
Aspects of Availability Enforcing timed properties to

prevent denial of service

Pascal Fradet, Stéphane Hong Tuan Ha

To cite this version:

Pascal Fradet, Stéphane Hong Tuan Ha. Aspects of Availability Enforcing timed properties to
prevent denial of service. [Research Report] RR-6754, INRIA. 2008, pp.37. <inria-00344838>

HAL Id: inria-00344838

https://hal.inria.fr/inria-00344838

Submitted on 5 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52698857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00344838

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
67

54
--

FR
+E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Aspects of Availability
Enforcing timed properties to prevent denial of service

Pascal Fradet — Stéphane Hong Tuan Ha

N° 6754

Décembre 2008

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Aspects of Availability
Enforcing timed properties to prevent denial of service

Pascal Fradet∗, Stéphane Hong Tuan Ha†

Thème COM — Systèmes communicants
Équipe-Projet Pop Art

Rapport de recherche n° 6754 — Décembre 2008 — 37 pages

Abstract: We propose a domain-specific aspect language to prevent denial of service caused
by resource management. Our aspects specify availability policies by enforcing time limits in
the allocation of resources. In our language, aspects can be seen as formal timed properties on
execution traces. Programs and aspects are specified as timed automata and the weaving process
as an automata product. The benefit of this formal approach is two-fold: the user keeps the
semantic impact of weaving under control and (s)he can use a model-checker to optimize the
woven program and verify availability properties.

Key-words: Aspect-oriented programming, availability, resource management, timed automata,
weaving, denial of service

∗ Inria Grenoble Rhône-Alpes, 655, av. de l’Europe, 38330 Montbonnot, France - Pascal.Fradet@inria.fr
† CEA Saclay, DRT/LIST/DTSI/LSL, 91191 Gif sur Yvette Cedex, France - Stephane.Hong-Tuan-Ha@cea.fr

Aspects de disponibilité
Imposer des propriétés temporelles pour prévenir les dénis de service

Résumé : Nous proposons un langage d’aspects dédié à la prévention des dénis de service
causés par la gestion des ressources. Nos aspects décrivent des politiques de disponibilité en
imposant des limites de temps d’allocation des ressources. Nos aspects peuvent tre vus comme des
propriétés temporisés sur les traces d’exécution. Les programmes et les aspects sont spécifiés par
des automates temporisés and le tissage comme un produit d’automates temporisés. L’avantage
de cette approche formelle est double : l’utilisateur garde le contrôle sur l’impact sémantique du
tissage et il peut utiliser des outils de vérification (e.g., des ”model-checkers”) pour optimiser le
tissage et vérifier des propriétés de disponibilité.

Mots-clés : Programmation par aspects, disponibilité, gestion de ressources, automates temporisés,
tissage, denis de service

Aspects of Availability 3

1 Introduction

Along with confidentiality and integrity, availability is one of the three main classes of security
properties. Availability guarantees that the requests of authorized subjects are answered in a
timely manner. In other words, there is no denial of service. Like the other security properties,
the implementation of availability crosscuts the program basic functionality and produces tangled
code. In this paper, we use aspect-oriented techniques to express resource management and address
the prevention of denial of service (i.e., availability) separately from the basic functionality. That
separation of concerns leads to programs that are easier to develop and maintain. This is especially
useful in a security context where programs may have to be changed quickly to respond to new
threats.

We propose a domain-specific aspect language in order to prevent denial of service caused by
resource management (e.g., starvation, deadlocks, etc.). Aspects specify availability policies which
enforce time constraints on resource allocation. For example, a constraint may be that a service S
does not retain a resource R more than k seconds or that it does not allocate the resource R2 less
than k seconds after it has released R1. To the best of our knowledge, this is the first work using
aspects to enforce the availability of resources.

In our language, an aspect can be seen as a timed property on execution traces which specifies
an availability policy. The semantics of base programs and aspects are expressed as timed au-
tomata [AD94]. The automaton representing a program specifies a superset of all possible (timed)
execution traces whereas the automaton representing an aspect specifies a set of desired/allowed
(timed) execution traces. Weaving can be seen as a product of two timed automata (i.e., the in-
tersection of execution traces) which restricts the execution of the base program to the behaviors
allowed by the aspect.

In general purpose languages, aspects are often described in a syntactic fashion as directives
of code insertion at explicit join points. Such a code is not restricted and, consequently, can
completely distort the semantics of the base program. In contrast, our aspects are constrained and
have a more semantic nature: they specify sets of desired timed behaviors. The main advantage
of such a formal approach is two-fold:

� aspects are expressed at a higher-level and the semantic impact of weaving is kept under
control;

� model checking tools (e.g., uppaal [LPY97, BY03]) can be used to optimize weaving and
verify the enforcement of general availability properties.

Section 2 outlines our framework, in particular: the systems and availability properties con-
sidered, the general approach and a small example used throughout the paper to illustrate the
different steps. We briefly recall the main characteristics of timed automata in Section 3. The
specification of resources, illustrated with two standard types of resources, is described in Sec-
tion 4. Sections 5 and 6 present the syntax and semantics of services and availability aspects,
respectively. The technical core of the paper lies in section 7 which describes the abstraction of
services and semantics of aspects in terms of timed automata and the weaving as an automata
product. Section 8 sketches the optimization, verification and concretization of the final (woven)
automaton back into a source program. We review implementation issues and techniques in Sec-
tion 9. Section 10 presents a case study where several temporal constraints of an automatic teller
machine are implemented as aspects. We conclude by presenting related work in Section 11 and
possible extensions in Section 12.

This article extends and revises the work presented in GPCE’07 [FH07]. Sections 4, 9, 10, and
11 are new. We have simplified some technical points (e.g., representations and translations) and
have added more explanations and examples. Older, preliminary versions have also been published
in a French conference [FH05], journal [FH06] and PhD thesis [Hon07]. Correctness proofs of our
approach in a simpler setting can be found in [Hon07].

RR n° 6754

4 Fradet & Hong Tuan Ha

2 Framework

We first define the systems and availability problems considered. Then, we present our approach
and the example used thereafter to illustrate it.

