
µSPIDER CAD TOOL: CASE STUDY OF NOC IP

GENERATION FOR FPGA

Samuel Evain, Rachid Dafali, Jean-Philippe Diguet, Yvan Eustache,

Emmanuel Juin

To cite this version:

Samuel Evain, Rachid Dafali, Jean-Philippe Diguet, Yvan Eustache, Emmanuel Juin.
µSPIDER CAD TOOL: CASE STUDY OF NOC IP GENERATION FOR FPGA. Dasip07,
Nov 2007, France. 2007. <hal-00338244>

HAL Id: hal-00338244

https://hal.archives-ouvertes.fr/hal-00338244

Submitted on 12 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52699009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00338244


µSPIDER CAD TOOL: CASE STUDY OF NOC IP GENERATION FOR FPGA

Samuel Evain

CEA LIST
CEA Saclay 91191 Gif sur Yvette

email: samuel.evain@cea.fr

R. Dafali, J-Ph.Diguet, Y. Eustache, E. Juin

Univ. Euroṕeenne de Bretagne / CNRS / LESTER lab
56100 Lorient, France

email: jean-philippe.diguet@univ-ubs.fr

ABSTRACT

This paper introduces theµSpider CAD tool for NoC design under
latency and bandwidth constraints and describes the different steps
of the associated design flow. We show how the tool can be used to
automatically generate a NOC IP compliant with Xilinx EDK tool.
We present synthesis results and a real implementation of a video
application based on a multi-processor architecture. Finally we con-
clude about research to be done at application/OS levels above cur-
rent work to achieve a complete and efficient implementation of a
multi-processor embedded system.

1. INTRODUCTION

The concept of Network On Chip (NoC) has been recently in-
troduced as an alternative to bus in order to solve the tedious
issue of emerging system on chip (SoC) interconnect design.
Different arguments are commonly forwarded to sustain the
interest for NoCs [1] based on packet switching. First the
NoC can provide new spatial and time parallelism capabili-
ties to cope with expanding bandwidth requirements and the
management of an increasing number of inter IPs communi-
cations. It also contributes to raise the abstraction levelof de-
sign tools for flexibility and productivity improvements. This
point is crucial, since the design of complex SoC, implement-
ing tens of processors, IPs and memories, means error prone
communication schemes that can be intractable for designers
under time to market pressure.

Moreover a NoC is based on physical and logical con-
trol flows that offer new opportunities for controlling quality
of service including real-time, power and reliability. Finally,
NoC intrinsically holds the property of scalability, whichis a
key point for design reuse and SoC configurability.

Today first industrial solutions [2] are available and on-
going researchs investigate further aspects. One of the re-
search issues in which we particularly focus on is design flow
to handle complexity and provide designers with CAD tool.
Some equivalent work is proposed in Ætereal [3] for ASIC
design. This approach is based on an architecture model and
a methodology, which is close to ours but differs at level of
mutual exclusions considerations and heuristics choices for
path and time slot allocation. There is no real work about a

specific CAD tools for NoC IP generation targeting FPGA. In
[4] FPGA are used as a proof of concept independently from
any CAD tool. Other work are based on FPGA for emulation
purpose in [5] and to speed-up simulation in [6].

To our point of view, the main issue is the productiv-
ity gain for implementing complex communication schemes.
Our project was, from the beginning, driven by the objective
of providing the SoC designer with an ad-hoc component of-
fering services for communication management at application
level. To get over this challenge we have designed a CAD tool
and a software layer for a simplified access to the communi-
cation medium at application level. On the one hand, it is well
known that flexibility has a cost. An area overhead mainly due
to interface and router FIFOs and an increase of communica-
tion latencies due to the path length and packet routing are
generally observed. However, the paradigm can take benefit
from a rigorous formalization that enables the implementation
of efficient automatic methods. We based our framework de-
velopment on the guaranty of latency and bandwidth require-
ments at application level while minimizing the resulting NoC
cost.

