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Abstract

In BOLD fMRI data analysis, robust and accurate estimation of the Hemody-
namic Response Function (HRF) is still under investigation. Parametric methods
assume the shape of the HRF to be known and constant throughout the brain,
whereas non-parametric methods mostly rely on artificially increasing the signal-to-
noise ratio. We extend and develop a method proposed in [Marrelec et al., 2001] that
makes use of basic yet relevant temporal information about the underlying physio-
logical process of the brain BOLD response in order to infer the HRF in a Bayesian
framework. A general hypothesis test is also proposed, allowing to take advantage
of the knowledge gained regarding the HRF to perform activation detection. The
performances of the method are then evaluated by simulation. Great improvement
is shown compared to the Maximum-Likelihood estimate in terms of estimation er-
ror, variance and bias. Robustness of the estimators with regard to the actual noise
structure or level, as well as the stimulus sequence, is also proven. Lastly, fMRI data
with an event-related paradigm are analyzed. As suspected, the regions selected from
highly discriminating activation maps resulting from the method exhibit a certain
inter-regional homogeneity in term of HRF shape, as well as noticeable inter-regional

differences.
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INTRODUCTION

Discovered in the early 90s, functional MRI (fMRI) has quickly become the leading
method to study hemodynamic changes in the brain in response to cognitive and behav-
ioral tasks [Chen and Ogawa, 1999]. The relation between neural activity and the Blood
Oxygen Level Dependent (BOLD) response is not yet clearly understood and is still un-
der investigation [Vazquez and Noll, 1996; Buxton and Frank, 1997; Buxton et al., 1998;
Li et al., 2000; Logothetis et al., 2001]. It is therefore convenient to model the various
processes intervening in the brain, from reception of the stimulus to measurement of the
BOLD contrast signal, as a whole system characterized by its transfer response function,
the so-called Hemodynamic Response Function (HRF) [Friston et al., 1994]. The HRF is
the theoretical signal that BOLD fMRI would detect in response to a single, very short
stimulus of unit intensity. The key assumptions realted to this model are the stationarity
and linearity of the underlying physiological process. Such hypotheses are good approxi-
mations of the actual properties of the system as long as the inter-stimulus interval does
not decrease below about two seconds [Dale and Buckner, 1997; Buckner, 1998].

Estimation of the HRF is a recent concern. Knowledge about the response function is
believed to be a key issue to a better understanding of the underlying dynamics of brain
activation and the relationship between brain areas [Biswal et al., 2000; Miezin et al., 2000].
HRFs are increasingly suspected to widely vary from region to region, from task to task,
and from subject to subject [Aguirre et al., 1998; Buckner et al., 1998a; Buckner et al.,
1998b; Miezin et al., 2000]. Unfortunately, precise and robust estimation of the HRF is
still the subject of ongoing research, since the problem is badly conditioned, and various
methods have been devised so far.

On the one hand, parametric methods assume that the HRF is a generally non-linear
function of certain parameters that are to be estimated. These parameters are often be-

stowed with some physiological meaning. Such approaches have been applied to block or
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event-related stimuli. Function shapes typically used are Gaussian [Kruggel and von Cra-
mon, 1999a; Kruggel and von Cramon, 1999b; Kruggel et al., 2000] or spline-like [Gossl
et al., 2001b]. [Gossl et al., 2001a] use a parametric model on the temporal scale, whereas
a more general prior is used on the spatial extension of the signal. But assuming the shape
of the HRF to be known a priori and invariant throughout the brain is a very strong
constraint, since it fluctuates greatly.