2.1 Systems and availability

We consider systems which can be decomposed along three layers: users, services and resources (Fig-
ure 1). Users send their requests to services and wait for the answer. Services process users’
requests sequentially. Requests are stored in a fifo file; processing a request involves computa-
tion and accesses to resources. Resources are (logical or physical) entities shared among services.
For instance, files, printers, processors or network connection managers are examples of resources.
This type of client-server model is of widespread use in web servers and distributed applications.
We suppose that the numbers of services and resources are fixed and known.

Users Services Resources

U1

U2

U3

S1

S2

R1

R2

R3

Figure 1: Three-layer model

Each service can be seen as a non-terminating loop processing requests: the request is fetched,
processed, the result is sent to the corresponding user and so on. We do not specify users and how
services deal with their requests any further. Since we are interested by resource management and
the prevention of denial of service, we focus on interactions between services and resources.

The availability problems we consider come from concurrent accesses of services to shared
resources. For instance, there can be starvation when a service cannot allocate a resource or
deadlocks when two services wait for a resource allocated by the other one. Such problems can
be prevented by appropriate resource management. Of course, hardware faults can also cause
availability problems. This source of denial of service must be addressed by dedicated fault-
tolerance techniques (see for example [Lap92, Rus94]).

2.2 Approach

Yu and Gligor have studied denial of service caused by resource management [YG90]. They have
shown that availability properties depend on resources but also on constraining the behavior of
services using user agreements. Our resource management system is inspired by Yu and Gligor’s
model. As illustrated in Figure 2, it is made of two parts:

� the specification of resources in terms of sufficiently precise automata which can be translated
into programs. Several types of resources (exclusive access, shareable) have been specified
in [FH05].

INRIA

Aspects of Availability 5

� the specification of constraints on the use of resources. We define these constraints as
availability aspects which are woven on the source code of services. Compared to other
aspects, availability aspects are original in that they specify timed behaviors. They can, for
example, limit the amount of time a service may allocate a resource or forbid too frequent
reallocations of a resource by the same service (see section 6).

AspectS1

AspectS2

S1

S2

R1

R2

R3

specR1

specR2

specR3

Resource Management

weaving

weaving

generation

generation

generation

Figure 2: Global layout of the system

In this paper, we present informally the specification of resources and mostly focus on the
aspect-oriented part of the framework. Resource management constraints are specified by an
availability aspect per service. Each aspect is independent and defines a local policy which is woven
on the corresponding service. These aspects correspond to Yu and Gligor’s user agreements. We do
not consider global aspects constraining services depending on the behavior of other services. They
are more expressive but their implementation involves a global monitor observing the execution
of the complete system. Local aspects are sufficiently expressive to prevent most denial of service
and their implementation can be optimized using static weaving.

Our approach relies on timed automata and weaving, the key transformation step, is specified
as a timed automata product. The technical core of our technique is made of the following steps:

� a service is abstracted into a timed automaton over-approximating its execution traces and
its timed behavior (section 7.1);

� an aspect is defined using a domain-specific language. Its semantics is given by a timed
automaton (section 7.2);

RR n° 6754

6 Fradet & Hong Tuan Ha

� the aspect is woven to the service by performing the product of the two corresponding
automata. The product automaton represents a refined service that satisfies the constraints
of the aspect (section 7.3);

� information about the execution times of service instructions can be taken into account,
again using automata product. This permits to optimize the woven automaton (section 8.1);

� it is possible to automatically verify that the woven automaton satisfies general availability
properties (section 8.2);

� the last step amounts to concretizing the (optimized and verified) automaton into source
code using timed commands (watchdog timers, waiting loops, interrupts) (section 8.3).

2.3 System example

We will use the example of Figure 3 to illustrate the different steps of our technique. This
small system is made of two resources (M1 and M2) with exclusive access and two services (S1
and S2) with a non terminating loop request. The service S1 allocates the resource M1 then M2

Services Network

S1 =

l1 : M1.alloc();
M2.alloc();
S1Comput;
M2.free();
M1.free();
jmp l1;

S2 =

l2 : M2.alloc();
S2Comput1;
if G then

M1.alloc();
S2Comput2;
M1.free();

M2.free();
jmp l2;

S1

S2

M1

M2

Figure 3: A simple system with two services and two resources

(M1.alloc(); M2.alloc();). It computes S1Comput (which takes between 2 and 10 seconds),
releases the resources M2 and M1 and iterates. The service S2 models a potentially dangerous
behavior. It allocates the resource M2, then computes S2Comput1 which takes at least 1 second
(and may not terminate). If the guard G is true, it allocates M1, computes S2Comput2 (which takes
between 3 and 20 seconds) and releases M1. It releases M2 and iterates.

The resource management of this system may lead to two availability problems:

� starvation may occur if S2Comput1 does not terminate. In this case, the service S2 never
releases M2 which is needed by S1;

� deadlock may also occur when the service S1 has allocated the resource M1 and waits for M2
while the service S2 has allocated the resource M2 and waits for M1.

INRIA

Aspects of Availability 7

3 Timed automata

In this section, we briefly recall the syntax and semantics of timed automata which we use to model
programs, aspects and weaving. Timed automata have been introduced to specify problems and
to verify properties where time is explicit. We present Timed Safety Automata [Alu99, LPY97]
which are a commonly used kind of timed automata.

3.1 Syntax

Let H be a set of real valued variables used to represent clocks. A clock constraint C is of the
form

C ::= x� k | x− y � k with x, y ∈ H, k ∈ N
and � ∈ {≤, <,=, >,≥}

Transitions of timed automata are guarded by a set of clock constraints (to be interpreted as the
conjunction of the constraints). We write 2C for the set of possible guards (i.e., clock constraints).

A timed automaton A is a tuple (Q, q0, H,Σ,→a, I) where:

� Q is a finite set of states;

� q0 ∈ Q is the initial state;

� H is a finite set of clocks;

� Σ is a finite set of labels denoting events/actions of the automaton;

� →a⊆ Q× 2C × Σ× 2H ×Q is the transition relation;

� I : Q→ 2C maps a state to its invariant.