µSpider CAD tool for NoC design performs design space
exploration and code generation. Design space explorationis
implemented in an interactive way based on designer choices
for arbiter, routing policies and topology selections. Then au-
tomatic procedures are available for time-consuming and er-
ror prone tasks such as Time Division Multiplexing (TDM),
FIFO sizing and path allocation for guaranteed traffic man-
agement. Then based on designer and tool choices, code gen-
eration is automatically carried out and can specifically tar-
gets Xilinx EDK tool by producing the IP folder including
data/IP.mpd and data/IP.pao and /hdl/vhdl/*.vhd files withthe
correct format. In this paper we present theµSpider design
flow as IP generator for reconfigurable MPSoC implemented
on Xilinx FPGA.

2. DESIGN FLOW OVERVIEW

Our NOC model enables the implementation of two kinds of
communications: best effort (BE) and guaranteed traffic (GT)
based on a TDM technique. Figure 1 gives an overview of



the NoC design Flow. An interactive GUI (Fig. 2 helps the
designers to easily follow theµSpider design flow.

The first step enables the designer to rapidly specify the
application and the NOC parameters. The application is spec-
ified with a set of characterized communication tasks, with
application throughputs (Application Graph.xml) and if nec-
essary with links between mutual exclusive communications
(Mutual Exclusion Graph.xml). The NOC knobs are related
to the NOC topology which can be ad hoc or automatically
generated as 2D Mesh. NoC parameters are specified by the
designer, the main ones are: Path bit width (e.g. 32 bits)
Router parameters (ports, routing policy, arbiter policy,etc.),
Network Interfaces (NI), Flow control policy (with or with-
out End to End flow control) and wrapper (slave, master, bus
standard) and the IP mapping namely the IP/NI association.
If real-time constraints are required, then related communica-
tions are implemented with virtual channel (GT, BE, BE with
priority).

The second step deals with derivation of local latency and
bandwidth constraints for each unidirectional communication
from application I/O throughputs (e.g. telecom chain or im-
age processing). The objective is to extract local latency and
bandwidth constraints for each communication task from glo-
bal I/O application constraints. The important issue, which
is usually omitted in NOC design flows, is in practice nec-
essary for applying following steps 3 and 4, which requires
constraints for each individual and unidirectional communi-
cation. This work is not trivial since firstly different local de-
cisions are possible to meet global constraints and secondly
latency, bandwidth and TDM table size are strongly depen-
dent. Moreover read operations imply two types of heteroge-
neous communications: the read command (request) and the
data response for which two distinct set of constraints must
be defined. Thus, the second step first transforms communi-
cation tasks into unidirectional ones. This aspect is required
for read operations that need a lightweight forward commu-
nication for sending a read command and a backward com-
munication for receiving data. Then we produce, for each GT
communication, the minimum bandwidth and a set of rules
for latency/bandwidth checking. Due to space restriction the
step is not detailed in this paper but can be found in [7].

The third step computes the minimum TDM table size
required for implementing GT communications and a mini-
mum bandwidth for all BE communications. TDM tables are
based on integer bandwidth division, so compared to real con-
straints higher bandwidths are usually obtained, so we firsttry
to solve the TDM size issue while considering absolute lower
bounds. Basically our method is based on a heuristic that
starts with a minimum size, which is increased until a solu-
tion is found. As a result we obtain minimum latencies taken
into account within the next step.

The fourth step [8] automates the more tedious task which
is the exploration of time (TDM slots)-space (NOC paths)
space in order to allocate time slots to each GT communi-

Fig. 1. µSpider design flow.

cation. It provides next steps with a complete NOC specifica-
tion. The exploration / allocation step is based on a two steps
heuristic that, for each communication, first evaluates link us-
age probabilities and then selects a valid path with minimum
impact on non allocated paths. The heuristic parameters (cost
function, sorting criteria) have been selected for globally min-
imizing the FIFO costs.

