al., 1994; Saynisch et al.,
2006), and has a large influence on the global atmospheric
circulation (Glantz et al., 1991; Piechota and Dracup, 1996;
Alexander et al., 2002; Lau and Nath, 2001).

The two anomalous events characterizing ENSO, El Niño
and La Nĩna, are the two extremes of “the Southern Oscil-
lation”, but are not exactly symmetric: the warm El Niño
phases are generally characterized by a larger magnitude than
their cold counterparts La Niña (Burgers and Stephenson,
1999; Hoerling et al., 1997; Sardeshmukh et al., 2000). The
distribution of temperatures is indeed very skewed and far
from a Normal distribution. Another indication that the dis-
tribution of temperatures is not Normal comes from the ob-
servation that El Nĩno and La Nĩna anomalies distribute dif-
ferently: while El Nĩno is more concentrated in the coast
of South America, La Nĩna is centered in the middle of the
Pacific Ocean. However, Nonlinear PCA (NLPCA) was em-

ployed in deriving those results (Monahan, 2001), whose re-
liability is under discussion (Christiansen, 2005).

In this paper, we find two MCF, i.e. two spatial patterns
of temperatures maximizing the cumulant function, we rec-
ognize them as El Niño and La Nĩna, and we confirm their
different spatial coherence. We compare the results with
other techniques applied to the same ENSO dataset, such
as PCA and NLPCA. We show that, under specific assump-
tions, our algorithm gives more consistent results than PCA,
and is more reliable than NLPCA. Finally, we perform uni-
variate Extreme Value analysis on the projections over the
two derived spatial patterns. We find a significantly nega-
tive shape parameter for La Niña, from which we expect that
extremely cold occurrences are characterized by a low tem-
perature bounded tail, while El Niño has a shape parameter
close to zero, implying that extremely warm events have un-
bounded, albeit thin, tails.

2 Data and methods

2.1 Equatorial Pacific SST

Data points are monthly anomalies of sea-surface temper-
atures (SST1) over the Equatorial Pacific. Grid points are
shown in Fig. 1. The area of interest lies between 25 S–
20 N and 150 E–280 E, with 5 degrees increments. It hence
contains 9×27 points, i.e. a total of 243 locations. Data are
recorded from January 1948 to December 2005, for a total of
696 months. Data vectors are denoted asxt , wheret is time
(t=1,...,N), the total number of recordings isN=696. Each
vector, a spatial pattern of temperatures, hasn=243 compo-
nents, one for each location. Data vectorsxt are centered on
the time average (denoted by angular brackets), i.e.

1

N

N
∑

t=1

xt = 〈x〉 = 0

A possible trend in the data has not been considered here.
Results from a similar study using data with a linear trend
subtracted are only marginally different.

2.2 The optimizing algorithm

In this section, we introduce the methodology for the applica-
tion of MCF. The MCF method is designed to detect spatial
patterns of large anomalies, starting from a dataset composed
by time series recorded at various locations, and is based on
the optimization of the cumulant function. In Bernacchia and
Naveau (2008), the MCF method is described and analyzed
in cases for which a probability distribution of data points
exists and is known in advance, hence the expression of the
cumulant function is known as well. In real applications,

1available at:
ftp://ftp.cdc.noaa.gov/Datasets/kaplansst/sst.mean.anom.nc
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of course, the probability distribution (if any exists) is not
known, and the cumulant function must be estimated from
data.

A spatial pattern, in this case a vector ofn=243 compo-
nents, is denoted asθ , and is normalized to one (|θ |2 =1,
unit norm). The empirical estimate of the cumulant function
is

Gs (θ) = log

[

1

N

N
∑

t=1

es(xt ·θ)

]

= log
〈

es(x·θ)
〉

(1)

wherext are the data vectors at different recording times
(t=1,...,N), the projection of each data vectorx along a pat-
ternθ is given by the scalar product(x·θ), ands is a positive
parameter. In order to introduce the properties of the cumu-
lant function, we show that, for smalls, the cumulant func-
tion reduces to the variance of data projected along the pat-
ternθ . Using the Taylor expansion of the exponential and the
logarithm functions, i.e.ey≈1+y+y2/2, and log(1+y)≈y,
and using the zero mean hypothesis,〈x〉 =0, we can rewrite
the cumulant function, Eq. (1), as