A transition (q, g, a, r, q′) ∈→a specifies that the automaton can go from state q to state q′

by performing the action a and resetting the set of clocks r (r ∈ H) if the guard g is true. The
sub-set of clocks r is called a reset. We restrict an invariant to be a conjunction of constraints of
the form x ≤ k or x < k with k an integer.

The symbol . is overloaded to denote the empty guard (i.e., ∅ or true), the empty reset (i.e.,
∅) and the empty action more commonly written ε. We also write q

g,a,r−−−→ q′ for transitions; for
example, q

.,.,.−−→ q′ denotes the spontaneous transition.

3.2 Semantics

The operational semantics of a timed automaton A = (Q, q0, H,Σ,→a, I) is given by a transition
system between states of the form (q, u) where q ∈ Q is the current state of the automaton and
the function u : H → R maps clocks to their current value. The initial semantic state is made of
the initial state of the automaton and the function returning 0 for all clocks.

The definition of the semantic transition relation makes use of the following notations. Let
u : H → R mapping clocks to their values, g a guard (i.e., a set of clock constraints) and q a real
number then:

� u ∈ g denotes that clocks of u (H) verify the guard g;

� u+ d denotes that d is added to all clocks of u;

� u[r 7→ 0] denotes the reset of all clocks of the set r.

RR n° 6754

8 Fradet & Hong Tuan Ha

The semantic transitions are either transitions representing the time passing

(q, u) −→ (q, u+ d) if ∀d′ : 0 ≤ d′ ≤ d⇒ u+ d′ ∈ I(q)

or transitions representing the execution of an action

(q, u) −→ (q′, u′) if ∃q g,a,r−−−→ q′ such that
u ∈ g, u′ ∈ I(q′), u′ = u[r 7→ 0]

Time may pass only if it satisfies the invariant of the current state. A transition of the automaton
may occur if and only if its guard and the invariant of the new state are satisfied. The semantics
of the automaton is the set of traces of the associated transition system.

The first automaton in Figure 4 enforces that the action a is performed at least before 10 time
units (initially or after each action a). The state invariant prevents the automaton to wait more
than 10 time units before performing a. The clock x is initially set to 0 and is reset after each a.
The second automaton enforces to wait at least 5 time units before performing an a. Each time
the action a is performed, the clock y is reset and an a transition can only occur when y ≥ 5. The
clocks are assumed to be initialized to zero.

x ≤ 10

., a, x
y ≥ 5, a, y

Figure 4: Simple timed automata

3.3 Timed automata product

The product of two timed automata X = (Qx, x0, Hx,Σ,−→x, Ix) and Y = (Qy, y0, Hy,Σ,−→y

, Iy) with the same set of actions and disjoint sets of clocks is the automaton X ⊗ Y = (Qx ×
Qy, (x0, y0), Hx ∪Hy,Σ,−→, I) with:

I(x, y) = Ix(x) ∪ Iy(y)

Action
x1

gx,a,rx−−−−→x x2 y1
gy,a,ry−−−−→y y2

(x1, y1)
gx∪gy,a,rx∪ry−−−−−−−−−→ (x2, y2)

ε1
x1

gx,.,rx−−−−→x x2

(x1, y)
gx,.,rx−−−−→ (x2, y)

ε2
y1

gy,.,ry−−−−→y y2

(x, y1)
gy,.,ry−−−−→ (x, y2)

The states of the product automaton is the cartesian product of the states of the two automata
X and Y . The initial state is made of the initial states of X and Y . The invariant of a product
state is the conjunction (union) of the invariants of its two constituent states.

The transition relation of the product automaton is defined by three rules. The rule Action
denotes the case where an action is performed by both automata. The guard is the conjunction of
the two constituent guards. It is expressed as a union ot the sets representing guards (recall that

INRIA

Aspects of Availability 9

these sets are interpreted as the conjunction of their elements). The set of clocks to reset is the
union of the two reset sets. The rules ε1 and ε2 denote the cases where one of the two automata
performs the empty action. In these cases, the automata can proceed independently.

The execution traces recognized by the product automaton X ⊗ Y is the intersection of the
execution traces recognized by the two automata X and Y .

The product of the two automata of Figure 4 is represented in Figure 5. It specifies the
intersection of the allowed traces of the two automata. It enforces that the delay between each
action a lies between 5 and 10 time units.

x ≤ 10

y ≥ 5, a, {x, y}

Figure 5: Simple product automaton

4 Resources

Resources (communication, memory, CPU, etc.) play a central role in availability. Even if our main
focus is the weaving of timed properties on services, we sketch in this section how resources can be
specified in the same framework (e.g., timed automata) using examples. In order to verify global
availability properties, resources as the other components of the system (services and aspects)
must be formally specified.

In our approach, resources are specified by:

� an interface listing all the instructions to access them;

� an automaton specifying their behavior, in particular:

– the evolution of their internal state according to the different accesses made by services;

– the management of the requests from services.

We use the timed automata of uppaal [LPY97, BY03] to specify the behavior of resources.
uppaal automata extend timed automata with urgent states (where time is not allowed to pass),
synchronization communications, arrays and bounded integer variables. These extensions are
syntactic sugar which can be translated into pure timed automata by encoding (e.g., adding new
clocks to express urgency) and state enumeration.

If the uppaal automaton is deterministic and complete (all conditional cases are taken into
account), it is easy to generate executable code from such a specification. We do not describe
formally uppaal syntax and semantics. Instead, we explain the extensions intuitively as they are
used in the examples. The reader will find an abundant documentation about uppaal (manual,
tutorial, articles) at http://www.uppaal.com/.

The representation of a resource as an automaton is more declarative that a direct encoding
as a source program. Further, since it is in the same formalism as services (base and woven), the
global system can be described and analyzed using uppaal.

In this section, we focus on two common types of resources: resources with exclusive access
and sharable resources.

RR n° 6754

10 Fradet & Hong Tuan Ha

4.1 Exclusive access resources

Exclusive access resources are used by a single user at a time. They are said to belong to the
mutex type. That kind of resource protects access (reads and writes) of shared data. Different
specifications can be considered.