The fifth step is the VHDL code generator, some addi-
tional C API codes are also provided for interfacing NOC
components with IPs which are compliant with the OPB bus
standard.

3. ARCHITECTURE MODEL

The architecture model is a network of bus-based clusters
connected through a NoC. In case of Xilinx targets, we use
OPB-based clusters connected to a NoC component instan-
tiated as a traditional IP in an EDK project. As depicted in
Fig. 3, typically a cluster is composed of a Microblaze (MB)
soft processor that can control one or more local RAM mem-
ories connected to its OPB bus. So, the NoC IP is in charge
of inter-cluster communications, the interface cluster / NoC
is built with two components : a wrapper that adapts OPB
and NoC network interface protocols and the Network Inter-
face, which manages NoC accesses and (un)packetise data.
Each cluster can integrate masters able to initiate read or write
communications and slaves that can respond to read requests.
A cluster can communicate with other clusters through dedi-
catedchannels, each input or output channel is implemented
as a FIFO. Note that the architecture model is based on first
designer choices such as topology, routing policies and link
bit width for instance.

In the following we present different aspects of the archi-
tecture model.

3.1. Communication model

Three kinds of communications are implemented: write, read
and message passing. They are depicted in Fig. 4. Fig. 5



Fig. 2. µSpider CAD tool.

illustrates these different schemes, where the following com-
mands are implemented between masters and wrappers:

• Rc: Read

• S: Status register (In/Out FIFO not full,
almost full, not empty, almost empty)

• Wc: Write

• D: Data FIFO

• rW: Write request

• rR: Read request

The first scheme, described in (Fig. 5-a), is awrite op-
eration that initiates a master to write data in a remote slave
RAM 2 after checking that enough space is available in input
FIFO.

The second of one, depicted in (Fig. 5-b), is aread op-
eration, which is quite tricky since a master cannot freeze the
OPB bus while waiting for a slave to answer its request. So
a real read operation is not appropriate and a write operation
is used instead. In practice a master writes a read request in
slave wrapper registers, an interrupt is emitted by the local
wrapper to the master when requested data are available.

The third scheme, depicted in (Fig. 5-c), is amessage
passing between two masters, an interrupt is emitted to alert
the remote master that a message is available.

Fig. 3. Architecture model.

Note that an alternative solution, based on polling instead
of interrupt, has been developed for wrappers / masters com-
munication. Such a scheme is interesting when a single task
is assigned to the master.

3.2. Software layer

From an application point of view, these communication mech-
anisms are available as basic C API, which provide MB with
NoC services.

• extern int WRAPPER S Read Status(int

Wrapper Address): Returns the wrapper status for
each channel.

• void Wrapper S Read (int

Wrapper Address, int channel, int

Remote Address,int *Data, int n):Read n data
on channel (remote IP ID), at RemoteAdress (local ad-
dress) and stores in *Data.

• extern void Wrapper S Write BRAM(int

Wrapper Address, int channel, int

Remote Address, int *Data, int n): Write n
data on channel (remote IP ID), at RemoteAdress (lo-
cal adress)

• extern void Wrapper S Recvn(int

Wrapper Address, int channel, int

Data, int n): Read data in FIFO channel.

• extern void Wrapper S Sendn(int

BaseAddress, int channel, int *Data,

int n): Write data in FIFO channel.

A Hardware Abstraction Layer (HAL) has been devel-
oped to separate abstract and physical addresses, thus a single
API is used above previous one:



Fig. 4. Communication model.

Write(Logical Address, N, RW,*p)

Where LogicalAddress is then transformed into
WrapperAddress, channel and local address if necessary.

3.3. NI / OPB wrappers

Two kinds of wrappers are available to adapt OPB and NI
protocols, a Slave wrapper depicted in Fig. 6-a) and a Master
wrapper described in Fig. 6-b).