Gs (θ) = log

[

1 + s 〈x〉 · θ +
s2

2

〈

(x · θ)2
〉

]

=
s2

2

〈

(x · θ)2
〉

(2)

which is proportional to the variance of dataxt projected
along θ . Our algorithm consists in maximizing the cumu-
lant function with respect toθ , at fixeds. Hence, for small
s, this corresponds to find the directionθ along which pro-
jected data display maximal variance, whose result is the well
known first principal component (PC1) of the data set.

In general, for any value ofs, all powers of s must be taken
into account in the Taylor expansion, and the cumulant func-
tion is expressed by the following series

Gs (θ) =

∞
∑

i=2

ki (θ)
si

i!
(3)

wherek’s are estimators of the cumulants of data projected
alongθ . k2 is the variance,k3 is the skewness,k4 is the kur-
tosis;k1 is the mean and is equal to zero, since data are cen-
tered. For a fixed value ofs, G is a fixed combination of the
projected cumulants. Ifs is small, the combination is domi-
nated by the variancek2, while if the value ofs grows, higher
and higher order cumulants become dominant. Ifs is larger
than a threshold value, it has been demonstrated (Bernacchia
and Naveau, 2008) that the patternsθ maximizing the cumu-
lant function are those whose projection displays the fattest
tails in the marginal probability density. These are the pat-
terns of interests, and we assume here thats is always large
enough to detect them (see below).

In order to maximize the cumulant function, a steepest gra-
dient descent algorithm is used (Arfken, 1985), the iteration
is labelled by the indexi. An initial vectorθ=θ0 is chosen
(i=0), and is updated by the following rule

θ i+1 − θ i =
1

s
∇θ i

Gs (θ i) (4)

where the right hand side (r.h.s.) is proportional to the gra-
dient of the cumulant function with respect toθ , which is
rewritten, using Eq. (1), as

θ i+1 − θ i =

1
N

N
∑

t=1
xte

s(xt ·θ i )

1
N

N
∑

t=1
es(xt ·θ i )

=

〈

xes(x·θ i )
〉

〈

es(x·θ i )
〉 (5)

During the iteration, the patternθi moves towards the direc-
tion along which the cumulant function has the largest in-
crease. Hence, the algorithm assures that each solution is
a local maximum of the cumulant function. The constraint
|θ |2 =1 is obeyed by rescalingθ to unit norm after each iter-
ation step. When the algorithm converges to a stable solution
θfin, the iteration stops and the patternθfin is saved. The al-
gorithm is applied for many different initial conditionsθ0’s,
in order to explore all possible solutions in the whole pat-
tern space. Once all the distinct solutions are collected, each
normalized (unit norm)θfin is multiplied by the standard de-

viation along the corresponding direction, i.e.

√

〈

(x · θfin)2
〉

,

in order to give a scale to the variability of the spatial pat-

terns obtained. The final outcomes, all theθfin

√

〈

(x · θfin)2
〉

,

are the patterns of interests for the given value ofs.
How to fix the value of the parameters? Our approach is

opposite with respect to PCA: we use a value ofs as large
as possible, to maximize cumulants of the highest accessi-
ble order, instead of the variance, and to select the patterns
for which projected data display the fattest tails. However,
for larges, due to the finite size of the dataset, the reliability
of the estimate ofG is corrupted by outlier data points, and
s must be fixed by a tolerance error. For normally and in-
dependently distributed data points, with a sample ofN data
vectors, the variance of the estimate of the cumulant function
is equal to

ε2 =
exp

[

s2k2 (θ)
]

− 1

N
(6)

Substitutingk2 with its maximumσ 2
1 , that is the variance of

the first principal component, we have an upper bound for
Eq. (6), i.e.