A simple specification can be given by:

� an interface with only two operations:

– alloc() that takes the resource (i.e., enters the critical section);

– free() that releases the resource (i.e., exits the critical section).

� a specification of resource management where:

– alloc() are performed by choosing randomly a requesting service when the resource is
free;

– free() are performed without delay.

More precisely the resource management is specified by the automaton of Figure 6.

alloc!

free?

Figure 6: Basic behavior of mutex resource

Initially, the resource is free and is granted to a service requesting it. The synchronizing
communications alloc and free are supposed to be unique to a resource (e.g., they can be indexed
by the resource ID). A service accesses a resource using the synchronizing communications alloc?
to request and take it and free! to release it. The time is allowed to pass when the service performs
alloc? but not free!. In the latter case, the service must be in an urgent state in order to release
the resource without delay.

This simple description is correct but does not ensure fairness of the allocation. Starvation can
arise since the resource is granted to a service chosen randomly among all services requesting the
same resource. A more refined specification manages requests in a fifo fashion. It is described
by the automaton of Figure 7.

The automaton uses the notion of urgent states (marked with a U) and two bounded integer
variables 0 ≤ k ≤ max and 0 ≤ i ≤ max where max represents the maximum number of services.
The automaton uses an array (fifo bounded by max) to implement the fifo file storing requests
of services. Initially, the file is empty (k = 0) and the resource waits for a request. The shared
variable sid is the ID of the service performing the request. That ID is stored in fifo and the
allocation is performed right away. Next, the array is updated (i.e., the first element is removed
and the others shifted) using the index i. The resource waits for the deallocation (free?) but, in the
meantime, accepts incoming requests and stores into the array. After the deallocation, either the
file is empty and the resource waits for another request, or the first request of the file is processed.
Note that the only two states where time is allowed to pass are states where the resource waits
for requests and deallocations.

That specification supposes that services request the resource using a transition of the form
request!, sid := myid. That transition may be urgent since the resource is always ready to accept
requests. When the synchronization takes place, the shared variable sid has the identity of the

INRIA

Aspects of Availability 11

U U U

U

k
≤

0

request?,
fifo[k] := sid,
k++

k > 0, sid := fifo[0], alloc!, k−−, i := 0

i
=

k

i < k

fre
e?

request?

fifo[i] := fifo[i + 1]; i++

fifo[k] := sid; k++

Figure 7: fifo management of mutex resource

selected service. A service that has performed a request must wait the allocation using a transition
of the form sid = myid, alloc!. The guard sid = myid ensures that the request currently processed
is from the right service. Services may only release (free!) resources that have been allocated to
them.

The automaton of Figure 7 is complete and deterministic. It is used to generate the following
CSP-like code.

init : if k<=0 then request?; fifo[k]:=sid; k++;
sid:=fifo[0]; alloc!; k--;
i:=0;
while i<k do fifo[i]:=fifo[i+1]; i++; od;

loop : free? -> jmp init;
|| request? -> fifo[k]:=sid; k++; jmp loop;

In that language, we suppose that communication instructions are blocking and when several
guards are enabled the first one is chosen. In our example, if free? and request? are enabled then
free? is chosen.

Such a specification of mutex resources ensures some basic availability (fairness) properties.
For example, a service cannot repeatedly allocate the same resource when others are waiting for
it. Still, it can suffer from several availability problems.

� if a service takes a resource and fails to release it;

� deadlocks are possible when several services share several mutex resources.

4.2 Sharable resources

Mutex resources can be refined into resources made of a collection of k parts which can be allocated
to several services. Such shareable resources are common [LZ97]: servers, memory and CPU can
be seen as shareable (at least at a proper abstraction level). They are typically defined by:

� an interface made of three operations:

– request(i) to request i parts of the resource;

– alloc(i) to grant i parts;

RR n° 6754

12 Fradet & Hong Tuan Ha

– free(i) to release i parts.

� the behavior, where usually:

– request(i) are processed in a fifo ordering;

– alloc(i) are granted as soon as i parts are free;

– free(i) are performed without delay.

We do not give the corresponding automaton which uses similar encodings as the automaton
of Figure 7.

A shareable resource may cause the same availability problems as a mutex resource. Indeed, a
shareable resource with k parts can be seen as k mutex resources. Therefore, contrary to mutex
resources, deadlocks can arise with a single shareable resource. Shareable resources may profit
from more complex availability policies e.g., managing quotas on the number of parts allocated
by services.

Many other kinds of resources or more sophisticated specifications can be described in this
framework (i.e., as uppaal automata). For instance, it would be possible to associate services
with priorities. Requests would be processed depending on their ordering and the priority of the
corresponding service.

5 Services

In this section, we describe the syntax and semantics of the source language of services.

5.1 Syntax

A service is defined by a set of instructions {I1, . . . , In} of the form

I ::= l1 : c ; l2 | l1 : g ; l2 ; l3

where l1, l2 and l3 are labels, c a command (e.g., an assignment) and g a test (i.e., a boolean
expression). In the following, we use action to denote either a command or a test. Intuitively, if
the current program point is l1 and the service S contains the instruction:

� l1 : c ; l2 then the command c is performed and the current program point becomes l2 ;

� l1 : g ; l2 ; l3 then if the test g is true the current program point becomes l2 else it becomes
l3.

Left-hand side labels are supposed to label a unique instruction. This syntactic restriction ensures
sequentiality and determinism of services (provided that commands are sequential and determin-
istic).

That source language is very simple yet sufficiently expressive. Its main advantage is that
source programs are very close to their control flow graph which will be translated to a timed
automaton. A higher-level language could be considered using a control flow graph analysis to
abstract programs into automata.

Typically, a service is an infinite loop waiting for a user’s request, processing and answering
the request and so on. The loop of a service starts with the instruction l0 : getUser() ; l1 which
waits and takes a new request and ends with li : endUser() ; l0 which returns the results to
the user and jumps to l0 to treat a new request. For example, the service S1 of Figure 3 can be
written in that syntax:

INRIA

Aspects of Availability 13

S1 =

l0 : getUser() ; l1
l1 : M1.alloc() ; l2
l2 : M2.alloc() ; l3
l3 : S1.comput() ; l4
l4 : M2.free() ; l5
l5 : M1.free() ; l6
l6 : endUser() ; l0

The commands getUser(), alloc() are blocking (e.g., if there is no request or if the resource is

not available); the command S1.comput denotes a potentially large collection of basic instructions
without any resource management command.