On the other hand, non-parametric methods have been developed in an attempt to infer
the HRF at each time sample. Such methods make no prior hypothesis about the shape
of the response function. Since the low signal-to-noise ratio of fMRI data precludes direct
voxelwise analysis (e.g. with averaging over time), more complex schemes have been pro-
posed. Methods include: averaging over regions [Kershaw et al., 2000], selective averaging
[Dale and Buckner, 1997], introduction of non-diagonal models for the temporal covariance
of the noise [Burock and Dale, 2000] or introduction of smooth FIR filters [Goutte et al.,
2000]. In a similar fashion, we recently proposed a Bayesian, non-parametric estimation of
the HRF [Marrelec and Benali, 2001; Marrelec et al., 2001]. Relevant physiological infor-
mation was introduced to temporally regularize the problem and derive estimates of the
HRF. This approach had the advantage of introducing no bias into the estimation, since
the constraints imposed were clearly derived from physiological requirements. In [Marrelec
et al., 2001], the estimation features were based on a few examples and the authors’ expe-
rience of the model. Real data consisted of the mean signals of BOLD fMRI measurements
in a few regions of interest. Robust voxelwise analysis had therefore yet to be assessed.

In this paper, we quantify the performances of the estimation introduced. Simulations
are used to analyze the behavior of the HRF estimator. When compared to the ML
estimator, dramatic performance increase is actually proven. With these evaluations, we
also show that robustness is achieved regarding the actual noise sampling distribution and

the stimulus sequence.
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The outline of the article is as follows. In the next section, we recall the theoretical
background necessary for the understanding of the model treatment. We also develop a
statistical tool to deal with model testing, including activation detection. In the third
section, the major features of the model are assessed: importance of the prior, relevance
of the actual noise structure and influence of the stimulus sequence. The method is finally
applied to real data, where both HRF estimation and activation detection are performed

on the same time series.
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THEORETICAL BACKGROUND

Notations

In the following, x denotes a real number, & a vector, and X a matrix. “*” is the
regular matrix transposition. Iy stands for the N-by-N identity matrix. “o” relates
two expressions that are proportional. For two variables x and y, “x|y” stands for “z

conditioned on y”, or equivalently “z given y”, and p(z) for the probability of .
Model

Let @ = (2,)1<n<n be the time series of stimuli describing an experimental paradigm,
and ¥y = (yn)1<n<n the corresponding BOLD fMRI time course of a voxel. A discrete linear

model is assumed to hold between the stimulus vector @ and the data y:
K M
(H) ynZZhwn_k-FZ)\mdm,n—l—en n=K+1,...,N.
k=0 m=1

The (K + 1)-dimensional vector b = (hy)" represents the unknown HRF to be estimated.
K is the order of the convolution model, and L. = N — K is the actual amount of data used
in the calculation. X = (x,_x) is the regular L-by-(K + 1) design matrix, consisting of
the lagged stimulus covariates. The L-by-M matrix D = (d,, ) is a basis of M functions
that takes a potential drift and any other nuisance effect into account, and the A = ()"
are the corresponding coefficients. For the sake of simplicity, the basis is assumed to be
orthonormal, i.e. %DtD = I;. e = (e,)" accounts for noise and is supposed to consist
of independent and identically distributed Gaussian variables of unknown variance o2,
assumed to be independent from the HRF. As will be shown in the simulation section,

this assumption by no way requires that the sampling frequencies of the noise actually

corrupting the data be normally distributed. In matrix form, (H) boils down to
y=Xh+DX+e,

also called General Linear Model.
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Bayesian analysis with temporal prior

What is sought is estimation of the HRF h given the data y. To cope with this issue, a
suitable theoretical framework is required for dealing with information coming from various
origins. On the one hand, the data follow a known model, (H). The noise is also supposed
to follow a definite (yet general) model, since it is Gaussian. On the other hand, it should
be possible to take available information into account, in order to optimize the estimation.
The problem faced being ill-conditioned, a priori knowledge about the HRF needs to be
incorporated into the model in order to constrain it and enable coherent estimates. For
doing so, Bayesian analysis imposes itself, allowing for robust yet flexible integration of a

wide range of information types in a probabilistic framework.

Prior information. Since the underlying physiological process of BOLD fMRI is as of
yet only partially understood, setting “hard” constraints on the HRF is most likely to
introduce unwanted bias into the estimate. For this reason, we investigate basic and soft
constraints that do not contradict current knowledge. More precisely, the following is

assumed:
(P0) the HRF starts and ends at 0;
(P1) the HRF is smooth.

