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ABSTRACT 
Common spatial pattern (CSP) is becoming a standard 
way to combine linearly multi-channel EEG data in 
order to increase discrimination between two motor 
imagery tasks. We demonstrate in this article that the 
use of robust estimates allows improving the quality of 
CSP decomposition and CSP-based BCI. Furthermore, 
a scheme for electrode subset selection is proposed. It is 
shown that CSP with such subset of electrodes provides 
better results with the ones obtained with CSP over 
large multi-channel recordings. 
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1.  Introduction 
 

The movement-related Brain-Computer 
Interfaces (BCIs) aim at providing an alternative non-
muscular communication path and control system for 
the individuals with severe motor disability to send the 
command to the external world using the measures of 
brain activity. Recently, several approaches and 
methods were developed to face the problem of brain 
movement-related signal decoding [1]. Non-invasive 
BCIs use mainly electroencephalographic activity 
(EEG) recorded from the scalp. In particular the power 
changes in various frequency bands are used to 
discriminate classes of EEG signal corresponding to the 
different types of motor activities.  

It is well-recognized that the Common Spatial 
Pattern (CSP) algorithm is useful to increase the 
discriminative power of classifiers [2]. However, it was 
demonstrated in a recent study [3] that CSP is sensitive 
to outliers in the estimation of the intra-class covariance 
matrix. For instance, eye or tongue movements, muscle 
contractions are well-known sources of artefacts. 
Moreover the lack of concentration of the BCI operators 
may lead to non reliable motor task trials. This trial 
rejection in the learning stage is not addressed in [3] 
and should be accounted for robust CSP learning. 

Finally, CSP is influenced by the spatial 
resolution of the acquisition system – number of 
electrodes and electrode location. Applying CSP 
processing to a large set of electrodes may also lead to 
overtraining by giving artificial weights to electrodes 

that do not convey information for the tasks under 
consideration.  

In this paper, a new robust CSP (mcdcov-CSP) 
algorithm is proposed for intra-class centre and 
covariance matrix estimation. Better performance of the 
proposed algorithm is demonstrated in comparison with 
conventional cov-CSP. The use of subset of electrodes 
allows increasing the discrimination performance due to 
the elimination of non-informative electrodes.  
 
2.  Methods 
 
2.1 CSP algorithm 
 

CSP is a well-known approach in BCI systems 
to combine linearly multi-channel EEG data in order to 
increase discrimination between two motor imagery 
tasks [2]. The CSP algorithm finds the best projection 
matrix W such that the projected EEG signals have 
maximal (respectively minimal) variances for one class 
while the variance of the other class is minimized 
(respectively maximized). The variances of the 
projected signals are the features used during the 
subsequent classification stage. 

The CSP algorithm can be formulated as a 
simultaneously diagonalization of the two intra-class 

spatial covariance matrices 21,ΣΣ  under an equality 

constraint. 
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CSP algorithm is usually based on sample covariance 
matrix estimation and is therefore prone to errors due 
to the presence of possible outliers in the data. 

The spatially filtered signals are obtained via 

the projection XWX T=~
whereX denotes the EEG 

data recording, represented as a TE × matrix with 
E the number of electrodes and T  the number of 

samples. Each column vector Ejw j ...1, = of W , is 

called a spatial filter and is associated to the 

eigenvalue jd , the j-th diagonal element of D . The 

most significant filters may be obtained by sorting the 

absolute distances 5.0−jd in decreasing order and 

keeping only the largest ones. 



 
2.2. Robust CSP 
  
A. Robust covariance matrix estimation 
 
 The starting point of a CSP analysis is the 
estimation of intra-class covariance matrices 