5.2 Semantics

The semantics of a service S is expressed as a labeled transition system (Lts) (ΣS , (l0, s0), ES ,−→S

) where:

� Σp is an infinite set of states (l, s) with l a label and s a store;

� (l0, s0) is the initial state;

� ES is the set of actions of S;

� −→S is the transition function labeled by the action.

The semantics of commands c is assumed to be given by the function C[[c]] mapping the current
store to the updated store. The semantics of tests is assumed to be given by the function G[[g]]
which takes the current store and returns a boolean. The transition function can be then defined
by the following three rules:

Comm
l1 : c ; l2 ∈ S C[[c]]s1 = s2

(l1, s1) c−→S (l2, s2)

Then
l1 : g ; l2 ; l3 ∈ S G[[g]]s1

(l1, s1)
g−→S (l2, s1)

Else
l1 : g ; l2 ; l3 ∈ S ¬G[[g]]s1

(l1, s1)
g−→S (l3, s1)

The action g (resp. g) denotes the transition to the then-branch (resp. else-branch) of the
corresponding conditional.

6 Availability aspects

Finite time properties are a common class of availability properties that ensure that users’ re-
quests are eventually answered. This type of liveness property must be ensured statically using
verification techniques. They cannot be enforced dynamically by monitoring, weaving or code
instrumentation [Sch00]. Since only safety properties can be enforced by weaving, we consider
bounded time properties which are availability and safety properties. For example, we may want
to ensure that requests are answered before a fixed time limit. Many other timed properties can
be specified as well. For instance, to guarantee a fair use of resources, we may want to limit the
allocation frequency of resources by a service (e.g., by adding waiting periods).

Availability aspects specify mostly maximal and minimal periods between events (e.g., the
allocation and release of a resource). They are written in a textual language and can be easily
translated into timed automata.

RR n° 6754

14 Fradet & Hong Tuan Ha

6.1 Syntax

Our language is inspired by stateful aspects [DFS02] (or trace-based aspects [DFS04]) which take
the history of execution into account. The syntax is described in Figure 8.

A ::= {ai = Ei} ; mutually recursive equations

E ::= E1 � E2 ; choice
| ((F,G) . L); ai ; adds advice L and proceeds

; with ai if the current event is
; matched by the pattern F and
; the timed guard G is true

F ::= Pat ; basic event patterns
| F1 ∧ F2 | ¬F

G ::= {. . . , t� k, . . .} ; timed guards
; � ∈ {≤, <,>,≥}

L ::= {I; . . . ; I} ; advice

I ::= reset (i, k) ; programs the interrupt i to be
; triggered in k time units

| cancel (i) ; cancels the interrupt i
| start (t) ; initializes the timer t
| wait (t, k) ; waits until t = k
| nop ; empty instruction

with k an integer, i an interrupt and t a timer

Figure 8: Syntax of availability aspects

An aspect is a collection of mutually recursive equations. An equation is of the form ai =
(C . L); aj and should be read as: the aspect waits for the event C which triggers the execution
of the sequence of instructions L and passes the control to equation aj . In general, an equation
may contain choices. For example, the aspect (C . L); a � (C ′ . L′); a′ waits for the events C or
C ′; the first event occurring triggers the execution of the corresponding advice and equation (L
and a or L′ and a′). To ensure determinism, we suppose that choices are exclusive1.

A pattern F , close to AspectJ’s pointcuts [KHH+01], is either a simple pattern (a term, possibly
with wildcards *, matching instructions), or a logical combination of patterns. For example,
R.alloc matches only the allocation of the resource R, *.alloc matches all allocations and R.*
all operations on the resource R. A guard G is a conjunction (represented by a set) of comparisons
of timers to integer constants.

The list of instructions L denotes the advice to execute when the associated pattern matches
the current instruction. Availability aspects use only 5 types of instructions:

� reset(i, k) programs an interrupt i to terminate the current request and to release all allocated
resources after k seconds. We suppose that reset rolls back a service to a safe initial state
(e.g., using transactional techniques). Most resources (processor, memory, printer, etc.) can
be adapted to support roll-back.

� cancel(i) cancels the interrupt i;

1Another option would be to choose the first choice (i.e., C) when both choices match the same event

INRIA

Aspects of Availability 15

� start(t) initializes the timer t;

� wait(t, k) waits until t has the value k. If t ≥ k then the instruction does nothing (wait(t, k) ≡
nop);

� nop permits advance without performing any action.

All instructions are executed after the matched instruction (i.e., they are after advice) except
wait(t, k) which is performed before (i.e., a before advice). We forbid programming and canceling
the same interrupt (e.g., reset(i, k); cancel(i)) within the same advice.

Availability aspects can only add guards or time-related instructions which do not modify the
state of the service. Their semantic impact boils down to forbidding some execution traces: either
they are aborted by a reset or their timing is modified by wait. Aspects can therefore be seen as
timed properties and it is possible to reason on woven programs.

To simplify notations, we omit the guard when it is true and list notation for a single instruc-
tion. For example, (true, M1.alloc) . {reset(i1, 25)} is written M1.alloc . reset(i1, 25).

6.2 Examples

We illustrate our language using several simple and common examples, namely controlling the
duration of resource allocation, the frequency of resource allocations, the duration according to
the frequency and, finally, enforcing a specific allocation ordering.

Controlling the duration of resource allocations We may want to weave the following two
aspects to the service S1 of Figure 3:

� A1 that ensures that the resource M1 is released within 25 seconds ;

� A2 that ensures that the resource M2 is released within 35 seconds.