These priors reflect that the underlying process evolves rather slowly on the experimental
time scale. Our goal is then to translate this prior knowledge into information that can be
directly implemented into a Bayesian analysis. First, prior (P0) can easily be introduced
into the model by setting the first and last sample points of the HRF to 0, so that only
K — 1 parameters (instead of K + 1) of the HRF are now unknown. Quantification of prior

(P1) is achieved by setting a Gaussian prior for the norm of the second derivative of the
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HRF, whose relative weight is adjusted by a hyperparameter e:

K

1

2 > 27t
, 5 € 2 eh'Qh
R I ek 0
where
5 —4 1 0
-4 6 =4 1
1 -4 6 =4 1 0
| 0 1 -4 6 —4 1 0
@ = Txa
0 1 —4 6 -4 1
0 1 -4 6 -4 1
0 1 -4 6 —4
0 0 1 —4 5

is the (K —1)-by-(K —1) concentration matrix of the Gaussian prior, chosen as the discrete
second-order differentiation matrix. € represents the relative weight of the prior probability
compared to the likelihood of the data in the calculation of the posterior probability density
function (pdf). The higher ¢, the more the prior constraint is taken into account. On the
contrary, a vanishing e expresses that the solution comparatively integrates much more
information from the data. The limiting case € = 0 yields results that are similar to the

Maximum-Likelihood treatment (i.e. Bayesian with no specific prior).

Bayes’ theorem. Once the model and the prior information have been defined, the first
step is to use Bayes’ theorem stating that, for a set of data compatible with the model:

p(h, X0 ¢|H) - p(y|H, h,\, 0% ¢)
p(y|H) '

Since p(y|H) is independent of h, X, 6% and ¢, it is only a normalization factor that can

be discarded from Equation (2), yielding
p(h’ A’ 0-27 6|]{7 y) X p(h7 A? 0-2’ 6|HV) ' p(y|H7 h’ A’ 0-27 6)' (3)
This equation relates the prior information p(h, X, o?, ¢|/H), the information brought by

the data or likelihood p(y|H, h, X, c% ¢) and the information inferred a posteriori about
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the unknown parameters h, A, 02 and ¢, p(h, X, 02, ¢|H,y). This posterior distribution
contains all the knowledge about the parameters that can possibly be inferred from the

data and the a priori information we have at hand.

Posterior pdf. Using the chain rule! and assuming no prior dependence between X, o?

and ¢, the prior can be further expanded as
p(h, X, 0% e[H) = p(h|H, 0 ) p(A|H) - p(c?|H) - p(e| H), (4)

where p(h|H,o?, ¢) has been defined in Equation (1). p(A|H), p(c?|H), and p(e|H) are

classically set to uninformative priors (flat prior for A, Jeffreys priors for ¢ and e:

p(A|H) o const p(o?|H) (02)_1 ple|H) oc e,
Assuming Gaussian noise, the likelihood rereads
oy —L 1
p(y|H,h,)\,U2) x (0'2) 2 exp {—ﬁﬂy —Xh - DAHQ] ) (5)

Bringing Equations (4) and (5) together into Equation (3) leads to the posterior pdf for
h, X\, 0? and e

L L [LA(K-1) 1
p(h,X, 0%, ¢e|H,y) o £72 (02) [F5= ] exp {_2—2 <Hy — Xh - I)AH2 + 62thh>:| )
o)
(6)
This distribution is the core of our inference, since any question concerning the problem

can be answered by its manipulation and processing.

Marginal posterior pdf for h. In HRF estimation, though, the parameter of inter-
est is usually h. In this case, all other parameters are only nuisance parameters whose
estimation is not required, and all information relative to h is contained in the marginal

posterior distribution of h, p(h|H,y). This pdf can in turn be obtained from Equation (6)

'p(01,02) = p(01]02) - p(02)
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by integrating it with respect to the other parameters, according to the marginalization

formula?:

p(hlH.y) = [ plh Ao |H.y) dX do de.