ε2 ≤
exp

[

s2σ 2
1

]

− 1

N
(7)

If ε2 is large, the error in the estimate is large, and the method
is expected to be unreliable: different data samples from the
same distribution would yield substantially different results.
This happens especially for large value ofs. Our strategy is
the following: we fix a tolerance value for the errorε, and we
calculate the corresponding value of s, given that we know
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Fig. 2. Scatter plot of the 696 data points (monthly anomalies of
equatorial pacific sea-surface temperatures, recorded from January
1948 to December 2005), projected over the first two principal com-
ponents (PC1 – horizontal, PC2 – vertical). The lines, centered by
the sample mean (0,0) correspond to the MCF, for different values
of s. From bottom to top:s=0 (blue), 0.055 (light blue), 0.111
(green), 0.166 (orange), 0.222 (red). For each value ofs, two MCF
are found, one pointing from the center to the right, the other point-
ing from the center to the left. Fors=0, the two lines correspond
to PC1. For growing values ofs, the two lines separately move up
(V shape), and seem to point towards the two tails of the distribu-
tion of data points. The selected solutions, set by the size and the
variability of the dataset, are those fors=0.222 (red lines), and are
recognized as El Niño (up right) and La Nĩna patterns (up left).

the size of data sampleN , and the varianceσ 2
1 . Then, we

obtain a critical value fors, i.e.

s =

√

log
(

1 + Nε2
)

σ1
(8)

For the dataset considered here, the maximal variance is
σ 2

1 =42.2, calculated by standard PCA (the first principal
component explains about 50% of the total variance). The
error is fixed to the tolerance valueε=0.1 and, usingN=696,
we obtains=0.222. For larger values of s, we expect unreli-
able estimates of the cumulant function. Note that we used
a Gaussian approximation to derive the variance of the es-
timate: this is not an accurate upper bound for the error if
the actual distribution of data points has fatter tails than a
Gaussian distribution (see Sect. 4: Discussion). One may
ask whether the variance of the estimate, beside the cumu-
lant functionG, may be calculated for the local maximaθfin
as well. While for the general case it may be prohibitive,
for the simple case of a Gaussian distribution the PCA confi-
dence surfaces may be used (see Rencher, 1998).

In summary, we fix a tolerance parameters, as large as
possible given the size and the variability of the dataset, us-
ing Eq. (8), and then we run the algorithm given by Eq. (5),

Fig. 3. Two Nonlinear PCA fits. Data points are the same data of
Fig. 2 (monthly anomalies of equatorial pacific sea-surface temper-
atures, recorded from January 1948 to December 2005), projected
along the first two principal components. The two U-shaped curves
(red and blue circles) are two different outcomes of the application
of NLPCA: the projections of data points over the two curvilinear
NLPCA fits. They resemble the V shape of Fig. 2. Note that the
two curves are especially different at the two ends of each curve,
and is not clear which of them should be taken as representative for
the extremes of data.

once for each different initial conditionθ0, finding all the
spatial patterns of interests, i.e. those representing the large
anomalies. In the present context, other values ofs where
also implemented in the algorithm, in order to investigate
the transformation of PC1 to the MCF solutions (see Fig. 2),
varying s from 0 to 0.222. Since the algorithm, Eq. (5), is
not well defined fors=0, we use the standard PC1 solution in
that case.

3 Results

As an implementation of the cumulant function to detect pat-
terns of large anomalies, we consider the ENSO phenomenon
in the Pacific Ocean (see Sect. 2.1: Equatorial Pacific SST).
A scatterplot of data vectors is presented in Fig. 2. Each
vector is represented by one point (N=696), where the coor-
dinates on the plot correspond to the scores of the first two
principal components (PC1 – horizontal, PC2 – vertical), cal-
culated by standard PCA. We stress that the first two princi-
pal components are taken only for illustrative purposes, the
following analysis is performed over the fulln-dimensional
space (n=243).

