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We present various properties of nuclear and compact-star matter, comparing the predictions from
two kinds of phenomenological approaches: relativistic models (both with constant and density-
dependent couplings) and non-relativistic Skyrme-type interactions. We mainly focus on the liquid-
gas instabilities that occur at sub-saturation densities, leading to the decomposition of the homoge-
neous matter into a clusterized phase. Such study is related to the description of neutron-star crust
(at zero temperature) and of supernova dynamics (at finite temperature).

PACS number(s): 21.65.+f,24.10.Jv,21.30.-x,21.60.-n

I. INTRODUCTION

The knowledge of the equation of state (EOS) of nu-
clear matter under exotic conditions is essential for our
understanding of the nuclear force and for astrophys-
ical applications. This implies high isospin asymme-
tries, finite temperatures, and a wide density range (both
for subsaturation and suprasaturation densities). The
next generation of observational and experimental data
is expected to bring new constraints in order to refine
the theoretical models: for instance, the forthcoming
radioactive-ion-beam facilities (such as FAIR@GSI and
SPIRAL2@GANIL) will allow the investigation of the
isospin degree of freedom in nuclear structure and dy-
namics.

The present work is dedicated to the predictions of dif-
ferent effective nuclear models. It is mainly focused on
the liquid-gas instabilities present in nuclear and stellar
matter at sub-saturation density. These instabilities are
directly related to the bulk EOS. They are used to ex-
plain the multifragmentation phenomenon occurring in
collisions around the Fermi energy [1]: in the spinodal
decomposition scenario, fragment formation is induced
by the fast development of spinodal instabilities in the
low-density expanding matter formed just after the colli-
sion [2]. Finite-size liquid-gas instabilities are also impor-
tant for compact-star physics: matter non-homogeneities
in the (hot) core of type II supernovae is expected to
affect the dynamics of the explosion, and the crust of
(cold) neutron stars contains a non-homogeneous phase
commonly named pasta phase [3, 4, 5]. It should be no-
ticed that the study of liquid-gas instabilities is comple-
mentary to the equilibrium approaches which are also
used to describe the clusterized stellar matter: namely
(at very low density) the virial equation of state [6], and
(at higher density) the calculation of the pasta phases
as the ground state shaped by the competition between
Coulomb repulsion and surface tension. Although nu-

clear equilibrium is expected to be reached in most stel-
lar conditions, the spinodal-instability properties should
help to understand the physics of compact stars in the
following ways: (i) giving an estimation of clusterized-
matter properties, such as cluster size and composition;
(ii) showing the minimal region where the equilibrated
matter must be formed of clusters; (iii) possibly, playing
a direct role in cluster formation for specific situations
involving very short time scales (as may happen during
a supernova explosion).

In this paper, we compare predictions from two kinds
of models based on phenomenological density functionals:
relativistic and non-relativistic. Both are commonly used
to describe asymmetric nuclear matter, in the framework
of exotic nuclei as well as compact stars. However, it is
well-known that, although all give a quite good descrip-
tion of stable nuclei (consistently with the constraints
included in the fitting procedures), they present different
behaviours as soon as exotic conditions are reached, es-
pecially in the isovector channel. Our scope is to explore
the impact of these different behaviors on quantities of in-
terest for compact-star physics, such as the clusterization
properties and the matter composition at β-equilibrium.

As a non-relativistic approach, we use the effective den-
sity dependent Skyrme-type interaction [7, 8, 9]. The
simple form of the Skyrme functional makes it an at-
tractive model for the description of both nuclei and
compact-star matter. It was originally intended to de-
scribe nuclear properties through the mass table, and
the older parametrizations only include in their fits con-
straints from magic-nucleus properties along the stability
line. Trying to give a reliable description of exotic nuclei
and stellar matter, the modern Skyrme parametrizations
also include in their fitting procedures results from micro-
scopic calculations of neutron-rich matter. The Skyrme-
Lyon (SLy) forces for instance have been used in stud-
ies of neutron-star crust [10, 11]. Such parametrizations
are among the 27 forces which were not ruled out for
unfit neutron-star properties in the extensive study by
J.R. Stone et al. [12], where 87 Skyrme parametrizations
were checked.

In contrast with the Skyrme approach, the relativistic
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nuclear models are, by construction, causal and can thus
be applied to a wider region of the compact stars (as
long as matter is supposed to be in an hadronic phase).
Relativistic Mean-Field models (RMF) have been used
to describe the EOS of compact stars [13, 14, 15], both
cold and warm. The Density Dependent Hadronic mod-
els (DDH) are an alternative approach for the descrip-
tion of nuclear matter and finite nuclei [16]. In DDH,
the non-linear self-interactions of the mesons occurring
in constant coupling models are substituted by density-
dependent meson-nucleon coupling parameters, moti-
vated by Dirac-Brueckner calculations of nuclear matter.
Such models are found to behave more closely to the non-
relativistic ones.

Relativistic and Skyrme approaches have been com-
pared from the formal point of view in a recent work [17],
where a low-density expansion of the RMF and DDH
models have been used in order to directly compare the
different density functionals. oth kinds of models have
been used separately in several previous works for the
study of spinodal instabilities in nuclear and compact-
star matter, at zero and finite temperature: see for in-
stance Refs. [18, 19, 20, 21, 22] for relativistic models, and
Refs. [23, 24, 25] for Skyrme models. The same qualita-
tive features are reproduced (general shape of the insta-
bility regions, isospin-distillation property of the phase
separation). The scope of the present paper is then to
have a direct look at the quantitative differences between
relativistic and Skyrme-model predictions. We wish to
investigate the extent to which the different temperature
and isospin dependences of the nuclear EOS can affect
the neutron-star properties and determine the sensitive
features that have to be constrained.

In section II we briefly review the relativistic and
Skyrme models used in the present work. In section III,
we present the Vlasov formalism that we use to address
the dynamic instabilities, in both frameworks. Nuclear-
matter properties are discussed for the different mod-
els in section IV, where we present the nuclear EOS (in
isoscalar and isovector channel) as well as the spinodal
instabilities (in both thermodynamical and dynamical
frameworks). Properties of stellar matter, including ho-
mogeneous β-equilibrium matter and instabilities against
clusterization, are discussed in section V. In the last sec-
tion we draw the main conclusions from our work.

II. EFFECTIVE NUCLEAR MODELS

In the sequel we will give a short presentation of the
models discussed in the present paper. All expressions
are given in units h̄ = c = 1. We will consider first den-
sity functionals based on Skyrme forces, then the RMF
and DDH models. The nuclear matter saturation prop-
erties obtained with all models used in the present work
are reported in Table I.

A. Skyrme functional

The local Skyrme interaction [8] allows to introduce an
energy density H(r) so that the total energy for a system
of nucleons in a Slater determinant | ψ > reads :

〈ψ|Ĥ |ψ〉 =

∫

H(r)d3r , (1)

where H(r) is the Skyrme energy-density functional.
In the case of homogeneous, spin-saturated matter

with no Coulomb interaction, the Skyrme energy-density
functional [28] reduces to four terms:

Hb = K + H0 + H3 + Heff (2)

where the label b (bulk) is used to mark the thermody-
namic framework. In this expression, K is the kinetic-
energy term, H0 a density-independent two-body term,
H3 a density-dependent term, and Heff a momentum-
dependent term:

K =
τ

2m
(3)

H0 = C0ρ
2 +D0ρ

2
3 (4)

H3 = C3ρ
σ+2 +D3ρ

σρ2
3 (5)

Heff = Ceffρτ +Deffρ3τ3 . (6)

We have introduced the isoscalar and isovector particle
densities, ρ and ρ3, as well as kinetic densities, τ and τ3:

ρ = ρn + ρp ; τ = τn + τp
ρ3 = ρn − ρp ; τ3 = τn − τp

(7)

where, denoting i the third component of the isospin (n
for neutrons and p for protons), the kinetic densities are

defined by τi = 〈k̂2〉i. The coefficients C and D, asso-
ciated respectively with the symmetry and asymmetry
contributions, are linear combinations of the traditional
Skyrme parameters:

C0 = 3t0/8

D0 = −t0(2x0 + 1)/8

C3 = t3/16

D3 = −t3(2x3 + 1)/48

Ceff = [3t1 + t2(4x2 + 5)]/16

Deff = [t2(2x2 + 1) − t1(2x1 + 1)]/16

. (8)

In the mean-field approach, the individual particle level
is derived from this functional. For each particle species,
it is given by:

ĥb
i = mi +

∂Hb

∂ρi
+
∂Hb

∂τi
k̂2

i (9)

= mi + Ui +
1

2m∗
i

k̂2
i . (10)
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TABLE I: Nuclear matter properties of the Skyrme and relativistic models used in the present work.