1Σ and 2Σ . The classes  i=1,2 are represented by the set 

of EEG recording (trials) { }
iSjjX

∈
where iS  is the set 

of trial indices corresponding to the i-th class.  
 First, covariance matrix is estimated for each trial 
and then intra-class mean covariance matrices are 
computed by averaging. First step is usually done using 
classical sample covariance estimates: 
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It is the maximum likelihood estimator when each 

column of X  : ix  is an observation independently 

drawn from an E-variate normal distribution. For robust 
scatter matrix estimation, several approaches have been 
proposed. Minimum Covariance Determinant (MCD) is 
one of the most popular since it has a high breakdown 
point (α=0.5) which means that the algorithm 
successfully treats the trials corrupted by up to 50% of 
outliers [4]. Scatter matrix is estimated by the sample 
covariance matrix applied onto the subset of h 
observations which yields the lowest possible 
determinant. It also provides a robust estimate of the 

location MCDµ̂ . FAST-MCD algorithm allows avoiding 

a complete enumeration of all h-subsets out of T [5]. 
 The MCD-based estimates of multivariate location 
and scatter allow defining a robust distance for each 

column observation ix to the centre  

( ) ( ) ( )MCDiMCD
T

MCDii xxxRD µµ ˆˆˆ 1 −∑−= −     (3) 

and rejecting outliers which are above a cut-off 

value ( ) 2
975.0,EixRD χ≥ . This value insures keeping 

realizations within a 97.5% robust confidence ellipse. 
 
B. Robust intra-class covariance matrix  
 
 The next step of CSP is an estimate of interclass 
scatter matrices by averaging operation. In spite of 
robustness of MCD, it may occur that some trials – used 
during the averaging process - have a low specificity or 
they may be too much contaminated by artefacts. 
Rejecting these trials during the learning stage is also of 
primary importance. 
 To eliminate such irrelevant trials, MCD approach 
is again proposed. Let us note that in case of normality 

),0(~ ΣNxi  the empirical covariance matrix Σ̂  

follow a Wishart distribution with (T-1) degree of 

freedom )1,(~ˆ −ΣΣ TWE  [6]. In addition, the 

marginal distribution of its diagonal elementsiis  is a χ² 

distribution with (T-1) degree of freedom  

2
1~/ −Tiiiis χσ  where iiσ is the standard deviation of 

the i–th electrode [6]. That means that 

1)1(2)/(2 −−− Ts iiii σ  asymptotically follow 

to standard normal distribution )1,0(N . This 

approximation could be efficiently used for T >30 [7]. 

Due to asymptotical normality of iis , we apply MCD 

algorithm to the transformed vector of the diagonal 

elements: iis . Then, we use the robust distance (3) to 

detect abnormal trials and reject them during the 
averaging procedure. 
 
C. Classification 
 

After (robust) CSP, the variances of the 
projected signals are the features used during the 
classification stage achieved by Linear Discriminant 
Analysis (LDA). Two robust estimators of variances 
were tried in this study – a) the diagonal elements of 

covariance matrix of X
~

obtained with MCD algorithm 
and b) using Median Absolute Deviation [3]: 
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Robust estimators of variances will diminish the effect 
of outliers in the projected EEG signals. Moreover EEG 
recordings could show some differences to normality 
and thus the scatter matrix estimation proposed in 
previous subsection could be biased. The use of the 
same MCD algorithm to estimate variances will better 
correspond to the learning stage.  
 
2.3. Electrodes subset selection 
 
 Finally, the use of a large set of electrodes may 
lead to overtraining by giving artificial weights to 
electrodes. Dimensionality reduction provides better 
performance of classifiers on the independent (test) 
dataset. For the electrodes subset selection, we applied 
simple correlation-based algorithm that includes 
sequentially the electrodes with highest correlation 
coefficient to the selected set. The procedure is stopped 
using “left corner” rule, if the coefficient of multiple 
correlation stops to increase essentially. 
 
3.  Results 
 
3.1. Data description  
 
 To test our algorithm, several computational 
experiments were carried out. The datasets from the 
BCI competition III provided by Fraunhofer FIRST 
(Intelligent Data Anzalysis Group) and University 
Medicine Berlin (Neurophysics Group) [8] were used 
for testing. EEG data presents two classes which 
correspond to the right hand and the right foot motor 
imageries. Data is recorded with 118 electrodes with 
sampling rate 100Hz from 5 subjects (only subject al 



and subject av are considered here) and for 280 trials. 
During the experiments the subject was given visual 
cues that indicate 3.5s time interval to perform motor 
imagery. In this study, we considered the band-pass 
filtered EEG signals in the [8-35] Hz band during the 
first 2.5 s (T=250) Furthermore, we only used two 
spatial filters. 
 