Integrating X and o? is straightforward, resulting in

p(h|H, y) = / p(h, | H,y) de = / p(h|H, y,¢) - p(e|H, y) de.

However, this integral cannot be calculated in closed form. A common way to circumvent
the problem, as in [Friston et al., 2002a], is to estimate € by € and approximate the sought
density by

p(h|H,y) ~p(h|H,y,e=7).

This approximation holds if p(¢|H,y) is peaked enough around €. Practically, checking its
validity can be performed by examination of p(¢|H,y) (see e.g. Figure 6 for results on real

data). p(e|H,y) can then be approximated by a Dirac function and p(h|H,y) by

p(h|H,y) ~ /p(hIH,y, ¢)-6(e—€)de = p(h|H,y,e=73).

The strategy applied here is to first calculate the posterior pdf for the hyperparameter e

as

p(d| . y) = / p(h, X\, 0% c|H, y) dh dX do?,

find an estimator € of € and, then, approximate p(h|H,y) by p(h|H,y,e¢ = €), that can

also be calculated from the posterior pdf as

1

p(h|H,y,e=7¢) = NGER)]

/p(haA;0-27/€|H,y) dX do?.

An approximation for the marginal posterior for o2 can also be calculated along the same

lines. Using this scheme, we showed in [Marrelec et al., 2001] that

2p(61) = /p(91,92)d92
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o ¢ follows a pdf that does not belong to any known family, but whose distribution is
given by:

K-2 L—M
2

; [yt(IL _JUX(XUTX 4 eQQ)_lXt) Jy} R
(7)

where J = I, — %Dl)t is the projection matrix estimating and removing the nuisance

€

e|lH,y) x
p(elH.9) Vdet( X' T X + 2Q

trend from the data. Numerical calculation of this 1-dimensional pdf is straightfor-

ward, and an estimate can be inferred, such as the Maximum a posteriori (MAP):
€= arg max p(e|H,y).

Choosing the mean instead of the MAP leads to similar results, as is showed in

[Bretthorst, 1992].

o (0%|H,y,e =) is scaled inverse-chi-square distributed, with v = L — M degrees of
freedom and scale parameter s? = {yt(IL - J'X(X'IX + €2Q)_1Xt) Jy} /v. An

estimator of o2 is given by

SV o

. 8
7 y—2° ®)

e (h|H,y,ec =€) is Student-t distributed with v degrees of freedom, location param-
eter h = (X'JX +¢2Q) " X"'Jy and scale matrix V = s*(X'JX +€2Q)~". The

expectation of (h|H,y, e =€) can be taken as an estimator for the HRF:

Elh|H,y,e=¢=h=(X'JX +2Q)' X' Jy. (9)

Equation (9) with € = 0 corresponds to the well-known Maximum-Likelihood estimate
(ML estimate) or Ordinary Least Squares estimate (OLS estimate) commonly found in the
literature [Mardia et al., 1979; Draper and Smith, 1981]. For € # 0, this is the form of a

regularized estimator, with € playing the role of the regularization parameter. In a typical
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regularization-optimization process, one has to minimize a quantity that is the sum of a
likelihood function and a regularization/penalization factor (e.g. the norm of the second

derivative for smooth variations):
| Xh—yl|* + €||0°R|".

In a Bayesian framework, the value of ¢ can automatically be estimated and set to the

most probable value €.

Divergence tests on HRFs

Bayesian analysis has recently been applied to activation detection in fMRI data anal-
ysis [Friston et al., 2002a; Friston et al., 2002b]. Another approach is to take advantage of
the non-parametric framework developed in this paper.