These two aspects are specified as follows:

A1 =
{
a1 = M1.alloc . reset(i1, 25); a2

a2 = M1.free . cancel(i1); a1

}

A2 =
{
a1 = M2.alloc . reset(i2, 35); a2

a2 = M2.free . cancel(i2); a1

}
As soon as the event M1.alloc (resp. M2.alloc) is executed, a reset is programmed to be set

off 25 seconds (resp. 35 seconds) later. If the event M1.free (resp. M2.free) occurs before, the
interrupt is canceled.

Controlling the frequency of resource allocations Here, the goal is to prevent a service
from monopolizing a resource by re-allocating it immediately. This may be required by resources
constantly needed by several services.

Consider two services X and Y that need the resource M to answer a request. The service X tries
to allocate M1 as soon as it has released it whereas Y asks for it R seconds after it has started to
process a new request. Better fairness can be guaranteed by making the service X wait at least 5
seconds between each allocation of M1. The following aspect specifies such a property which will
be woven on the service S1:

A3 =
{
a1 = M1.alloc . {wait(t, 5); start(t)}; a1

}
A wait of at least 5 seconds is imposed before a new event M1.alloc is performed (wait(t, 5)).

Afterward, the timer is reset and restarted. As for clocks in timed automata we assume that all
timers are initialized to 0 at the beginning of the program so that for the first event M1.alloc the
aspect enforces at least 5 seconds from the beginning of the service.

RR n° 6754

16 Fradet & Hong Tuan Ha

Controlling the duration according to allocation frequency Instead of decreasing the
frequency, another option is to adapt the allocation time depending on the frequency. For example,
a policy might be to set the maximal allocation time to be 10 seconds except if the resource was
already allocated by the same service less than 20 seconds before (t < 20). In that case, the
maximal allocation time is only 5 seconds. The following aspect specifies that property:

a1 = M.alloc . reset(i, 10); a2

a2 = M.free . {cancel(i); start(t)}; a1

a3 = (t < 20, M.alloc) . reset(i, 5); a2

� (t ≥ 20, M.alloc) . reset(i, 10); a2

Enforcing a resource allocation ordering Properties unrelated to time can also be specified
using the same language. For instance, it is possible to enforce specific orders of resource allocation
e.g., to prevent deadlocks. The following aspect forbids the allocation of the resource M1 if the
service already possesses the resource M2. In this case, the service is terminated using reset(i, 0).
This aspect is useful only for services which may allocate M1 and M2 in both orders. The aspect
will select only executions allocating first M1 then M2. a1 = M2.alloc . {}; a2

a2 = M1.alloc . reset(i, 0); a3

� M2.free . {}; a1

Many other availability policies can be described in our language. For example, we could

associate priorities to services and make them evolve according to services’ behavior. Different
delays and frequencies could then be specified depending on the priority.

7 Weaving

Our approach implements weaving as a timed automata product. A service is represented by a
timed automaton over-approximating its (timed) execution traces. The semantics of aspects is
given as a timed automaton. Such an automaton recognizes the set of (timed) execution traces
allowed by the aspect. The product of these two automata performs the intersection of their two
sets of traces. That is, the product automaton recognizes the traces of the original service minus
the traces forbidden by the aspect. In practice, it amounts to aborting some execution traces
(using interrupts and resets) or to slowing down others (using waits).

We first describe how services are abstracted into timed automata. The abstraction consists
in the control flow graph without any time constraint (i.e., all the possible timing behaviors are
included). Then, we give the semantics of aspects in terms of timed automata. The next step is
to weave the aspect on the service. That step boils down to a classical product operation. The
resulting automaton represents the service restricted in such a way that it respects the property
specified by the aspect. This automaton might not be precise enough to verify availability prop-
erties. Optimization described in the next section describes how obtain a better automaton for
verification purposes by taking into account time information.

7.1 Abstraction of services

We use an abstraction over-approximating the execution traces (a standard control flow anal-
ysis) that does not take time information into account. This can be seen as the largest over-
approximation as far as time is concerned. A service is represented by an automaton which can
be seen as the control flow graph of the service. The timed execution of an instruction a is rep-
resented by three instants and transitions. The first instant/transition I(a) represents when the
system knows the next instruction to be processed. The second instant/transition B(a) defines
the time when the instruction really begins, and the third instant/transition E(a) the time when
the instruction ends.

INRIA

Aspects of Availability 17

The state between I(a) and B(a) will be used to model possible wait advice. The state between
B(a) and E(a) serves to model the duration of instructions. A wait advice also adds a timed
constraint on the transition B(a).

The abstraction is described by the relation nextS(l1, a, l2) which denotes that S can go from
the program point l1 to l2 by performing the action a. That relation is defined as follows:

nextS(l1, a, l2) iff l1 : a ; l2 ∈ S ∨ l1 : a ; l2 ; l ∈ S
nextS(l1, a, l2) iff l1 : a ; l ; l2 ∈ S

The relation is clearly an over approximation of the control flow since values (and the evaluation
of tests) are abstracted away.

The service S = (ΣS , (l0, s0), ES ,−→S) is abstracted in the timed automaton S] = (ΣS] , l0, ∅, ES] ,−→S]

, IS]) where

� ΣS] , the set of abstract states, is composed of the set of program points and a set of inter-
mediate states. Formally:

ΣS] = {l, la1, la2, l
′ | nextS(l, a, l′)}

� the initial abstract state is the initial label (program point) l0;

� the set of clocks is empty;

� the set of actions is composed, for each action of S, of three actions (instants) I(a) (the
initialisation of a), B(a) (the beginning of a) and E(a) (the end of a):

ES] = {I(a),B(a),E(a) | a ∈ ES}

Splitting the action in three instants is used to represent the timed execution of an instruc-
tion;

� the transition relation −→S] is defined as follows:

(l, ., I(a), ., la1) ∈−→S] ∧(la1, .,B(a), ., la2) ∈−→S]

∧ (la2, .,E(a), ., l′) ∈−→S]

iff nextS(l, a, l′)

Each action a from one state to another is represented using two intermediate states la1 and
la2, and three transitions corresponding to the three instants I(a), B(a) and E(a) without
any timing constraint for now.