3.4. Network Interface

The Network Interface (NI) model, described in Fig. 7, is
generic. A NI is specialized according to NoC specifications.
The main configuration parameters are the number of chan-
nels, the TDM table. The number of output (resp. input)
channels corresponds to the maximum number of receiver
(resp. emitter) IPs. For cost reasons no more than two virtual
channels are usually used, one for BE traffic and one for GT
traffic, each channel can be associated to one virtual channel
category. A TDM table is used to allocated contiguous time
slots to output channel according to bandwidth and latency
constraints as explained in section 2.

3.5. Router

The Router model, given in Fig. 8 is quite largely config-
urable. Main configuration knobs are number of routers net-
work ports, routing technique (XY or Street sign) and ar-
biter policy for BE (round robin, first arrived - first served).
Note that a new street-sign path coding model [9] has been
designed in order to improve security, reconfigurability and
header overhead. Consequently, based on a minimum num-
ber of coding bits according to each router arity individually,

a path can be used as an identifier [10] and a simple mech-
anism is available to transform a forward path into a reverse
path without knowledge about a possible new configuration
(emitter placement, topology, router arity).

4. RESULTS AND EXPERIMENTS

4.1. Introduction

The µSpider design flow has been successfully applied for
designing different NoCs in the domain of Telecom for in-
stance [7], we also have recently proposed an architecture for
security management in NoC-based reconfigurable SoC [10].
Implementing real MPSoC requires important engineering ef-
forts especially if specific IPs are needed. So, in a first stage
generated NOCs have been implemented for generic applica-
tions. The test architecture was based on 3 MB, 2 slave RAM
and a 2x2 mesh NoC. The architecture is described in Fig. 3.

4.2. Test conditions

These experiments have been completed on a Xilinx Pro
FF1152 BOARD based on a Virtex-II VP50-5 device, with
Xilinx ISE 6.3 SP3 and EDK 6.3 SP2. In the EDK framework,
the NOC is implemented as an usual IP (see Fig. 9).

Our experimental NOC has been parameterized as fol-
lows: bit width: 32; Routing: street sign; End to end flow
control; Round robin arbiter; 2 routers with 3 ports; 2 routers
with 4 ports; 3 NIs with 1 port and 2 Channels; 3 NIs with 1
port and 3 Channels; 3 master wrappers; 3 slave wrappers.

Different synthetic programs have been implemented on
MBs in order to test a large set of configurations, each con-
figuration has been validated in terms of data integrity and
transfer timing. Tests results have been obtained through an
UART connected to a MB. The following five virtual channel
configurations have been successfully tested:

• BE: single BE channel with a 2 slots input FIFO;

• GT: single GT channel with a 16 slots TDMA table;

• GT-BE: two virtual channels, BE and GT;

• BE-BE: two virtual BE channels and two priorities;

• BE8: one single BE channel with a 8 slots input FIFO.

4.3. Results

Based on the XML NoC architectural description, VHDL code
generation is performed with a delay lower than 2s on a stan-
dard PC. NOC specification roughly corresponds to 10.000
VHDL code lines. Moreover, as previously mentioned, a code
is produced with the EDK format and can be used directly as
any IP. Table 1 synthesizes results for each case study. NoC
sizes don’t include wrappers which have the same following
features for all cases:



Table 1. NOC synthesis results.
NoC NI2Ch NI4Ch R3ports R4ports

Case 1 Slices 7204 607 1167 430 645
BE Freq. 94 120 118 136 136
Case 2 Slices 7226 624 1195 430 643
GT Freq. 84 120 118 136 136
Case 3 Slices 9251 630 1181 851 1317
BE & GT Freq. 85 93 90 118 118
Case 4 Slices 9205 621 1170 851 1317
BE & BE Freq. 84 93 90 118 118
Case 5 Slices 7488 622 1203 443 662
BE8 Freq. 100 120 114 132 132

• Master wrapper: 1064slices, max. frequency: 105MHz.