Model B/A ρ0 K m∗/m as(ρ0) L(ρ0) Ksym(ρ0)

(MeV) (fm−3) (MeV) (MeV) (MeV) (MeV)

SIII [26] 15.9 0.145 356 0.76 28.2 9.9 -394

SGII [27] 15.6 0.159 215 0.79 26.9 37.6 -146

SLy230a [28] 16.0 0.16 230 0.70 32.0 44.3 -98

NRAPR [29] 15.9 0.16 226 0.70 32.8 59.6 -123

LNS [30] 15.3 0.175 211 0.83 33.4 61.5 -127

NL3 [31] 16.3 0.148 272 0.60 37.4 118.3 101

NLδ [32] 16.0 0.160 240 0.75 30.5 102.7 127

TW [33] 16.3 0.153 240 0.56 32.0 55.3 -125

DD-ME2 [34] 16.1 0.152 251 0.57 32.3 51.7 -88

DDHδ [35] 16.3 0.153 240 0.56 25.1 48.6 81

where we have included the nuclear mass energy m. The
kinetic energy is expressed in the non-relativistic limit,
in terms of an effective mass m∗

i defined by:

1

2m∗

i

=
1

2mi
+
∂Heff

∂τi
. (11)

The chemical potentials µi are such that the Fermi-
Dirac occupation number is:

ni(k) =

[

1 + e
β( k2

2m∗

i
+Ui−µi)

]−1

; (12)

we can also define a chemical potential µt
i = µi + mi

including the mass energy, such that:

ni(k) =

[

1 + e
β(mi+

k2

2m∗

i
+Ui−µt

i)
]−1

. (13)

In this work, we will use conventional and modern
Skyrme interactions. The earlier parametrizations, such
as SIII [26] and SGII [27], have been established by fit-
ting the properties of stable nuclei (such as radii and
ground-state energy). They are thus in principle poorly
adapted to a description of neutron-rich matter. It is
indeed found that SIII presents an irrealistic behavior
in the isovector channel; furthermore it has a too high
incompressibility at saturation. As a result, this inter-
action will present an atypical behavior all through the
following study. SGII, however, for which spin proper-
ties have also been used as constraints, presents a more
reasonable evolution in the isovector channel. In par-
ticular, it has been shown to reproduce isospin effects
in giant dipole resonances [27]. Among the modern
Skyrme-type parametrizations, we have chosen to use
one of the Skyrme-Lyon forces (SLy230a [28]), as well
as the NRAPR [29] and LNS [30] parametrizations. All
these recent forces include in their fitting procedure re-
sults from microscopic calculations. SLy230a uses the
pure-neutron matter equation of state UV14+UVII by
R.B. Wiringa et al [36]. NRAPR (Non-Relativistic APR)
stands for the Skyrme interaction parameters obtained

from a fitting to the APR equation of state (Akmal-
Pandharipande-Ravenhall, Ref. [37]). LNS is based on
Brueckner-Hartree-Fock calculations of infinite nuclear
matter at different values of isospin asymmetry. Such
constrains from microscopic calculations are intended to
control the behavior of the resulting effective force far
from saturation and up to high isospin asymmetry.

B. Relativistic approaches

In the present paper, we will consider two kinds of
relativistic effective approaches: RMF models, which
have constant coupling parameters described by the La-
grangian density of non-linear Walecka models (NLWM),
and DDH models with density-dependent coupling pa-
rameters. In each case, we consider models including or
not the δ-meson, which have been introduced to include
in the isovector channel the same symmetry existing al-
ready in the isoscalar channel with the meson pair (σ, ω)
responsible for saturation in RMF models [32]. The pres-
ence of the δ-meson softens the symmetry energy at sub-
saturation densities and hardens it above saturation den-
sity. The RMF parametrizations we use are NL3 [31] and
NLδ [32]; the DDH ones are TW [33], DD-ME2 [34] and
DDHδ [35]. Only NLδ and DDHδ include the δ-meson.

The relativistic approach is based on a lagrangian den-
sity given by:

L =
∑

i=p,n

Li +Lσ+Lω+Lρ + Lδ . (14)

The nucleon Lagrangians read:

Li = ψ̄i [γµiD
µ −M∗]ψi , (15)

with

iDµ = i∂µ − ΓvV
µ − Γρ

2
~τ ·~bµ (16)

M∗ = m− Γsφ− Γδ~τ · ~δ , (17)
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where ~τ is the isospin operator. We use the vector symbol
to designate a vector in isospin space.

The isoscalar part is associated with the scalar sigma
(σ) field φ and the vector omega (ω) field Vµ, while the
isospin dependence comes from the isovector-scalar delta
(δ) field δi and the isovector-vector rho (ρ) field biµ (where
µ is a space-time index and i an isospin-direction index).
The associated Lagrangians are:

Lσ = +
1

2

(

∂µφ∂
µφ−m2

sφ
2
)

− 1

3!
κφ3 − 1

4!
λφ4

Lω = −1

4
ΩµνΩµν +

1

2
m2

vVµV
µ

Lδ = +
1

2
(∂µ

~δ∂µ~δ −m2
δ
~δ2 )

Lρ = −1

4
~Bµν · ~Bµν +

1

2
m2

ρ
~bµ ·~bµ ,

where Ωµν = ∂µVν − ∂νVµ, ~Bµν = ∂µ
~bν − ∂ν

~bµ −Γρ(~bµ ×
~bν), and Γj and mj are respectively the coupling param-
eters of the mesons j = s, v, δ, ρ with the nucleons and
their masses. The self-interacting terms for the σ-meson
are included only for the NL3 and NLδ parametrizations,
κ and λ denoting the corresponding coupling constants.

The density-dependent coupling parameters Γs, Γv and
Γρ, are adjusted in order to reproduce some of the nuclear
matter bulk properties, using the following parametriza-
tion:

Γi(ρ) = Γi(ρsat)fi(x) , i = s, v (18)

with

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
, (19)

where x = ρ/ρsat and

Γρ(ρ) = Γρ(ρsat) exp[−aρ(x− 1)] . (20)

The values of the parameters mi, Γi, ai, bi, ci and di,
i = s, v, ρ for TW and DD-ME2 are respectively given
in [33] and [34] and for DDHδ in [18, 35]. In this last case
the parametrization for the δ and ρ coupling parameters
is also given by (18) with

fi(x) = ai exp[−bi(x− 1)] − ci(x − di) , i = ρ, δ.

The Γi coupling parameters are replaced by the gi cou-
pling constants in the NL3 and NLδ models.

III. THE VLASOV FORMALISM

In this paper, we study the dynamic spinodal insta-
bilities as unstable density fluctuation modes obtained
in the Vlasov framework. The present section gives a
short review of the Vlasov formalism already introduced
in Refs. [20, 38, 39] and give the resulting expressions for

Skyrme and relativistic models. For simplicity, we con-
sider here nuclear matter where the proton electric charge
is neutralized in average by a uniform background. We
thus neglect the electron degree of freedom existing in
star matter, which is model-independent and has only a
perturbative effect.