� the function IS] does not add any timing constraint, that is:

∀l ∈ ΣS] . IS](l) = ∅

The absence of any timing constraint implies that the automaton models all possible execution
times for each action. Figure 9 illustrates the abstraction of service S1 into a timed automaton.

The abstraction is safe since the automaton accepts all execution traces of the source program.
Formally:

Property 1 [Safety] A service S = (ΣS , (l0, s0), ES ,−→S) and its associated abstraction S] =
(ΣS] , l0, ES] ,−→S] , IS]) are such that for all labels l1 and l2, states s1 and s2, and action a:

(l1, s1) a−→S (l2, s2)⇒ ∃la1, la2. l1
.,I(a),.−−−−→S] la1 ∧ la1

.,B(a),.−−−−→S] la2 ∧ la2
.,E(a),.−−−−→S] l2

RR n° 6754

18 Fradet & Hong Tuan Ha

., I(M1.alloc), . ., B(M1.alloc), . ., E(M1.alloc), . ., I(M2.alloc), . ., B(M2.alloc), .

., E(M2.alloc), .

., I(S1comput), .

., B(S1comput), .

., E(S1com
put), .

., I(M2.free), .., B(M2.free), .

.,
E(M

2.f
ree),

.

., I(M1.free), .

., B(M1.free), .

., E(M1.free), .

Figure 9: Abstraction of service S1

7.2 Aspect semantics

The semantics of aspects is given in terms of timed automata. An aspect specifies a timed property
and the timed traces recognized by the corresponding semantic automaton are the timed traces
allowed by the aspect. Intuitively, the different basic advice instructions can be described as
follows:

� reset(i, k) starts a timeri to abort the current request after k time units. The timer i is reset
on the E() transition to the instruction matched by the corresponding pointcut. After the
E() transition, the interrupt environment, which records the set of active resets, associated
the timer i to k.

� cancel(i) removes i from the interrupt environment (i.e., associates ⊥ to i);

� wait(t, k) adds the guard t ≥ k at the beginning of the action;

� start(t) reset the timer t on the E() transition to the instruction matched by the correspond-
ing pointcut..

The semantics of aspects is given by automata of the form:

A = (Na, la0, Ha, Ea,−→a, Ia) where

� the set of states Na is made of a sink state Reset and pairs (q, e) where q denotes the state
(i.e., the current equation) of the aspect and e the current interrupt environment;

� la0 = (a0, {}) is the initial state;

� Ha is the set of clocks (interrupts and timers) used in the aspect;

� Ea contains the same actions as the service;

� Ia associates each state (q, e) to an invariant enforcing that no valid interrupt (i.e., defined
in e) occurs. This function is defined as follows:

Ia(q, e) = {i ≤ e(i) | ∀i.e(i) 6=⊥}

INRIA

Aspects of Availability 19

In the remaining, we use the special transition (q, e) else−−→a (q, e) which denotes that if no
other transitions from (q, e) applies then the aspect remains in the same state. This notation is
syntactic sugar which can be translated into a collection of transitions from (q, e) to (q, e) (the
complementary of outgoing transitions).

The relation −→a is defined on the syntax of the aspect as follows:

[a0 = E0] = (a0, {})
else−−→a (a0, {}) ∪ [E0](a0,{})

The automaton corresponding to E0 (the initial equation) has the initial state (a0, {}). No inter-
rupt is active and, as for all states, there is an else transition.

[E1�E2](q,e) = [E1](q,e) ∪ [E2](q,e)

The transitions corresponding to an exclusive choice are the union of the transitions for both
choices.

[(F,G) . L; ai](q,e)

= [(F,G) . L](q,e)
(ai,e′)

∪ [Ei](ai,e
′) ({ai = Ei} ∈ A)

∪ (ai, e
′) else−−→a (ai, e

′) ∪ interrupt(ai, e
′)

A rule (F,G).L involves the computation of a new interrupt environment (see the next translation
rule) and new transitions to a new state. The automaton corresponding to the continuation of the
aspect starts from this new state. As any state, the else transition and the interrupt transitions
(contained in the current environment) are generated.

[(F,G) . L](q1,e1)
(q2,e2)

= { (q1, e1)
G∪

∧
(e1),I(a),.−−−−−−−−−→a (qa1, e1) ∪ (qa1, e1)

gi∪
∧

(e1),B(a),.−−−−−−−−−−→a (qa2, e1)

∪ (qa2, e1)
∧

(e1),E(a),r−−−−−−−−→a (q2, e2)
∪ interrupt(qa1, e1) ∪ interrupt(qa2, e1)
| match(a, F) ∧ ins(e1, L) = (gi, r, e2)

For each action a matched by F , three transitions (I(a), B(a) and E(a)) are added using two
new intermediate state (qa1, e1) and (qa2, e1). Transitions modeling interrupts are added to these
states. The function ins analyzes the advice L to compute the guards and resets of timers as well
as the new interrupt environment e2. The guard gi represents the constraints for the wait in the
advice and the set r represents the timers reset by reset and start instructions in the advice.
The intermediate functions used in the translation are defined as follows:

� The function interrupt takes a state (q, e) and returns the set of transitions modeling the
interrupts that may arise in this state.

interrupt(q, e) = {(q, e) i≥e(i),.,.−−−−−−→a Reset | e(i) 6=⊥}

There is a transition to Reset each time an interrupt i reaches its trigger value recorded in
the environment e.

� The function match(a, F) returns true if F matches a.

� The function ins takes an interrupt environment, an advice and returns the guard, the reset
set and the new interrupt environment taking into account the wait, reset, start and cancel
instructions of the advice.

ins(e, L) = ({t ≥ k | wait(t, k) ∈ L},
{z | reset(z, k) ∈ L ∨ start(z) ∈ L},
e′)

with

 e′(i) =⊥ if cancel(i) ∈ L
e′(i) = k if reset(i, k) ∈ L
e′(i) = e(i) otherwise

RR n° 6754

20 Fradet & Hong Tuan Ha

� The function
∧

takes an environment and returns the guard corresponding to the case where
no interrupt occurs:

∧
(e) = {i < e(i) | e(i) 6=⊥}

The translation proceeds by unfolding the recursive equations of the aspect. The process
terminates since there are a finite number of definitions (ai = . . .) and interrupt environments.

i1 ≤ 25

i1 ≤ 25i1 ≤ 25

Reset

else
., I(M1.alloc), .