• Slave wrapper: 90slices, max. frequency: 144MHz.

A complete NoC uses around 30-40% of the whole FPGA
whereas a router needs about 1-5% and a NI represents 2-
4%. NoC max. The frequency is greater than 80 MHz, it
means that a theoretical link bandwidth around32∗80.10

6
=

2560.10
6bits/s ≈ 320Mo/s. For a given FIFO size, we ob-

serve that NIs require significantly more resources when both
GT and BE virtual channels are implemented. Actually qual-
ity of service (GT or priority BE) has a cost which is mainly
due to TDM tables and scheduling mechanisms in NIs.

4.4. Object tracking real-case study

4.4.1. Application Implementation

The aim of this implementation is to proof the ability of our
platform to implement real and complex applications. The
object tracking application has been initially developed by
CEA-LIST in a very generic C code for multi-target proto-
typing purposes.

These experiments have been completed on the same Vir-
texII board used for previous tests. The target architecture
is equivalent to Fig.9 except that the first MB is replaced by
a Power PC. The reason of this choice reveals one the cur-
rent practical locks in the domain MPSoC design, namely the
question of interface standards. The NoC IP used is based on
GT communications and correspond to case 2 in tab.1.

The application has been partitioned on the target as fol-
lows. The hard-mapped PPC processor runs four functions,
Image loading & pre-processing (format adaptation), noise
filtering based on an average of 2 frames, background subtrac-
tion and VGA control. When a new image is ready, a message
is sent to the MB 0 that launches three tasks: Image loading
from DDR SDRAM connected the PLB PPC bus, adaptive
thresholding and load resulting data in its local RAM mem-
ory, finally MB0 sends a message to MB1 to inform it that it
can load new data. MB1 runs functions Image loading from
MB0 RAM, Dilatation, erosion, reconstruction, Gravity cen-
ter computation, Labeling and Border drawing and storage in
DDR SDRAM.

The implementation and the use of the IP NoC was quite
plug and play, in that sense the experience was a success since
we have implemented processing parts as software running on
embedded (soft/hard) processors and communications through
the NoC in a very short time. Moreover, the whole application
functionality has been checked.

4.4.2. Observations

If the objective was not performances, results we obtained are
quite poor since we finally get one image per second. The
problem is basically not on the NoC side which is underused
and able to provide expected bandwidth and latencies. Ac-
tually the causes of performance degradations, which can be
solved by the way, are i) interface unavailability, ii) EDK lim-
itations and iii) missing OS services.

Interface: The heterogeneity of standards and the avail-
ability of interfaces for various peripheral impose constraints
to the designer, who, under time and economic constraints,
implements possible options instead of his real choices. In
our case we have wrappers for OPB bus standard, whereas
a PLB bus is required for the PPC communications and the
(free) VGA controller. It means that additional master and
slaves OPB/PLB bridges have been implemented to cope with
this point. This issue can be easily solved with the appropriate
IP library, moreover PLB/OPB wrappers are very similar.

EDK: EDK tool is an efficient tool if the designer deals
with the architecture model where memories are acceded
through OPB or PLB buses. However if OPB interfaces are
used for interfacing memories, a MB or PPC connected to the
bus is required to initialize the address map. As a result all
memories are implemented as slaves on OPB or PLB bus and
introduce conflict accesses to shared memories, the conse-
quence is that processor runs sequentially whereas a pipeline
execution would be theoretically possible. Again this prob-
lem can be solved with ad hoc simple wrappers for memory
interfacing.

OS: The last and much more complex issue is the question
of synchronization at application level. Basically a NoC can
prevent the system from transaction and transport level dead-
locks with end to end credit-based and local handshakes flow
controls, however the designer remains in charge of tuning
the application control flow in such a way that no deadlocks
happen at application level.