A. Brief review

To describe the time evolution of the nuclear system,
we introduce the one-body phase-space distribution func-
tion in isospin space: f(r,k, t) = diag (fp, fn), and the
corresponding one-body Hamiltonian h = diag (hp, hn).
The time evolution of the distribution function is de-
scribed by the Vlasov equation:

∂fi

∂t
+ {fi, hi} = 0, i = p, n, (21)

where {, } denotes the Poisson brackets. At zero tem-
perature, the state which minimises the energy of asym-
metric nuclear matter is characterised by the Fermi mo-
menta kFi, i = p, n, and is described by the distribu-
tion function f0(k) = diag

[

Θ(k2
Fp − k2),Θ(k2

Fn − k2)
]

.
In order to describe small oscillations around the equi-
librium state, we take for the distribution functions
fi = f0i + δfi and introduce a generating function [38]
S(r,k, t) = diag (Sp, Sn) defined in isospin space such
that δfi = {Si, f0i}. In terms of the generating function,
the linearised Vlasov equations for δfi are equivalent to
the following time evolution equations:

∂Si

∂t
+ {Si, h0i} = (δhi)F , (22)

where (δhi)F is the mean-field variation at Fermi level,
which depends on the considered nuclear model.

We will consider the longitudinal fluctuations such
that:
(

Si; δρi; δhi

)

=
(

Sω,i(x); δρω,i; δhω,i

)

ei(q·r−ωt)

(23)
where x = cos(k,q). The longitudinal normal modes are
obtained substituting the ansatz (23) in the linearised
equations of motion. The dispersion relation takes the
form:

(

1 + F ppLp F pn Lp

Fnp Ln 1 + Fnn Ln

)(

Aωp

Aωn

)

= 0, (24)

where Li = L(si) = 2 − si ln [(si + 1)/(si − 1)] is the
Lindhard function, with si = ω/(qvFi) in terms of the
Fermi velocity vFi = ∂ǫFi/∂kFi.

The amplitudes Aωi =
∫ 1

−1
xSωi(x) dx are related to

the transition densities by

δρi =
ωN0i

2 si
Aωi,
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where N0i is the density of states at the Fermi sur-
face. With all models, the coefficients F ij appearing in
Eq. (24) can be expressed in terms of two quantities re-

lated to the nuclear residual interaction, U (1)
ij and U (2)

ij
defined by:

(δhi)F =
∑

j

[

U (1)
ij + xU (2)

ij

]

δρj . (25)

In this expression, we separate the x-dependent contri-

bution of the residual interaction (xU (2)
ij ) from the x-

independent one (U (1)
ij ). On the other hand, Eq. (22)

provides the following relation:

(δhi)F = −iωSi(x) [1 − x/si] . (26)

From Eqs. (25) and (26), we obtain the set of Vlasov
equations:

2

N0i
δρi + Li

∑

j

[

U (1)
ij + siU (2)

ij

]

δρj = 0 , (27)

which is equivalent to Eq. (24) with the following identi-
fication:

F ij =
N0j

2

si

sj

(

U (1)
ij + si U (2)

ij

)

. (28)

The model-dependence of the Vlasov equations is then

contained in the coefficents U (1,2)
ij that we have intro-

duced: next, more details will be given for both Skyrme
and relativistic models.

Let us note that the instabilities of the system are de-
termined from the imaginary frequencies which satisfy
the dispersion relation [39]. The finite-size instability re-
gion is the envelope of all the dynamical spinodals corre-
sponding to different values of the transfered momentum
q. For simplicity, through out this work we will identify
this domain with the dynamical spinodal for q = 80 MeV,
which is a very good approximation for all the models un-
der study.

B. Vlasov approach with Skyrme models

We identify three contributions to the mean-field vari-
ation δhi: the bulk (b), surface (∇) and Coulomb (c)
terms, such that

δhi = δhb
i + δh∇i + δhc

i . (29)

The bulk term is:

δhb
i = δ

[

Ui +
k2

2m∗

i

]

(30)

=
∑

j

[

∂2H
∂ρj∂ρi

+
∂2H
∂τj∂ρi

(
δτj
δρi

+ k2)

]

δρj . (31)

At zero temperature we have δτj/δρj = k2
Fj , and taking

the value at Fermi level we get:

(δhb
i)F =

∑

j

[

∂2H
∂ρj∂ρi

+
∂2H
∂τj∂ρi

(k2
Fj + k2

Fi)

]

δρj .(32)

The surface term arises from the density-gradient de-
pendence in the Skyrme Hamiltonian density:

H∇ = C∇

nn(∇ρn)2 + C∇

pp(∇ρp)
2 + 2C∇

np∇ρn∇ρp)

= C∇

11(∇ρ)2 + C∇

33(∇ρ3)
2 , (33)

where the coefficients C∇ are combinations of the usual
Skyrme parameters (given in Ref. [40]), independent of
neutron and proton densities. A transferred momentum
q then induces the nuclear mean-field variation:

δh∇i = 2q2
∑

j

C∇

ij δρj . (34)

Let us finally consider the Coulomb mean-field varia-
tion. In the non-relativistic limit, for nucleons with ef-
fective mass m∗

i we have:

δ(hc
i )F =

∑

j

[

4πeiej

q2
1 − xv∗Fi ω/q

1 − ω2/q2

]

δρj , (35)

where v∗Fi = k2
Fi/m

∗

i ; en = 0; ep = e = qe/
√

4πǫ0. Only
the Coulomb term brings a x-dependence in δhi.

From the above expressions, we identify:

U (1)
ij =

(

∂2H
∂ρj∂ρi

+
∂2H
∂τj∂ρi

(k2
Fj + k2

Fi)

)

+
(

2q2C∇

ij

)

+

(

4πeiej

q2
1

1 − ω2/q2

)

(36)

U (2)
ij = −4πeiej

q2
v∗Fi ω/q

1 − ω2/q2
. (37)

C. Vlasov approach with relativistic models

For relativistic models the one-body Hamiltonian is
written in terms of the meson fields

hi =
√

(k − Vi)2 +m∗

i
2 + V0i, i = p, n,

where m∗

i = m−Γsφ0−τiΓδδ3 denotes the effective mass
of nucleon i and

V0i = ΓvV0 +
Γρ

2
τib0 + eA0

1 + τi
2

+ ΣR
0 ,

Vi = ΓvV +
Γρ

2
τib + eA

1 + τi
2

,



6

with τi = 1 (−1) for protons (neutrons). The contribu-
tion of the rearrangement term, due to the density de-
pendence of the coupling parameters Γi, is given by

ΣR
0 =

∂Γv

∂ρ
ρV0 +

∂Γρ

∂ρ
ρ3
b0
2

− ∂Γs

∂ρ
ρsφ0 −

∂Γδ

∂ρ
ρs3δ3 .

The variations of the one-body Hamiltonian which en-
ter the linearised Vlasov equations are:

δhi = δ(m∗

i −m)
m∗

i

εi0
+ δV0i −

p · δVi

εi0
, (38)

with

h0i =
√

k2 +m∗

i
2 + V(0)

0i = εi0 + V(0)
0i

and δ(m∗
i −m) = −(Γs δφ+δΓs φ0 +τi Γδ δδ3 +τi δ3 δΓδ).

The x-dependence of δhi is present through the contri-
bution of the spatial components of the vector fields: the
ω and ρ mesons and the electromagnetic field.