 To test the robustness of the algorithm, outliers 
were simulated as a mixture of distributions [9]. 
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Here ),( outN Σµ denotes the multivariate normal 

distribution, 0δ  is a point mass distribution and 1≤ε  

represents the part of the data corrupted by outliers. We 

set for outΣ  the diagonal matrix whose i-th diagonal 

element is the estimated variances 2ˆ iσ  for the i-th 

electrode. The mean amplitude vector of outliers 
(positive or negative) µ  was also fixed according to 

the electrode standard deviation ii σκµ ˆ⋅= with κ a 

multiplicative factor. The outliers were added to the 
training trials as an additive noise, cf. Fig. 1.  

 
Figure 1. Example of EEG channel #10 with simulated 

noise: outlier amplitude is 1010 ˆ10σµ = , the part of 

corrupted observations is 1.0=ε . 
 
A. Electrode subset selection 

 
Figure 2. Spatial distribution of the R² correlation 

coefficient for patient al. 

Fig. 2 demonstrates the cortex areas which are 
correlated to the motor imagery task. This simple 
criterion allows us to select the best subset of electrodes 
for a given mental task. We have then ordered the 
electrodes according to their R²-value and evaluate the 
corresponding classification performance. As it is 
shown in Fig. 3, restricting our analysis to the first 21 
electrodes gives comparable results to the whole 
electrode set. Indeed it may be the case that applying 
CSP processing to a large set of electrodes may lead to 
overtraining by giving artificial weights to electrodes 
that do not convey information for the tasks under 
consideration. An effect of overtraining is clearly 
observed in patient av for large number of electrodes. 
 

 
Figure 3. Classification accuracy using test dataset for 2 

subjects (al: 20% test trial, av: 70% test trial) 
 
B. Cov-CSP and robust (mcdcov-CSP) comparison.  
 
The resistance of cov-CSP and mcdcov-CSP algorithms 
is studied depending on the outliers parameters. 

a) Mean outlier amplitudes are fixed to ii σµ ˆ3=  

while the percentage of corrupted observations 
increases from 0% to 25%. The results are 
demonstrated in Fig. 4 for subject al. We notice that 
mcdcov-CSP successfully resist to 25% of outliers 
while the accuracy degrades linearly using cov-CSP. 
Using MAD-estimation for the variance (mcdcov-mad-
CSP method) yields also robust classification results. 

 
Figure 4. The percentage of correctly classified test 
trials (patient al), depending on the probability of 

outliers occurrence, κ=3. 



It is also of interest to check the robustness of the 
spatial pattern in the presence/absence of noise (ε=0.1, 
κ=10). We observe in Fig. 5. that the most significant 
spatial pattern remains stable with the proposed 
approach. On the other hand, standard CSP with noise 
yields a perturbed spatial pattern (top-right figure). 
 

 
Figure 5. Most significant spatial pattern obtained with 
cov-CSP (top row: left without noise, right: with noise) 

and with mcdcov-CSP (top row: left without noise, 
right: with noise). 

 
b) The percentage of the corrupted observation is 
fixed at 10% while the mean outlier amplitude 
coefficient factor κ varies from 0 to 100. The results, 
shown in Fig. 6, confirm that the mcdcov-CSP method 
and its variant are completely insensitive to high-
amplitude outliers. 

 
Figure 6. The percentage of correctly classified test 

trials (patient al), depending on the mean outlier 
amplitude and at a constant probability of occurrence. 

 
3.  Conclusion 
The use of robust estimates allows improving the 
quality of CSP decomposition and CSP-based BCI. 
Robust mcdcov-CSP successfully resist to 25% of 
outliers while the standard cov-CSP degrade 
significantly. In addition, dimension reduction is 
important from a computational point of view since 
robust statistical methods are time-consuming. It is 
demonstrated that comparable results can be achieved 
with a well-selected subset of electrodes and it allows 
avoiding overtraining effects. 
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