Once the estimation has been carried out as previously explained, it might be of in-
terest to test whether a given function hg qualifies as a HRF in a voxel. For instance, if
hg originates from a biological or physiological model, adequacy of this model with the
experimental results can be tested. In a frequentist framework, this corresponds to testing
against the null-hypothesis (b = hg). In other words, we test whether h is significantly
different from hgo. h being Student-t distributed, the deviance of hy from model (H),
defined as

p(ho) = (ho — h)'V ™" (ho — h),

should be the realization of a (K —1)- Fx_1 ,~distributed variable. As proposed in [Tanner,

1994], we therefore define the deviance significance 1 — ag of (h = hyg) as

1 — a0 = ¢r-1, [p(ha)], (10)

where ¢x_1, is the cumulative distribution function (cdf) of the Fgx_;, distribution.
An interesting case of hypothesis testing occurs when hg is set to 0. The estimated

HRF is then compared to a flat function, reflecting a model where the stimulus has no
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influence on the voxel signal, which is then nothing more than a baseline signal (drift and
noise). This is nothing else than activation detection.

In this setting, it is hence possible to estimate the HRF and use the knowledge so gained
to perform activation detection on the same dataset. The key explanation is that only one
inference is actually lead from the data, namely that h is t-distributed with parameters h
and V. Once this is known, the questions “What is the shape of the HRF?” and “Is the

hemodynamic response significant?” can both be answered.
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o? SNR
0.001 16.39
0.005 9.40
0.0l  6.39
0.05 -0.60

Table I: Simulations. Noise variances and corresponding SNRs for the HRF defined in
Figure 1.

RESULTS FROM SYNTHETIC DATA
Materials and methods

This section deals with the performance of the above estimations and focuses on the
three following topics: importance of the temporal prior, relevance of the actual noise
sampling distribution and influence of the stimulus sequence. Each feature was analysed
using synthetic data. 1,000 224-point samples were simulated from the same original
HRF hg (“canonical” HRF used by the SPM99 software®), stimulus sequence (one given
realization of a random event-related stimulus) and quadratic drift as illustrated in Figure
1. Repetition time TR was set to 1.25s. The variance of the Gaussian noise o? was
successively set in {0.001,0.005,0.01,0.05}, corresponding to SNRs* given in Table 1. For
the analysis, K was set to 20 and quadratic drift was considered (M = 3).

Investigation of HRF estimation performance was assessed using three complementary
criteria. First, the quadratic error n;(h) described how close the chosen estimator is to
the real HRF. Second, variance score ny(h) was a measure of the uncertainty associated
with the given estimator. Now, variance reduction is a desired feature only if the accuracy
of the estimator increases consequently. As a matter of fact, a poor estimator (i.e. with

high quadratic error) with a low variance is misleading and introduces a bias into the

estimation. For instance, introduction of prior information into model (H) has a direct

3www fil.ion.ucl.ac.uk/spm/spm99.html

4defined as SNR = 20log, (|| X h||/V Lo?)
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and logical consequence of decreasing the variance of the posterior pdf. By construction,
the higher €, the higher the variance reduction. Setting ¢ — oo even implies a vanishing
variance, |V| — 0, whereas the corresponding estimator h tends towards a flat function,
which is obviously a very bad estimator of the true HRF. Bias estimation was therefore
quantified by 773(3, V'): the smaller the bias, the more conservative the estimate.

Quadratic error was defined in a similar fashion as in [Dale, 1999]:

1
K -1

m(h) = I — bl |, (11)

It is the average square error per time sample of the estimator compared to the true HRF

hy. Variance score was quantified by

1
K -1

n (V) = log det (V). (12)

As pointed out in [Ruanaidh and Fitzgerald, 1996], the determinant of the variance of a
distribution has a simple interpretation in terms of hypervolume in a Gaussian approxima-
tion. The logarithm of this measure can then be related to an entropic measure®. Finally,

the bias was measured using the deviance of the real HRF hg from the model and Equation

(10):

n3(ho) = dr—1, [p(ho)] . (13)

For each series of 1,000 simulations, the corresponding performance estimator was cal-

culated on all the samples.

Importance of the prior

We first compared a model with no a priori information corresponding to a Maximum-

Likelihood estimation®, called (Hy), and the model with the temporal prior, (Hg). For

®The entropy of a N'(u, X) distribution is given by S = %log [271' exp(1) det(E)].
6In this case, the order v changes from K — 1 to K + 1, the number of degrees of freedom changes from
L—MtoL—-M-—(K+1),cisset to 0, and all formulas are modified accordingly [Marrelec et al., 2001].
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typical simulations, Figure 2a represents true and estimated HRFs. Performance estimators
were calculated for the 1,000 noise realizations using Equations (11), (12) and (13). The
results are summarized in Figures 2b and 2c.