The lines in Fig. 2 correspond to the solutions of the algo-
rithm (see Sect. 2.2: The optimizing algorithm), i.e. theMax-
ima of the Cumulant Function(MCF), for different values of
the parameters. All the lines are centered on the sample

Nonlin. Processes Geophys., 15, 169–177, 2008 www.nonlin-processes-geophys.net/15/169/2008/
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Fig. 4. (a, b) The first principal component and its opposite.(c, d) The two MCF, recognized as El Niño (c) and La Nĩna (d). They
correspond to the lines in Fig. 2, up right – El Niño, up left – La Nĩna. Note that (a) is similar to (c), but (c) is characterized by stronger
positive anomalies at the coast of South America, and weaker positive anomalies in the central Pacific. Similarly, (b) resembles (d), but (d)
has stronger negative anomalies in the central Pacific and weaker negative anomalies at the coast of South America.

mean (0,0). From bottom to top:s=0 (blue), 0.055 (light
blue), 0.111 (green), 0.166 (orange), 0.222 (red). For each
value ofs, we have two MCF solutions, one pointing from
the center to the right, the other pointing from the center to
the left. Fors=0, the two blue lines are horizontal, that is
they are parallel to the first principal component. Indeed, the
cumulant function reduces to the variance for smalls, and
the first principal component maximizes the variance (since
s=0 cannot be set in the algorithm, the solution is derived by
standard PCA). For larger values ofs the two lines separately
move up, one towards the up right part, the other towards the
up left part, together displaying a V shape. This result sug-
gests that at least the second principal component, along the
vertical, has a significant role when higher order cumulants
come into play. According to our interpretation, the two lines
for larges (red lines) should point towards the two tails of
the distribution of data points, and this seems indeed to be
the case for the points of Fig. 2, as can be checked by visual
inspection.

For each of the two MCF solutions, differences for sub-
sequent values ofs are decreasing withs. Hence, for large
s, the two MCF seem to converge separately to two limit
solutions, one up-right and one up-left. Since we want the
cumulants of highest possible order to be maximized, corre-
sponding to the largest possible value ofs, we are tempted to
increases above 0.222 (red lines in Fig. 2), in order to reach
the limit solutions. However, as explained in Sect. 2.2: The
optimizing algorithm, the size of the dataset,N=696, limits
the extent to which we can calculate reliable estimates with
growings, and we fix the maximum ats=0.222. This value of
s already selects patterns that are significantly different from
the first principal component. Note that the up right tail of
data points seems to be longer than the up left tail: this is re-
flected by the fact that the value of the cumulant function, for

each fixed value of s, is always larger for the up right MCF
than for the up left MCF (not shown).

For comparison, we present in Fig. 3 the fits of Nonlinear
PCA (NLPCA). Starting from the same dataset as above, we
selected the first three PCs, and we performed ten runs of the
NLPCA algorithm (following Hsieh 2004, Monahan, 2001).
Out of the ten runs, we found only two distinct solutions, U-
shaped, superimposed in Fig. 3 (red and blue circles) on the
scatterplot of the first two PC’s, same as Fig. 2. They are
similar to those described in (Hsieh, 2004; Monahan, 2001),
and they also have some resemblance with the V shape of
Fig. 2, arising for large values ofs. The U-shaped curve fits
of Fig. 3 imply that, at least far from the mass of the distribu-
tion, data vectors display prominently positive values of the
score of second principal component, supporting our MCF
results. However, it is not clear which of the two NLPCA fits,
red or blue, we should consider as the good one. Moreover,
the difference between the red and blue curves is especially
large at the extremes, i.e. at the two ends of the curves, to
which we are mainly concerned. Hence, due to the ambigu-
ity of the solutions, NLPCA might not be optimal to investi-
gate the extremes, at least of the present dataset (see Sect. 4:
Discussion and Christiansen, 2005). The MCF method aims
at controlling the reliability of the results by improving the
consistency of the pattern estimates.

As the final outcome of our procedure, we select the MCF
for s=0.222 (red lines in Fig. 2), each of the two corresponds
to a spatial pattern of temperatures. They are the spatial pat-
terns representative for large anomalies, and are presented in
Fig. 4c, d. We recognize them as El Niño (c) and La Nĩna
(d) patterns: the former is characterized by strong positive
anomalies near the coast of South America, while the latter
has negative anomalies over the central Pacific. In Fig. 2,
the El Niño pattern corresponds to the long up-right tail of

www.nonlin-processes-geophys.net/15/169/2008/ Nonlin. Processes Geophys., 15, 169–177, 2008
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Fig. 5. Six examples of El Nĩno and La Nĩna events. Three El Niño events (January 1983, 1992, 1998) and three La Niña events (December
1950, January 1974, September 1988). Note that the asymmetry between the two patterns is partially captured by the MCF solutions, Fig. 4c,
d.

data points, while the La Niña pattern corresponds to the
shorter up-left tail. For comparison, we present in Fig. 5 the
SST anomalies patterns during three El Niño (January 1983,
1992, 1998) and three La Niña events (December 1950, Jan-
uary 1974, September 1988).