Using the linearised equations of the fields, we express
the field variations in terms of the proton and neutron
particle densities and scalar densities [39] and reduce δhi

to an expression similar to (25). The coefficients F ij have
been defined in [20, 22]. The nuclear-energy dependence
on the transfered momentum involves the different meson
masses, and is more complex than the Skyrme quadratic
expression. This point will be discussed in more details
in Sec. IVD.

IV. NUCLEAR MATTER PROPERTIES

In the present section we will compare the nuclear mat-
ter properties predicted by all the models under study.
We shall consider first the isoscalar properties of the
EOS, then the isovector ones. The spinodal instabilities
will also be analysed: we will address the thermodynamic
instability region and direction of phase separation, and
finally the clusterization properties within the Vlasov ap-
proach.

A. Symmetric Nuclear Matter

In Fig. 1 we show some bulk isoscalar properties of
nuclear matter as a function of the baryonic density,
namely a) the energy per nucleon, b) the pressure P =
ρ2∂(E/A)/∂ρ, and c) the incompressibilityK = 9∂P/∂ρ.
Curves are shown for Skyrme interactions (left) and rela-
tivistic models (right). Skyrme interactions show similar
behaviours between them, except for SIII (stiffer) and
LNS (softer).

Globally, the relativistic models present slightly higher
binding energies, lower saturation densities, higher in-
compressibilities (disregarding SIII) and lower effective
masses; however, we can note that NLδ presents isoscalar
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FIG. 1: (Color online) Bulk isoscalar properties of nu-
clear matter, as a function of the baryonic density for non-
relativistic (left) and relativistic (right) models. From top to
bottom: energy per nucleon, pressure and incompressibility.

saturation properties quite similar to the Skyrme ones.
Let us remind that the effective mass has a different
meaning in each framework, as was already stressed in
other works [17, 41]: in relativistic models, it includes
the contribution of the nucleon scalar self-energy, while
for the Skyrme interactions it reflects the momentum de-
pendence of the single-particle energy.

B. Asymmetric Nuclear Matter

We will now discuss properties of asymmetric nuclear
matter (ANM). In Fig. 2 we show some properties re-
lated to the isovector channel of the respective models.
As expected, larger differences are observed in this chan-
nel; not only between relativistic and Skyrme models,
but also between different parametrizations inside each
framework. We plot the symmetry energy

as =
1

2

∂2(E/A)

∂y2
=

1

2ρ

∂2(E/V )

∂y2
,
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clear matter, as a function of the baryonic density for non-
relativistic (left) and relativistic (right) models. From top
to bottom: the symmetry energy and its derivatives with re-
spect to the density, namely the slope parameter L and the
symmetry incompressibility Ksym.

with y = (ρn−ρp)/(ρn +ρp) = ρ3/ρ. Note that this defi-
nition can be generalised at finite temperature: denoting
F the free-energy density, it becomes

as =
1

2ρ

∂2F
∂y2

.

Figure 2 also represents quantities related to the first and
second density derivatives of the symmetry energy (re-
spectively denoted by a′s = ∂as/∂ρ and a′′s = ∂2as/∂ρ

2),
according to expressions of common use in the litera-
ture [42]: the slope parameter

L = 3ρ0 a
′

s

related to the symmetry pressure at saturation, and sym-
metry incompressibility

Ksym = 9ρ2
0 a

′′

s .

Among the Skyrme forces, the modern parametriza-
tions (SLy230a, NRAPR and LNS) show similar values

of the symmetry energy in the presented density range.
As expected, the older SIII parametrization presents
atypic features; it even predicts an isospin instability
at ρ = 0.325 fm−3, as it can be seen in Fig. 2 top.
SGII follows an intermediate behaviour. It is inter-
esting to see that NRAPR and LNS, despite different
symmetric-matter EOS, almost coincide in the isovec-
tor channel. With L values at saturation of the or-
der of 60 MeV, these two parametrizations get close to
the L range estimated from the most recent experimen-
tal constraints (isospin diffusion and isoscaling data):
L = 88 ± 25 MeV [43, 44, 45], while the other three
Skyrme paraterizations have too small symmetry-energy
slopes at saturation. The parametrization SLy230a dif-
fers from NRAPR and LNS by its sharp increase of the
symmetry energy at suprasaturation densities. In the
following we will see how these quantities influence the
predictions of the different models for neutron rich mat-
ter.

Among the relativistic parametrizations used which do
not include the δ-meson, the larger differences occur be-
tween NL3 and the models with density dependent cou-
plings: TW and DD-ME2, which have very similar be-
haviours in the isovector channel. In particular, NL3
has a very hard symmetry energy which increases almost
linearly with the density. The inclusion of the δ-meson
significantly reduces the symmetry energy at ρ < ρ0, but
it is also associated with a sharp increase of as at higher
densities. Considering the L value at saturation, we see
a clear separation (roughly a factor of 2) between RMF
and DDH models, situated on each border of the interval
of experimental constraints cited above.

It is interesting to see that TW and DD-ME2 (DDH)
behave like NRAPR and LNS (Skyrme) for all isovec-
tor properties. However, all other parametrizations show
large differences affecting the three quantities as, L and
Ksym. The general trend is that relativistic models have
a stiffer symmetry energy, as well as a larger symme-
try incompressibility. For the presented results, several
relativistic models have a region of positive Ksym, while
SLy230a is the only Skyrme parametrization to present
such feature. In the following, we will try to investi-
gate to what extent the β-equilibrium and clusterization
properties are affected by these differences.

Let us finally investigate the validity of the parabolic
approximation of the isovector EOS, which is model de-
pendent. In this approximation, we have a direct link
between the symmetry energy and the isovector chemi-
cal potential µ3 = µn − µp, which determines the matter
composition at β-equilibrium. Indeed, the parabolic ex-
pression of the free-energy density is:

F ≃ Fpara = Fs + ρ asy
2 (39)

where Fs = F(ρ, 0) is the free energy density of symmet-
ric matter. The corresponding isovector chemical poten-
tial is then proportional to y, as:

µpara
3 = 2

∂Fpara

∂ρ3
= 4asy . (40)
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the total density (ρ = 0.05 and 0.3 fm−3). Top: exact value of µ3. Bottom: the ratio µ3/µpara

3 , where µpara
3 ≃ 4 as ρ3/ρ.

The parabolic approximation is exact in the limit of small
asymmetry, and actually gives very good predictions for
F until y = 1. However, more significant differences may
be obtained for the ρ3-derivative leading to µ3. This be-
haviour is checked on in Fig. 3, representing both the ex-
act value µ3 = 2∂F/∂ρ3 and the ratio µ3/µ

para
3 . For this,

we have fixed two values of the baryonic density, ρ = 0.05
and 0.3 fm−3. At low densities we mostly confirm the va-
lidity of the parabolic approach; more significant differ-
ences are observed at high density. The dominant trend
is to have µ3 > µpara

3 , due to the kinetic contribution to
the symmetry energy; only the SLy230a and DDHδ show
the opposite behaviour, at high density.

C. Thermodynamical spinodal instability

The liquid-gas phase transition is a well-known fea-
ture of the nuclear-matter EOS. It corresponds to the
presence of an abnormal (negative) curvature of the free-
energy density F as a function of (ρn, ρp), or equivalently
(ρ, ρ3). The thermodynamical spinodal instability cor-
responds to the region where the homogeneous matter
is locally unstable against the separation in two infinite
homogeneous phases, meaning that the surface F(ρ, ρ3)
presents a local negative curvature. This bulk property
of nuclear matter is at the origin of the dynamic insta-
bilities leading to matter clusterization. We will consider
next the thermodynamical spinodal properties.

1. Thermodynamic spinodal region

The spinodal contour is defined by the cancellation of
the determinant of the free-energy curvature matrix:

C =

(

F11 F13

F31 F33

)

(41)

Fij =
∂2F
∂ρi∂ρj

(42)

where ρ1 = ρ. Inside the spinodal region, the lower eigen-
value C< of this matrix is negative.