Figure 2b(i) clearly indicates that, regardless of the noise level, estimates of o2 were
accurate for both models, showing the robustness of this estimator. Figure 2b(ii) shows
that the relative spread of € in the Bayesian model increased with decreasing SNR. As
for HRF estimation, benefits resulting from the introduction of a temporal prior were
threefold. First, both models exhibited increasing quadratic error with increasing noise
(Figure 2c¢(i)), but estimator hy (corresponding to model (Hp)) was much more robust to
increasing noise than hr, (corresponding to model (Hy)). Second, a dramatic decrease of
variance was achieved when the prior was considered and again, the lower the SNR, the
larger the difference (Figure 2¢(ii)). But this variance reduction was not the source of a
bias in the estimation, since the deviance significance of model (Hg) was also improved

compared to initial model (Hy), as can be seen on Figure 2c(iii).

Relevance of the noise sampling distribution

According to [Bretthorst, 1999], the Gaussian structure of the noise in the model is a
consequence of the Maximum-Entropy principle, in which only the mean and the variance
of the actual noise are assumed to be known and relevant to the analysis. As such, the
estimation should not depend on the sampling frequencies of the noise. This was also
observed in [Marrelec et al., 2001]. To confirm this, we simulated noise samples from various
sampling distributions. First, in accordance with the model hypothesis, Gaussian noise was
used with mean 0 and variance 0.01. In order to measure the robustness of the model with
regard to the presence of temporal correlation in the noise, AR(4) with exponentially
decreasing factors was also simulated”. Finally, physiological noise was considered as the

BOLD fMRI signal of the real data used in the following section, selected in regions where

“with equation e, = 0.3679¢,_1 + 0.1353¢,_o + 0.0498¢,,_3+ 0.0183¢,_4 + &, and &, ~ N(O, 0.01).
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no activation was detected. After every sample, the resulting time series were normed to
get the same mean 0 and variance 0.01. Typical results and estimator performances are
represented on Figures 3a, 3b and 3c.

As evidenced by the results depicted on Figure 3b(ii), estimation of hyperparameter
¢ varied relatively little with respect to the noise distribution: the MAP estimates were
consistent with each other. As for the estimate of the noise variance, it was essentially
independent from the noise structure (Figure 3b(i)). HRF estimation itself exhibited the
same property. From the simulations, it obviously appeared that the actual sampling

distribution of the noise is indeed of little importance (Figure 3c(i)-(iii)).

Influence of the stimulus sequence

As pointed out in [Buxton et al., 2000] and [Worsley and Friston, 1995], the choice
of a stimulus sequence (periodic vs no-periodic) is very important and can dramatically
influence the power of an estimation method. To demonstrate the behavior of our technique
and ensure that the method gives reliable results on the real data (see the “Real data”
section), we compared estimates inferred from a simulation with a periodic vs non-periodic
stimulus. As in the data analyzed in this paper, the periodic stimulus repeated itself every
10 s (corresponding to 8 TRs), and we estimated the HRF on 12.5 s (corresponding to
K =10). The results are summarized in Figures 4a, 4b and 4c.

Our first conclusion is that Bayesian analysis is robust with regard to the stimulus
sequence. Even though estimates were, as predicted, worse for a periodic stimulus sequence
than in the case of non-periodic stimulus (Figure 4c vs Figure 2b), they did not mislead
us, since the variance increased consequently. The resulting bias is comparable to the case

where the stimulus is non-periodic.
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RESULTS FROM REAL DATA: VISUO-SPATIAL
JUDGEMENT TASK

Materials and methods

Participants and task. Eleven healthy right-handed volunteers (age 24-35), with no
neurological or psychiatric illness, gave written informed consent and were scanned, while
performing the following visual task: they had to decide whether two visual dots flashed
on the periphery of a 8-ray wheel projected on a screen were symmetrical with respect to
the central fixation cross. The two dots were presented simultaneously for 150 ms every
10 seconds and their position had to be compared immediately. Subjects had to give a
motor response by using a keypad (symmetrical: click with their right index finger; non-
symmetrical: click with their right middle finger). Participants were instructed to maintain

eye fixation on the central cross throughout the whole experiment.