The spatial pattern corresponding to the first principal
component (PC1), and its opposite, are presented respec-
tively in Fig. 4a, b. Note that the first PC (4a) resembles
El Niño (4c), and the negative first PC (4b) resembles La
Niña (4d). However, their difference is significant, and is
plotted respectively in Fig. 6b, c. El Niño is characterized by
stronger positive anomalies at the coast of South America,
and weaker positive anomalies in the central Pacific, while
La Niña is characterized by stronger negative anomalies in
the central Pacific and weaker negative anomalies at the coast
of South America. This asymmetry between El Niño and La
Niña is also noticeable in the six examples of Fig. 5, even if
in some cases (January 1992–September 1988) the asymme-
try is less evident. The second principal component (PC2)
is plotted in Fig. 6a. The difference between El Niño and
PC1, in Fig. 6b, and the difference between La Niña and the
negative PC1, in Fig. 6c, both have a structure very similar
to the PC2, Fig. 6a. This confirms the results illustrated in
Fig. 2, for which PC2 seems to play a significant role for
large anomalies. In particular, PC2 gives a positive contri-
bution to both El Nĩno and La Nĩna: they have respectively
27% and 19% overlaps with PC2 (in terms of scalar product).

From the above analysis, we conclude that El Niño and
La Niña patterns are non-symmetric, i.e. one is not just the
opposite of the other: positive and negative anomalies are
displaced over separated regions, and the displacement is
mostly controlled by the second principal component. The
same kind of asymmetry was found using NLPCA (Hsieh,
2004; Monahan, 2001), repeated here for the dataset consid-
ered and illustrated in Fig. 3. Again, the second principal
component was found to play a significant role in determin-
ing the asymmetry. However, we showed that a naı̈ve ap-
plication of NLPCA can give ambiguous results, especially
concerning the extremes. Moreover, due to its computational
expense, the NLPCA fit was performed in the space of the
first three PC’s, while MCF are derived on the whole 243-
dimensional space, hence the latter does not rule out con-
tributions from other principal components. Both methods,
MCF and NLPCA, are able to find nonsymmetric patterns,
since they both deal with nonlinearities, but the cumulant
function is more reliable for the purpose of detection of large
anomalies. While NLPCA tries to keep the whole structure
of data at all scales, MCF concentrates on tails, and gains in
simplicity: it is parameter-free and unambiguous.

The MCF solutions are found in the form of vectors in
the space of data, the projections of data points along these
vectors are easily computed, and the time series of the spatial
patterns corresponding to El Niño and La Nĩna are separately
studied with standard Extreme Value Analysis (Coles, 2001).
Annual maxima are extracted from the two resulting time se-
ries, and are fitted with a Generalized Extreme Value (GEV)
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distribution (note that the cold La Niña is analysed by max-
ima, not of temperatures, but of its projection). GEV distri-
butions depend on three parameters: a location parameterµ,
a scale parameterσ , and a shape parameterξ (Coles, 2001).
The location and scale parameters, respectively, indicate ap-
proximately the peak and the width of the GEV distribution,
while the shape parameter depends on the tail of the distri-
bution (i.e. short, light or heavy tail). All the parameters are
estimated by maximizing a likelihood function from which
we retrieve confidence intervals. We found that while the
location and the scale parameters are quite similar in the El
Niño and La Nĩna cases (µNiño is 25% smaller thanµNiña,
andσNiño is 10% larger thanσNiña), the shape parameter
shows significant differences.