The different spinodal contours are shown on Fig. 4,
using two different representations: the density plane
(ρn, ρp) and the mixed plane (ρ, µ3), where isovector dif-
ferences appear more clearly. Although the overall fea-
tures are similar, the trend is that relativistic models
predict a smaller instability region, both in isoscalar and
isovector directions. The isoscalar extension of the spin-
odal is measured by the density ρs, corresponding to the
upper spinodal border for symmetric matter. The dif-
ferent ρs values are reported in Table II: we can verify
that they are correlated with the ρ0 values. As for the
isovector behavior of the spinodal contour, we see that it
reaches very high asymmetries with all models. We can
however compare the different extensions obtained in the
µ3 direction. They are found to reflect the subsaturation-
density behavior of the symmetry energy: indeed, as dis-
cussed above, in this density range the isovector chemical
potential can be well-approximated by µ3 ≃ 4asy. For
instance, NLδ has the smallest as values at low density,
and therefore presents the narrowest spinodal contour in
the µ3 direction. We remind that the inclusion of the δ-
meson leads to a reduction of as, which is observed both
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TABLE II: Characterization of the spinodal shape by the
contour concavity C̃s, depending on the symmetry energy and
its density derivatives taken at the upper spinodal border of
symmetric matter (ρ = ρs).

ρ0 ρs as ρsa
′

s ρ2
sa

′′

s C̃s

(fm−3) (fm−3) (MeV) (MeV) (MeV) (MeV fm3)

SIII 0.145 0.098 24.73 12.06 -20.96 -175.72

SGII 0.159 0.100 21.06 12.41 -9.33 17.15

SLy230a 0.160 0.102 25.73 13.21 -9.70 61.60

NRAPR 0.161 0.103 24.60 16.50 -8.24 51.22

LNS 0.175 0.111 24.89 16.92 -8.28 46.27

NL3 0.148 0.096 24.04 23.40 2.86 85.98

NLδ 0.160 0.102 19.06 18.93 3.87 81.33

TW 0.153 0.096 24.71 15.95 -9.91 29.10

DDME2 0.152 0.099 25.57 15.00 -10.92 29.98

DDHδ 0.153 0.096 19.80 10.38 -6.03 80.25

with NLδ and DDHδ. The µ3-extension of the spinodal
contour is a feature especially relevant in the astrophys-
ical context, for the comparison between the instability
region and the constraint of β-equilibrium: this point will
be addressed in more details in section V.

Let us now consider the shape of the spinodal contour:
the differences we observe can be caracterized by the con-
vexity of the upper border. Therefore, we introduced
the quantity C̃s (hereafter called contour concavity), de-
fined as the convexity of the spinodal contour at point
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(ρ = ρs, y = 0) [40]:

C̃s =
∂2C<(ρs, 0)

∂y2

=
2

ρs

[

ρ2
sa

′′

s + 2ρsa
′

s(1 − ρsa
′

s/as)
]

. (43)

If C̃s is positive (negative), for a small asymmetry y the
point (ρs, y) is outside (inside) the spinodal, meaning a
concave (convex) contour. Equation (43) gives the rela-

tion between C̃s and the density behavior of the symme-
try energy, involving as, a

′
s and a′′s (ρ). None of the terms

constituting this expression dominates, as can be appre-
ciated in Table II: the symmetry energy, but also its first
and second derivatives come into play to determine the
contour concavity. Positive C̃s values are obtained with
all the present models except SIII, whose convex shape
is due to the large negative values of a′′s (ρs). Concerning
the relativistic models, the models with constant cou-
plings (NL3 and NLδ) have larger a′s and positive a′′s (ρ),

giving rise to larger C̃s values. We can note that the
contour concavity is a relevant property for the study
of non-homogeneities in star matter, since it determines
the sensitivity of the upper spinodal border to the specific
composition that will be imposed by the β-equilibrium.

2. Thermodynamic instability direction

The thermodynamic instability direction is the direc-
tion of minimal free-energy curvature, given by the eigen-
vector of matrix (41) associated with C<. It is related
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to the phenomenon of isospin distillation, which usually
leads to the formation of a dense phase more symmetric
than the dilute one. We express this direction as the ratio
δρ3/δρ, giving the deviation with respect to the isoscalar
direction. The eigen-vector (δρ, δρ3)< satisfies:

δρ3

δρ
=

C< −F11

F13
. (44)

This ratio is zero in the case of symmetric matter, where
the instability direction is purely isoscalar. For ex-
tremal asymmetry y = ±1, it obeys the limit conditions
δρ3/δρ = ±1, which constrains the behavior of δρ3/δρ(y)
at high asymmetry. However, for moderate values of
asymmetry, the evolution of the instability direction is
nearly linear with respect to y, as illustrated in Fig. 2.
In this region, the isospin-distillation properties of the
different effective forces can be characterized by a num-
ber δ̃ such that

δρ3

δρ
= δ̃ y + O(y3) (45)

δ̃ =
as − ρa′s

as − ρF ′′
s /2

. (46)

On Fig. 6, we show the density evolution of δρ3/δρ
at a fixed proton fraction Yp = 0.3, corresponding to
the asymmetry y = ρ3/ρ = 0.4. Note that this re-

flects the d̃ values according to the good approximation
d̃ ≃ (δρ3/δρ)/y. For all models, δρ3/δρ is lower than
y = 0.4: this is the normal distillation effect. It is seen
that the relativistic models with constant coupling, in-
dependently of containing or not the δ-meson, predict a
much larger distillation effect (smaller ratio δρ3/δρ): this
is due to the quasi-linear behavior of as(ρ) (see Fig. 5),

which leads to low values of d̃. In contrast, the DDH
models behave like the Skyrme forces: both show a re-
duction of the distillation effect with density, while NL3
and NLδ present the opposite behavior (which was also
noticed in [19, 46]).

D. Dynamical spinodal instabilities

The bulk liquid-gas instability properties we have dis-
cussed do not manifest themselves directly in nuclear
multifragmentation and compact-star matter, due to the
role of the Coulomb interaction and the surface tension.
However, they induce instabilities against finite-size den-
sity fluctuations, leading to the decomposition of the ho-
mogeneous matter into a clusterized medium [47]. We
now use the formalism presented in section III to study
the Vlasov unstable modes, considering plane-wave den-
sity fluctuations of wave-number q. The dispersion re-
lation is defined by Eq. (24), with ω = i/τ ; τ is the
time constant which characterizes the initial growth of
the density fluctuation.

On Fig. 7, we compare the unstable modes obtained
within the different models for fixed average densities
(ρ = 0.05 fm−3, Yp = 0.3), as a function of the wave num-
ber. The top figures represent the growth rate |ω| = 1/τ ,
and the bottom ones the direction of the mode in the
density plane given by δρ3/δρ.

Considering the top part of Fig. 7, we first see that
relativistic models are usually characterized by a re-
duced instability. To the noticeable exception of NLδ,
both the growth rate and the upper border of the unsta-
ble q interval are smaller within the relativistic models.
The bottom part of Fig. 7, gives the phase-separation
direction δρ3/δρ associated with the dynamical modes.
All curves decrease with q, due to the Coulomb effect:
at low q, the strong Coulomb contribution quenches
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the proton-density fluctuation, imposing large values of
δρ3/δρ. This leads to the so called anti-distillation effect,
corresponding to δρ3/δρ > ρ3/ρ, namely a dense phase
more neutron-rich than the homogeneous matter: it is
obtained here below q ∼ 30 MeV/c. For higher q val-
ues, we recover the normal distillation effect with all the
models. Comparing the present dynamic results with
the bulk instability direction (Fig. 6), we see that the
behavior of the relativistic models deserves a comment.
Although NL3 remains the model with the strongest dis-
tillation effects, the hierarchy of the other curves is widely
rearranged when dynamical instabilities are considered:
the weaker distillation effect is now obtained with models
including the δ meson, both NLδ and DDHδ.