Data imaging and preprocessing. A 1.5 Tesla General Electric Signa imager (La
Salpétriere Hospital, Paris) with a standard head coil was used for the imaging. High
resolution structural T'1-weighted MPRAGE images were acquired from all participants for
anatomical localization (0.9375x0.9375x 1.5 mm). The functional images were produced by
T2*-weighted echo-planar MRI at 8 contiguous 6 mm axial slices covering dorsal prefrontal
and parietal regions (field of view: 24 cm, repetition time TR: 1.25 s, echo time TE: 60 ms,
flip angle: 90°, 64 x 64 matrix of 3.75 x 3.75 mm voxels). Participants were studied in
a single 224-scan session with a total duration of 4 min 40 s. The scanner was in the
acquisition mode for 20 s before the experiment onset in order to achieve steady-state
transverse magnetization. To compensate for subject motion, images were realigned to
the middle image by using a rigid transformation and linear interpolation. The realigned
images were filtered for low-frequency changes in BOLD signal over time by using high-pass

filtering (namely, estimation of the baseline fluctuations using a moving average window
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and substraction of the estimated baseline from the input signal).

Data analysis

We estimated the HRF in each voxel. For the analysis, we set the order to K = 10,
corresponding to a length of 12.5 s. We also accounted for quadratic drift (M = 3). To
handle significance levels, which were very high, we used the log-scale: for a significance
level 1 — ag, we therefore set go = —log,q(1 — o). We hereafter present the results from

one subject.

Activation maps. Using the deviance test proposed in Equation (10), we defined voxel
activation as the deviance of the zero HRF function (ho = 0) from the model.

The corresponding activation map is represented in Figure 5(i). This map can be
compared to Figure 5(ii), which was calculated by linear regression from a model with
voxelwise adaptive Gaussian functions as proposed by [Rajapakse et al., 1998]. It first
appears that the two maps are comparable. On the other hand, the significance test
developed in this paper had a much higher discrimination level compared to the other
method. As a matter of fact, regions where there should be no activation (such as the
white matter) had a much lower significance in (i) that in (ii). Moreover, boundaries
between activated and not-activated regions appeared much more clearly and sharply in
(i) than in (ii). Potential activated regions can therefore be read off the map with ease.
Whether such activated regions are indeed relevant is an issue that can not be answered

here, but high discrimation power is clearly a desired feature.

Regional stability. The activation map corresponding was thresholded to 1 — ag =
1 —1071% (d.e. go = 11.5). From this map, six clusters were selected as shown in Figure
5(iii). For each cluster, Figure 6 represents the HRFs estimated in each voxel of the regions,

the corresponding marginals for € as well as the most significant HRF'.
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Figure 5. Real data: activation maps. Activation maps from (i) the significance of the divergence test devised in this
paper and (ii) the significance test by linear regression on adaptive Gaussian functions. Both maps have the same scale,
between 0 (white) and 12 (black); (iii) anatomy and thresholded activation map from (i) (go > 11.5).
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Two main conclusions emerge from there. First, there is a clear idea of intracluster
homogeneity. Indeed, the shape of the HRF seemed to be roughly constant within a region,
“shape” meaning features of the curve such as increase/decrease, maximum/minimum or
time-to-peak. On the other hand, the intensity of the response varied greatly in a given
region, even though only highly significant voxels were taken into account. Second, HRFs
did differ from region to region. They even seemed to be characteristic of the region
involved. The differences concern the presence or absence of a post-stimulus undershoot
and of an initial dip, the presence or absence of a plateau, the pre- and post-maximum

steepness, as well as the time-to-peak and the time-to-onset.
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DISCUSSION

The voxelwise HRF estimation technique that we proposed makes use of basic but
relevant a priori information concerning the physiological process underlying the response.
It proved to be reliable and robust regarding the actual noise level and structure, as well

as the stimulus sequence.