GEV fits of annual maxima are plotted in Fig. 7 (top),
of respectively El Nĩno (left) and La Nĩna (right) projec-
tions, using rescaled variables (Z=(X−µ)/σ). The corre-
sponding Quantile-quantile (QQ) plots are given in Fig. 7
(center), to indicate the goodness of fit of the GEV distri-
bution of the extremes. Annual maxima of La Niña projec-
tions are fitted by a significantly negative shape parameter
(ξ=−0.195±0.108), indicating that the marginal density tail
of data projected along La Niña is bounded. Conversely, for
El Niño projections, the shape parameter of annual maxima
is undistinguishable from zero (−0.039±0.l02) indicating a
light and potentially unbounded tail. Return periods of ex-
tremes are plotted in Fig. 7 (bottom) respectively for El Niño
(left) and La Nĩna (right), within 1SD confidence interval
(dashed lines). The six examples of Fig. 5 are denoted by
red and blue dots, respectively for the three El Niño and the
three La Nĩna events. For a fixed value ofz, return periods of
El Niño events are smaller then La Niña events. Moreover,
El Niño events for large values ofz are more likely to appear
than their La Nĩna counterparts. These results indicate that
the tail of El Niño projections is longer than the tail of La
Niña projections. In summary, according to our interpreta-
tions of El Niño and La Nĩna spatial patterns, while we ex-
pect that La Nĩna cold extreme events are confined by a lower
temperature bound, similar conclusions cannot be drawn for
El Niño, for which an upper bound in extremely warm events
is not guaranteed.

4 Discussion

In this paper, we have introduced a novel methodology for se-
lecting the spatial patterns representative for large deviations
in the dataset (Bernacchia and Naveau, 2008). It consists of
finding the vectors for which the multivariate cumulant func-
tion, estimated from data, is maximal (Maxima of Cumulant
Function, MCF). We chose to apply this algorithm to temper-
ature variability in the equatorial Pacific, which is controlled
by ENSO. We found two MCF solutions and we identified
them as the spatial patterns of El Niño and La Nĩna. As in
the case of Principal Component Analysis (PCA), these spa-

Fig. 6. (a) The second principal component.(b) The difference
between the MCF El Niño pattern (Fig. 4c) and the first princi-
pal component (Fig. 4a).(c) The difference between the MCF La
Niña pattern (Fig. 4d) and the negative first principal component
(Fig. 4b). Note the similarity in the spatial structure of both pat-
tern differences (b), (c), respect to the second principal component
(a), indicating that the latter is the main source of the asymmetry
between the El Nĩno and La Nĩna patterns.

tial patterns are found in the form of directions in the space of
data. However, while PCA concerns the mass of the distribu-
tion, the MCF cares about large deviations. In both cases, the
subspaces spanned by different patterns are ordered: in PCA
the order follows the fraction of variance present in each sub-
space, while in our algorithm the order is given by the value
of the cumulant function for each MCF solution.

The MCF spatial patterns of El Niño and La Nĩna are
asymmetric: while the pattern of the warm El Niño is con-
centrated over the west coast of South America, the cold La
Niña is centered in the middle of the Pacific Ocean. Indeed,
the solutions of the MCF algorithm are not expected to be
symmetric: this is considered as an advantage with respect
to PCA, since large anomalous patterns are not expected to
be, in general, neither parallel nor orthogonal. This is the
case for the ENSO dataset: the first principal component has
a significant overlap with both El Niño and La Nĩna MCF,
with different signs. Then, one is tempted to recognize the
positive part of the first principal component as El Niño, and
the negative part as La Niña. However, we have shown here
that the MCF depart from the first principal component, and
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Fig. 7. (Top): Generalized Extreme Value fits of the annual maxima of respectively El Niño (left) and La Nĩna (right) projections. (Center):
The corresponding QQplots, indicating the goodness of the fit. (Bottom): Return periods of annual maxima, within a 1SD confidence interval
(dashed lines), for El Niño (left) and La Nĩna (right). Red dots and blue dots correspond respectively to the three El Niño and the three La
Niña events presented in Fig. 5.

at least the second principal component play a role in deter-
mining large anomalies. Other methods that allow oblique
solutions, such as VariMax and related techniques (Rencher,
1998), are not supposed to detect patterns of large anomalies.