Let us now study the most unstable mode, namely the
mode of largest growth rate, which drives the system
to the non-homogeneous phase. The associated wave-
number characterizes the size of the primary clusters
formed in spinodal decomposition, which we can define
as the half wavelength of the fastest amplified mode. In
Fig. 8 we show the growth rates and associated cluster
size of the most unstable modes. We show results for
Yp = 0.3, a proton fraction close to that of β-equilibrium
matter with neutrino trapping and to the asymmetry val-
ues that could be involved in future multifragmentation
experiments with radioactive beams (for instance 132Sn
has Yp = 0.379). Consistently with the observations of
Fig. 7, as a general rule the Skyrme parametrizations
predict larger growth-rates and smaller clusters than the
relativistic models. The hierarchy between the differ-
ent parametrizations is also essentially conserved: among
Skyrme forces, SLy230a gives the largest clusters and

LNS the smallest ones; among the relativistic models,
NLδ predicts particularly small sizes and DD-ME2 gives
the largest clusters. Furthermore, we can notice features
appearing with the density evolution. Firstly, going to
lower densities, the Skyrme cluster sizes decrease more
neatly than the relativistic ones. Thus, the minimal clus-
ter sizes obtained in each framework are of ∼ 2.5 fm
(Skyrme) and ∼ 4 fm (relativistic models). Secondly,
larger sizes are reached near the border of the unsta-
ble region (∼ 8 fm with Skyrme, and beyond 10 fm
with the relativistic models). These features accentuate
the trend according which the relativistic models predict
larger clusters.

The different q-dependences originate in the finite-
range part of the nuclear force, which was introduced
in Sec. III. Since the direction of the density fluctuations
is essentially isoscalar, we can characterize the energy
cost of the density gradient by the quantity C∇

11q
2 (for

the nuclear contribution). This quadratic expression is
exact for Skyrme models, but the q-dependence is more
complex for relativistic models: performing a Taylor ex-
pansion in powers of fi = q2/m2

i (mi denoting the meson
masses), we obtain a density-dependent C∇

11 coefficient.
The values of C∇

11 are listed in Table III: for relativistic
models, they are given at ρ = 0.05 fm−3, together with
the fi values.

The correspondence between C∇
11 and the maximal un-

stable momentum qmax is shown on Fig.9 for symmet-
ric matter, as a function of the density. Neglecting the

 0

 0 0

 0 0

 50

 50 50

 50 50

 100

 100 100

 100 100

 150

 150 150

 150 150

 200

 200 200

 200 200

 250

 250 250

 250 250

 300

 0 0

 300 300

 350

 0.02 0.02

 350 350

 400

 0.04 0.04

 400 400

 450

 0.06 0.06

 450 450

 0

 0.08 0.08

 0 0 0.02

 0.1 0.1

 0.02 0.02 0.04

 0.12 0.12

 0.04 0.04

C

C

 0.06

11

11

 0.06 0.06

∇

∇

 0.08  0.08 0.08 0.1  0.1 0.1 0.12  0.12 0.12

q qm
ax

m
ax

 (
M

eV
)

 (
M

eV
)

ρ

ρρ

ρ (fm

 (fm

 (
M

eV
 fm

   
)

 (fm

 (
M

eV
 fm

   
)

 (fm−3

−3

5

−3

5

−3 )

 ) )

 )

NL3

SLy230a
SGII TW
SIII

ME2
NRAPR

NLδ

LNS
DDHδ

FIG. 9: (Color online) C∇

11 and qmax for Skyrme (left) and
relativistic (right) models, for symmetric matter. For rela-
tivistic models we compare qmax,quad (thick lines) obtained
from the quadratic expansion with the exact value qmax (thin
lines).



12

TABLE III: Dependence of the nuclear energy on the transfered momentum characterized by the C∇

11 coefficients. These
coefficients are constant for Skyrme models. For relativistic models, they are given at ρ = 0.05 fm−3, together with the
corresponding parameters: fi = g2

i /m2
i for i = σ, ω, δ, and fρ = g2

ρ/(4mρ)
2.

Skyrme C∇

11 Relativistic C∇

11 fs fv fρ fδ

(MeV.fm5) (MeV.fm5) (fm2) (fm2) (fm2) (fm2)

SIII 63.0 NL3 99.2 15.73 10.53 1.34 0

SGII 54.8 NLδ 43.0 10.33 5.42 3.15 2.5

SLy230a 77.7 TW 115.9 18.97 14.64 1.79 0

NRAPR 64.1 DD-ME2 107.7 18.50 13.99 1.94 0

LNS 43.8 DDHδ 115.9 18.97 14.64 4.16 2.96

Coulomb interaction (whose contribution is vanishing for
the q range of interest), the quadratic expression of the
q-dependence leads to the following relation:

q2max,quad =
|C<|
2C∇

11

. (47)

For the relativistic models, both qmax,quad and the exact
qmax values are shown on the figure: the exact values are
smaller than the values calculated in the quadratic ap-
proximation. The different C∇

11 values are seen to explain
the different cluster sizes obtained between parametriza-
tions of a same framework (although atypic |C<| values
can distort the correspondence between C∇

11 and the fa-
vored q values). However, it is not sufficient to explain
the difference between relativistic and Skyrme models:
indeed, in the relativistic case, the larger C∇

11 are compen-
sated by larger |C<|, leading to values of qmax,quad similar
to the Skyrme ones. The larger cluster sizes predicted by
the relativistic models are due to the non-quadratic part
of their q-dependence.

V. STELLAR MATTER

In the last section, we have discussed nuclear-matter
properties in the framework of Skyrme and relativistic
models. We now want to investigate the consequences
of the different features we have obtained in the context
of compact-star physics. In the first part, we discuss the
EOS of homogeneous matter at β-equilibrium (disregard-
ing the liquid-gas instabilities), considering the possibil-
ity of neutrino trapping. In the second part, we address
the implications of the dynamic instabilities for compact-
star properties: width of neutron-star crusts and non-
homogeneities in the cores of type-II supernovae.

A. Homogeneous β-equilibrium matter

The β-equilibrium conditions impose the following re-
lations between the chemical potentials of the particles:

µe − µνe
= µn − µp = µ3 ,

where µνe
= 0 for neutrino-free matter. Muons are

present if they can be in chemical equilibrium with the
electrons, satisfying

µµ − µνµ
= µe − µνe

;

the muon onset thus occurs when

µe − µνe
= mµ .

For neutrino-free matter, this condition reduces to µe =
µ3 = mµ, from which we determine the muon onset den-
sity ρµ−onset for the different nuclear models. The cor-
responding values are given in Table IV. In most cases,
ρµ−onset belongs to the interval [0.112; 0.124] fm−3; we
can notice the higher values obtained from SGII and the
relativistic models with δ meson. This is a consequence
of the symmetry-energy behavior in this range of den-
sities. A higher symmetry energy increases the proton
fraction at β-equilibrium: the electron chemical poten-
tial is then higher, and the muon onset is reached more
easily. We can verify on Fig. 2 that, for ρ ∼ 0.11 fm−3,
the symmetry energy curves have very similar values, ex-
cept precisely for SGII and the models with δ meson for
which as is smaller.