Prior information and bias. Simulations comparing models with and without prior
information clearly contradict common belief, which expects that introduction of prior
information into analysis necessarily implies an increase of bias. In our case, introduction
of a prior actually improved efficiency, variance and bias at the same time. This is of course
true given that the prior knowledge introduced into the model is respected. Estimation of

peaked HRFs with this model would certainly give worse results.

Noise structure and estimation The estimators introduced in this paper were showed
to be essentially insensitive to the true noise structure. This can be interpretated as follows.
Two models were set: one for the HRF, and one for the noise. The latter was based on
the sole hypothesis that the noise has given (yet unknown) mean and variance, and the
Gaussian structure imposed itself as the least biased under this hypothesis. From there,
two situations can happen. If the model for the HRF is sufficiently well defined (i.e. the
prior information and the data are sufficient to lead correct inference), then the actual noise
structure is mostly irrelevant to the estimation. In this case, introduction of more refined
information (e.g. temporal correlation) would only slightly improve the estimation. On the
other hand, if the model for the HRF is badly specified, then any additional information

will greatly improve the results.

Noise level and smoothness. With decreasing SNR, € tends to be set to increasing

values, giving more and more importance to the smoothing prior. Slow changes on long
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scales are then overfavored, and steep variations of the HRF seem to be smoothed out or
rounded off (e.g. between 1 s and 3 s and around the peak in the simulations). However,
the same simulations showed that our inference is still meaningfull, since the mean +
standard deviation estimate stays accurate.

Still with decreasing SNR, p(e¢|H,y) becomes more and more diffuse around its peak:
the model receives less and less information about the real value of € from the data.
Nonetheless, the simulations showed again that the MAP estimator for € still makes sense
for our purpose, since the resulting HRF estimates remain accurate. In this case, though,
since the variance of ¢ is not considered, it is possible that the variance of h becomes more
and more underestimated. This effect could possibly be taken into account (e.g. as pro-
posed by [Kass and Steffey, 1989]), at the cost of a more complicated and computationally
time consuming model. Whether this would significantly improve the inference is not quite

clear yet, considered the good behavior of the estimators.

Convolution order. K was not estimated in our analysis but set to a certain value
(K =20 or K = 10). How did the choice of this parameter affects the analysis? Very
little indeed if the stimulus sequence is of period higher than K or not periodic. In this
case, setting K to a value that ensures a small HRF value gives satisfactory results. On
the other hand, when the stimulus sequence is periodic, great care has to be taken. Giving
K a value higher than the stimulus periode implies that the model is not well determined.
For this reason, ML estimators cannot be calculated. As we showed, the prior introduced
regarding the smoothness of the HRF can somehow make up for this undeterminacy, but
there are limits to this. In the simulation exemple we developed earlier, setting K = 10 is

about as far as we could go without getting spurious effects.
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CONCLUSION

This paper provides an efficient and robust method to estimate the HRF and perform
activation detection on the same dataset. The model integrates basic but relevant temporal
information about the underlying physiological process of brain activation. Prior knowledge
has proven to improve the accuracy and the robustness of the estimators. The actual
structure of the noise and its level were shown to have little influence on the performance
of the estimation. Simulations also showed that the estimators were robust to the stimulus
sequence.

Highly discriminant activation maps were produced from the real data analyzed, as
well as wide variety of HRF shapes. The differences concerned the presence or absence
of a post-stimulus undershoot, the presence or absence of a plateau, the pre- and post-
maximum steepness, as well as the time-to-peak and the time-to-onset. Extra care has
therefore to be taken when a fixed HRF is chosen and activation detection is performed,
since no single function, whatever its characteristics, can account for activation throughout
all the brain.

Ongoing research includes the search for new prior information and their translation
in terms of constraints. It is also hypothesized that a more general resolution framework
(e.g. integration of several stimuli, several sessions) is possible and would greatly improve

the estimation.
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