A similar asymmetry between El Niño and La Nĩna was
reported using NLPCA (Hsieh, 2001; Monahan, 2001), but
this does not support the use of NLPCA for science. We have
shown here that application of NLPCA does not give consis-
tent results, especially concerning the extremes. A criticism
of NLPCA, regarding its applications to atmospheric circula-
tion, was also reported in (Christiansen, 2005). In our opin-
ion, NLPCA is not appropriate for this type of dataset and
cannot be used to interpret unusually large deviations, since
results depend on the ambiguous choice of the parameters
and on the accessibility of the global solution. Here, we have
indeed found two different solutions with the same set of pa-
rameters.

Once the MCF spatial patterns of El Niño and La Nĩna
have been found, a linear projection is performed, with an
easy geometrical interpretation, and Extreme Value Analy-
sis applied, to determine the anomalous behaviour of each
projected time series separately. While La Niña projection
is found to have a negative shape parameter, corresponding
to a finite bound for the extremes, the El Niño projection
has around zero shape parameter, indicating a possible un-
bounded tail. According to the larger value of the cumulant

function for El Niño with respect to La Niña, the former is
characterized indeed by a fatter tail.

Note that maximizing the cumulant function is computa-
tionally very cheap, has no free parameter, and has the ad-
vantage of searching for local solutions (two in the present
case), all of which are of interest. Even if it is illustrative to
check out the solutions for different values ofs, it is not a free
parameter:s is fixed by a tolerance errorε in the estimate of
the cumulant function from raw data (here, we setε=0.1, and
we gets=0.222). When a local maximum of the cumulant
function is found, it is always a good solution. Instead, when
a solution of NLPCA is found, it must be questioned if it is
the global or just a local solution.

The tolerance value ofs depends on the sizeN of the sam-
ple, and the MCF are biased estimators of the asymptotic so-
lutions, i.e. the hypothetical vectors obtained with an infinite
sample and an infinites. However, the limit is assumed to be
consistent and to be reached quite rapidly. The method is ex-
pected to be appropriate in cases in which the density of data
points is not markedly multimodal and decays not less than
exponentially fast with the distance from the center of mass
of the distribution. In general, for a given size of the sample,
fatter tails correspond to larger errors, because single outlier
data points dominate the estimate ofG. If the density decays
slowly, for instance as a power law, the method is expected
to give inaccurate results.
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In (Bernacchia and Naveau, 2008), the MCF method has
been found to give appropriate results, and has been solved
analytically for three model cases. In the special case of
normally distributed data, the MCF corresponds to the first
principal component for all values ofs. In that case, all the
information about large deviations is contained in the covari-
ance, whose structure is revealed by the principal compo-
nents. Another special case arises when the covariance ma-
trix has all equal variances (eigenvalues): in that case MCF
reduces to Independent Component Analysis (ICA, see Hy-
varinen, 2000), i.e. it finds the independent components (if
any exists) of the dataset. In general, for any shape of the
distribution of data points, MCF is able to find the projec-
tions displaying the locally largest tails.
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Academic Press, San Diego, 1990.

Piechota, T. C. and Dracup, J. A.: Drought and regional hydrologic
variation in the United States: associations with the El Niño, Wa-
ter Resour. Res., 32, 1359–1373, 1996

Rencher, A. C.: Multivariate statistical inference and applications,
John Wiley and Sons, New York, 1998.

Sardeshmukh, P. D., Compo, G. P., and Penland, C.: Changes of
probability associated with El Niño, J. Climate, 13, 4268–4286,
2000.

Saynisch, J., Kurths, J., and Maraun, D.: A conceptual ENSO model
under realistic noise forcing, Nonlin. Processes Geophys., 13,
275–285, 2006

Wyrtky, K: Water displacements in the Pacific and the genesis of El
Niño cycles, J. Geophys. Res, 90, 7129–7132, 1985.

www.nonlin-processes-geophys.net/15/169/2008/ Nonlin. Processes Geophys., 15, 169–177, 2008

http://www.nonlin-processes-geophys.net/15/159/2008/