In Fig. 10 top, we plot the proton fractions at β-
equilibrium for neutrino-free matter. Results are shown
taking muons into account or considering only electrons.
As noticed earlier, the proton fraction at β equilibrium

TABLE IV: Baryonic density at muon onset. For SIII the
muons disappear at densities larger than 0.23 fm−3.

model ρµ−onset (fm−3)

SIII 0.119

SGII 0.146

SLy230a 0.121

NRAPR 0.117

LNS 0.124

NL3 0.112

NLδ 0.142

TW 0.115

DDME2 0.114

DDHδ 0.166
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essentially reflects the symmetry-energy as(ρ): see Fig. 2.
For most models, the proton fraction increases quite
softly with density, reaching a Yp-range of ∼ [0.08; 0.11]
at ρ = 0.45 fm−3. Two kinds of atypic behaviors are ob-
served, following the symmetry-energy features. (1) The
two older Skyrme parametrizations show a rise and fall
of the proton fraction with density, eventually leading to
pure neutron matter. (2) On the opposite, the relativis-
tic models with constant couplings show a very sharp
increase of the proton fraction with density. DDH-δ also
predicts a quite sharp increase of Yp at high densities,
due to the effect of the δ-meson on as(ρ).

However, let us consider the three modern Skyrme
forces: SLy230a, NRAPR and LNS. Despite very close
values of the symmetry energy, the proton fractions ob-
tained with SLy230a are much lower. Looking at Fig. 3,
we see this is a consequence of the different behaviors
of the ratio µ3/µ

para
3 . For similar values of the symme-

try energy, at high asymmetry the µ3 value is lower for
SLy230a than for NRAPR and LNS: the β-equilibrium
is thus realised for lower Yp. The same effect can be ob-
served among the relativistic models, comparing DDH-δ
to the other DDH models.

The cooling of neutron stars may occur through a di-
rect/indirect URCA process [48]. Since the first predicts
a too fast cooling, models which allow it are not ade-
quate for the description of asymmetric matter. If the
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muon onset is not taken into account, the critical proton
faction that allows direct URCA is yDU = 1/9. In the
presence of muons, this fraction is increased to [49]

yDU =
1

1 +
(

1 + x
1/3
e

)3 , xe =
ρe

ρe + ρµ
.

Only the relativistic models with constant coupling
present proton-fractions large enough for a direct URCA
process in the range of density we show: the sharp as

evolution of these models is thus in contradiction with
the neutron-star cooling observations.

On the bottom of Fig 10, we consider the β-equilibrium
in matter with trapped neutrinos, taking a constant lep-
ton fraction Yl = 0.4. Due to the presence of electronic
neutrinos, for the range of density that we consider the
muon fraction at equilibrium is vanishingly small: in this
situation we will include only the constituents n, p, e, νe.
On the figure, we show the proton and neutrino fractions.
The most striking feature is that all models (except SIII)
give similar predictions, with a nearly constant proton
fraction in the range ∼ [0.3; 0.35]: when the lepton frac-
tion is fixed, the dependence of matter compositions on
the symmetry energy becomes very weak.

B. Clusterization of stellar matter

In the present section, we discuss the formation of non-
homogeneities in compact-star matter, considering con-
sequences for neutron-star crust and supernova core. For
neutron-star crust, we consider neutrino-free matter at
T = 0; for the supernova context, we have to include
finite temperature, and it is relevant to consider the ef-
fect of neutrino trapping. Finite temperature results are
given only for Skyrme models and NL3.

Although the spinodal region almost reaches pure neu-
tron matter at T = 0, it is limited to more symmet-
ric matter as the temperature increases, until it disap-
pears for a limiting value of T [40]. We wish to deter-



14

Yν = 0 YL = 0.4

model ρcross,out ρcross,in ρcross,out ρcross,in

×10−2(fm−3) (fm−3) ×10−2(fm−3) (fm−3)

SIII 0.877 0.110 0.130 0.093

SGII 0.418 0.076 0.029 0.088

SLy230a 0.459 0.079 0.035 0.088

NRAPR 0.475 0.072 0.031 0.088

LNS 0.543 0.077 0.037 0.096

NL3 0.553 0.053 0.083 0.081

NLδ 0.442 0.057 0.086 0.090

TW 0.915 0.075 0.108 0.084

DD-ME2 0.610 0.072 0.060 0.083

DDHδ 0.776 0.079 0.098 0.084

TABLE V: Predicted density at the outer (ρcross,out) and in-
ner edge (ρcross,in) of the crust of a compact star at zero tem-
perature, as defined by the crossing between the dynamical
instability region and the β-equilibrium condition for homo-
geneous, neutrino-free stellar matter.

mine under which conditions compact-star matter at β-
equilibrium reaches the region of instability against clus-
ter formation. On Fig. 11, we plot the total density at
the crossing between the instability region and the β-
equilibrium condition, as a function of the temperature.
We call Tcross the maximal temperature for which this
crossing occurs. Two cases are considered: neutrino-free
matter and matter with trapped neutrinos (Yl = 0.4).
A strong model-dependence is observed in the case of
neutrino-free matter, where the β equilibrium involves
very neutron-rich matter. However, two common fea-
tures can be drawn: (i) for all models, the instability
region is crossed at T = 0; (ii) for most models, we ob-
tain Tcross < 3 MeV. With SIII, higher temperatures are
reached because of the larger (irrealistic) instability. For
the other parametrizations, Tcross is correlated with the
symmetry energy at low density: the highest value is
thus obtained with SLy230a, and the lowest one with
NL3. Indeed, higher as values lead to a more symmetric
composition, deeper inside the instability region. The re-
ciprocal analysis can be made in terms of µ3: a spinodal
region with a large µ3 extension is more easily reached
at β equilibrium [56]. In the case of matter with trapped
neutrinos, a crossing is obtained until T > 10 MeV for
all models: indeed, the proton fractions are now larger
than 0.3. The differences we observe in the upper-density
crossing reflect the various ρs values (upper border of the
thermodynamic spinodal for symmetric matter).

In Table V we give the crossing densities at T = 0,
for the neutrino-free and neutrino-trapping cases. We
denote ρcross,in (ρcross,out) the density at the high (low)
density crossing point.

The value of ρcross,in obtained for neutrino-free matter
at T = 0 provides the lowest estimation for the density
at the inner border of the crust, ρcrust,in. Indeed, the
finite-size instability region is the minimal region where

the matter at thermodynamic equilibrium is in a cluster-
ized shape, so it is contained by the crust. We expect
ρcross,in to be a good approximation to ρcrust,in. Most
of the models we present give ρcross,in ∼ 0.075 fm−3.
The lower values obtained with NL3 and NLδ can be
related to their larger spinodal-contour concavity C̃s, dis-
cussed in Sec. IV. Nuclear matter in the crust of neutron
stars has been studied recently [50, 51] both within RMF,
DDH and self-consistent Skyrme Hartree-Fock. For mat-
ter at β-equilibrium, the transition densities to the homo-
geneous phase predicted in these works are: 0.085 fm−3

(Skyrme), 0.061 fm−3 (DDH) and 0.072 fm−3 (RMF).
These values are in reasonable agreement with the num-
bers given in Table V, although according to our results
with DDH models the transition density should be higher
than ∼ 0.07 fm−3. We can also point out that within
each framework the values depend on the properties of
the chosen parametrization.

On the other hand, the lower-density crossing point
ρcross,out has little significance for the crust, since the
outer crust border does not correspond to a transition to
homogeneous matter. At zero temperature, the very low
density matter is always made of clusters, and the con-
cept of homogeneous nuclear matter breaks down. Note
however that both ρcross,in and ρcross,out may be of phys-
ical interest at finite temperature, for the formation of
non-homogeneities in supernova cores. The ρcross,out val-
ues tend to be larger with the relativistic models, which is
another manifestation of their reduced instability region.

Let us now consider the crossing densities for matter
with trapped neutrinos, at Yl = 0.4. They are given at
T = 0 for a direct comparison with the case of neutrino-
free matter; however, we should remark that neutrino-
trapping occurs in the early stage of neutron-star evolu-
tion, involving finite temperatures. The value of ρcross,in

is higher than for neutrino-free matter, except for SIII:
this also reflects spinodal-contour concavity, since with
trapped neutrinos the β equilibrium is shifted towards
symmetric matter. The value of ρcross,out is typically one
order of magnitude lower than for neutrino-free matter.