A solution to this tedious question is the implementation
of a new class of OS services to manage NoC services while
taking benefits from OS synchronization and mutex facilities.
The last point is quite tricky since it has to be seen in relation
with the kind of communications required by application in
terms of burst sizes, periodic or sporadic, dynamic or static
behaviors, data dependencies and so on. We currently work
on this point to bring up NoC services as system level.



5. CONCLUSION

µSpider is a NoC CAD tool with two main parts, the first
one performs architecture design and automatically runs te-
dious and error prone tasks such as path extraction and cod-
ing, TDM sizing, under QoS (latency, bandwidth) constraints
while targeting resource minimization (FIFO sizes). Some
features such as path minimization and multiplexing based on
mutual exclusion properties are exploited to reduce final cost.
The second part of the flow, based on the XML NOC archi-
tecture description, is a code generator. Moreover, NIs can
be configured according to the space-time exploration step to
respect communication constraints. VHDL code is automati-
cally produced in such a way, that it can be used as a usual IP
within the Xilinx EDK tool. Our approach and tool have been
validated with real cases. These experiences have revealed
weaknesses of current CAD framework for MPSoC design
on FPGA. Interfacing problems will be fixed with CAD tool
evolutions, however the definition and formalization of new
OS/NoC services remain a real challenge and open promis-
ing perspectives to address the design of multiples processes
with dynamic behaviors on future (reconfigurable) MPSoC.
We currently work on this topic.

6. REFERENCES

[1] P. Guerrier and A. Greiner, “A generic architecture for on-chip
packet-switched interconnections,” inDesign, automation and
test in Europe conf. (DATE). ACM Press, 2000, pp. 250–256.

[2] “Arteris, the noc company,” http://www.arteris.net, 2005.

[3] K. Goosens and al., “A design flow for application-specific net-
works on chips with guaranteed performance to accelerate soc
design & verification,” inDATE, Washington, USA, 2005.

[4] T. Marescaux and al., “Networks on chip as hardware compo-
nents of an os for reconfigurable systems,” in13th Int. Conf.
on Field Prog. Logic and Appli., Portugal, Sept. 2003.

[5] N. Genko, D. Atienza, G. Micheli, L. Benini, J. Mendias,
R. Hermida, and F. Catthoor, “A complete network on chip em-
ulation framework,” inDATE, Washington, USA, 2005.

[6] P. H. P. Wolkotte and G. Smit, “Fast, accurate and detailed
noc simulations,” in1st ACM/IEEE Int. Symp. on Networks-
on-Chips (NoC07), Princeton, USA, may 2007.

[7] S. Evain, J.-P. Diguet, M. Khodary, and D. .Houzet, “Auto-
mated derivation of noc communication specifications from ap-
plication constraints,” inIEEE Workshop on Signal Processing
Systems (SiPS),, Banff, Canada, June 2006.

[8] S. Evain and J.-P. Diguet, “Efficient space-time noc path allo-
cation based on mutual exclusion and pre-reservation,” in17th
ACM Great Lakes Symposium on VLSI (GLSVLSI), Italy, mar
2007.

[9] J.-P. Diguet and S. Evain, “Patent fr 05/53280,” oct 2005.

[10] J.-P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin, “Noc-
centric security of reconfigurable soc,” in1st ACM/IEEE Int.
Symp. on Networks-on-Chips (NoC07),, Princeton, USA, may
2007.

(a) Write transaction initiated by MB 1 with slave RAM 2

(b) Read transaction initiated by Master MB 1 with slave RAM 2

(c) Message passing from Master MB 1 to Master MB 2

Fig. 5. Communication model scenario.



(a) Slave Wrapper

(b) Master Wrapper

Fig. 6. OPB / NI wrappers.

Fig. 7. Network Interface (NI) Model.

Fig. 8. Router Model.

Fig. 9. IP NOC in EDK.