Let us now comment on the supernova context. A
well-known issue in type II supernova simulation is the
difficulty to obtain the ejection of the outer layers of the
collapsing star [52]. An additional mechanism is needed
to produce a shock revival after the first bounce, and
it is generally assumed that neutrino transport is a cru-
cial factor in the explosion dynamics. It has been pro-
posed that the liquid-gas instabilities in supernova mat-
ter could play an important role, since it affects the trans-
port properties of the neutrinos [53]. We are then inter-
ested in comparing the dynamic spinodal region to the β-
equilibrium condition, in the situation that can be found
in a type-II supernova core: high temperature and pos-
sibly neutrino trapping. In Ref. [25], it was shown that
an interplay occurs between neutrino trapping and clus-
ter formation at temperatures of several MeV. Indeed,
neutrino presence leads to more symmetric matter at β-
equilibrium, reaching the instability region even though
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equilibrium condition in homogeneous compact-star matter
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tation, at finite temperature T = 10 MeV.

it is reduced by temperature; reciprocally, cluster forma-
tion is known to favor neutrino trapping. This feature is
illustrated here on Fig. 12. We show the dynamic spin-
odals at T = 10 MeV in the chemical-potential represen-
tation (µn, µp +µe), where the β-equilibrium is a model-
independent straight line, the diagonal µn = µp +µe. At
this temperature, none of the instability regions reaches
this line; however, all are crossed by the β-equilibrium
condition for a constant lepton fraction Yl = 0.4. The
distance between each spinodal and the diagonal mea-
sures the neutrino chemical potential which is needed to
reach the instability region. This is related to the µ3 ex-
tension of the spinodals, which gives an example of dis-
tinction between models having high or low values of as

at subsaturation density: disregarding SIII, the smallest
neutrino trapping is needed for SLy230a, and the highest
is for NL3.

We finally discuss the typical cluster size obtained ac-
cording to the spinodal-instability properties, in stellar-
matter condition. As in section IVD, we define it as the
half-wavelenght of the most unstable mode, λ0/2. This
quantity is given on Fig. 13 as a function of the density,
in two different conditions: cold, neutrino-free matter
(for all models) and hot matter with trapped neutrinos
(for Skyrme models and NL3). For each density, we esti-
mate the proton fraction according to the β-equilibrium
condition in homogeneous matter [57]. Due to the weak
dependence of λ0 on the system asymmetry, the curves
we obtain essentially reflect the features we had obtained
earlier for λ0 at Yp = 0.3 (Fig. 8). At T = 0, we no-
tice that the high asymmetry leads to a global increase
of the cluster sizes by ∼ 1 fm; a similar behavior was
obtained in Refs. [20, 25]. The effect of temperature is
to reduce the instability region and increase the cluster
size (typically by ∼ (2 − 3) fm for T = 10 MeV). We
finally remark that the range of cluster sizes we obtain

in this spinodal-scenario approach is in reasonable agree-
ment with pasta-phases calculations performed in RMF
framework [5, 54].

VI. CONCLUSIONS

The present work provides a direct comparison of
Skyrme and relativistic models predictions for nuclear
and compact-star matter properties, involving the bulk
equation of state and the finite-size liquid-gas instabili-
ties. In our comparison, many similarities are found, and
some differences are pointed out.

As expected, the largest differences are obtained for the
isovector properties. The relativistic models with con-
stant couplings have a very hard symmetry energy. On
the opposite, the older Skyrme forces predict a decrease
of the symmetry energy at high density. Between these
two extremes, modern Skyrme forces and DDH models
present similar behaviors. However, we can notice the
specificities of DDHδ and SLy230a in the high density
region: both present a stiffer as evolution, and atypic
rates µ3/µ

para
3 (for DDHδ, this is linked to the inclusion

of the δ meson).
Concerning the thermodynamic spinodal region, we

have verified that its isoscalar-density extension ρs is cor-
related to the saturation density ρ0. At zero temperature,
the spinodal contour reaches very high asymmetry for
all models; using the (ρ, µ3) representation, we have ob-
tained different µ3 extensions, reflecting the low density
values of the symmetry energy. Relativistic models tend
to yield smaller spinodal regions, both in ρ and µ3 di-
rections. The thermodynamic instability direction leads
to the usual isospin distillation for all models; however
for larger densities this effect becomes stronger for RMF
models with constant couplings and presents a reduction
for Skyrme and DDH models. Some very recent DBH re-
sults seem to confirm this trend, although with a smaller
reduction [55].

The dynamic finite-size instabilities leading to matter
clusterization have been addressed in the Vlasov formal-
ism. The wavelength associated with the most unsta-
ble mode gives an estimation of the cluster size issu-
ing from a spinodal decomposition: it was shown that
Skyrme parametrizations show larger growth rates and
favor fluctuations of shorter wavelengths. The favored
wavelengths reflect the finite range behaviour of the force.
In the Skyrme parametrizations, only q2 terms are in-
cluded. With relativistic models, the finite range is de-
scribed by the exchange of mesons. For all models, the
dynamic distillation effect is reduced with respect to the
bulk one; this reduction appears stronger for relativistic
models including the δ meson.

For the study of compact-star matter properties, we
have considered β-equilibrium under two different con-
ditions: for neutrino-free matter, and for matter with
trapped neutrinos according to a fixed lepton frac-
tion. For neutrino-free matter, the proton fraction at
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respectively for Skyrme and relativistic models. Graph c) : matter with trapped neutrinos (fixed lepton fraction Yl = 0.4) at
T = 10 MeV, for Skyrme models and NL3.

β-equilibrium is very sensitive to the symmetry energy
as(ρ). The RMF models with constant couplings thus
predict very high proton fractions, allowing the direct
URCA process already at quite low densities. However,
it was observed that the proton-fraction is not uniquely
determined by as(ρ), but also depends on the parabolic
behavior of the isovector EOS: see SLy230a and DDHδ,
leading to proton fractions lower than other models with
similar symmetry energy. The situation is different for
matter with trapped neutrinos: fixing a lepton fraction
Yl = 0.4, all models (except SIII) predict a nearly con-
stant proton fraction ∼ 0.3 − 0.35.

We have finally discussed clusterization of stellar mat-
ter in two different contexts: at zero temperature, where
it is related to the extension of the neutron-star crust,
and at finite temperature, where it should influence su-
pernova dynamics. In the first case, we give a lower es-
timation (ρcross,in) of the transition density at the inner
edge of the crust. Our results are in reasonable agree-
ment with values obtained within pasta-phase calcula-
tions. Modern Skyrme parametrizations and DDH mod-
els give similar results, ρcross,in ∼ 0.75 fm−3.

Stellar matter at finite temperature is addressed only
with Skyrme models and NL3. Finite-T calculations still
have to be performed for the relativistic models with
density-dependent couplings, but we do not expect those
results will affect our present conclusions. For all the

models we show, neutrino trapping is needed to reach
the instability region at T = 10 MeV. The required trap-
ping rate is higher for models with low symmetry energy
at subsaturation density, such as NL3.

Globally, we can say that the isovector EOS shows
quite large quantitative differences even between mod-
ern forces: new data are still needed to better constrain
the neutron-rich matter properties. We have shown the
consequences of the stiff symmetry energy of the RMF
models:stronger distillation, smaller µ3-extension of the
spinodal, and larger proton-fractions at high density, al-
lowing the URCA process. The finite-range of the force
is also important: its different behavior between Skyrme
and relativistic models causes the difference in the pre-
dictions of typical cluster size.

A similar work comparing phenomenological models
with results from other approaches such as Brueckner-
Hartree-Fock should be performed.
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