., B(M1.alloc), .
., E(M1.alloc), {i1}

else

i1 < 25, I(M1.free), .

i 1
≥

2
5
,
.,

.

i1 < 25, B(M1.free), .

i1 < 25, E(M1.free), .

i1 ≥ 25, ., .i1 ≥ 25, ., .

i2 ≤ 35

i2 ≤ 35i2 ≤ 35

Reset

else
., I(M2.alloc), .

., B(M2.alloc), .
., E(M2.alloc), {i2}

else

i2 < 35, I(M2.free), .

i 2
≥

3
5
,
.,

.

i2 < 35, B(M2.free), .

i2 < 35, E(M2.free), .

i2 ≥ 35, ., .i2 ≥ 35, ., .

else ., I(M
2.allo

c),
.

t
≥

5
,B

(M
2
.a

llo
c
),

.

., E(M2.alloc), {t}

Figure 10: Timed automata of A1 (above), A2 (middle) and A3 (below)

Figure 10 shows the semantic automata for the previously defined aspects A1, A2 and A3. In
the aspect A1, the clock i is reset at the initialization of the interrupt. Then, for all states until
the resource is released, the outgoing transitions have the guard i < 25, the state invariant has
the condition i < 25 and a transition with guard i ≥ 25 to the state Reset is added. The sink
state Reset will be interpreted during the concretization as a collection of transitions releasing
all resources followed by a transition returning to the beginning of the request loop.

Intuitively, the weaving of the first two aspects will amount to starting a timer when the service
takes the resource and to resetting the service when the timer reaches its time limit (i.e., 25 or 35
seconds). For the aspect A3, weaving will ensure that there are at least 5 seconds between two
M1.alloc events. This behavior is simply described by the guard t ≥ 5 on transition I(M1.alloc)
and by resetting the timer t after each M1.alloc i.e., at the transition E(M1.alloc).

INRIA

Aspects of Availability 21

7.3 Weaving an aspect to a service

In aspect oriented programming terminology, weaving is the step which inserts advice within
the program. Weaving per se is just the product (as described in section 3.3) of the automata
representing the service and the aspect. This practical and theoretical simplicity of weaving is
an important benefit of our framework. The aspect automaton specifies a set of allowed timed
traces using timers, guards and invariants. The automata product performs the intersection of the
execution traces of the service and aspect. The semantic impact of weaving is therefore to restrict
the service’s behavior to the timed traces allowed by the aspect. In implementation terms, it
amounts to inserting the time annotations of the aspect within the service to shorten or lengthen
some timed executions.

Figure 11 shows the product of the abstraction of service S1 with the aspects A1, A2 and A3.
In the product automaton, two interrupts are programmed after M1.alloc and after M2.alloc,
and one timer is started after M1.alloc. If M1.free (resp. M2.free) is not executed before 25
seconds (resp. 35 seconds), the automaton goes to state Reset. M1.alloc is also constrained by
t ≥ 5 which enforces to wait at least 5 seconds between two M1.alloc.

i1 ≤ 25 i1 ≤ 25

i1 ≤ 25

i1 ≤ 25 ∧
i2 ≤ 35

i1 ≤ 25 ∧
i2 ≤ 35

i1 ≤ 25 ∧
i2 ≤ 35

i1 ≤ 25 ∧
i2 ≤ 35

i1 ≤ 25 ∧
i2 ≤ 35

i1 ≤ 25 ∧
i2 ≤ 35

i1 ≤ 25

i1 ≤ 25

i1 ≤ 25

Reset

., I(M1.alloc), . t ≥ 5, B(M1.alloc), .., E(M1.alloc), {t, i1} ., I(M2.alloc), .

i1
≥

2
5
,

.,
.

., B(M2.alloc), .

i1
≥

25
,
.,

. .,
E
(
M

2
.a

llo
c
)
,

.

i1 ≥
25, ., .

.,
I(

S
1

c
o

m
p

u
t)

,
.i1 ≥ 25, ., .

i2 ≥
35, ., .

., B(S
1
c
o
m

p
u

t),
.

i1 ≥ 25, ., .

i2 ≥ 35, ., .

., E(S
1com

p
u
t), .

i1
≥

25
, .,

.i2
≥ 35, ., .

., I(M2.free), .

i 1
≥

2
5
,
.,

.

i 2
≥

35
,
.,

.

., B(M2.free), .

i1
≥

2
5

,
.,

.

i
2
≥

3
5

,
.,

.

.,
E(

M
2.

f
re

e)
, .

i
1
≥

25
,
.,

.

i2
≥

3
5
,
.,

.

.,
I(

M
1
.f

r
e
e
),

.

i1 ≥
25, ., .

.,
B
(
M

1
.f

r
e

e
)
,

.

i1 ≥ 25, ., .

.,
E
(
M

1
.f

r
e

e
)
,

.

i1
≥ 25, ., .

Figure 11: Product of service S1 with aspects A1, A2 and A3

In comparison with Figure 9, guards, transitions to Reset and state invariants have been
added to model interrupts and timers.

Compared to a standard weaving a la AspectJ, the final result is similar: new code (i.e.,
advice) is added at various join points. The respective approaches are however quite different.
In AspectJ, design and reasoning are mainly syntactic processes. Aspects specify sets of join
points and code to insert at these points. The programmer usually reasons on the semantics
of the program by (mentally) visualizing the expected source code of the woven code. In our
domain-specific language, where advice is restricted, aspects can be seen as a (timed) property

RR n° 6754

22 Fradet & Hong Tuan Ha

on execution traces. An aspect specifies a set of allowed traces which can be enforced to the base
program using automata product and a concretization into source code.

8 Optimization, verification and concretization

The product (woven) automaton can be

� optimized by taking into account (worst-case and best case) execution times of instructions,
and by removing all useless delays;

� used to model-check general availability properties (e.g., absence of deadlock, boundedness
of the request loop, etc.);

� translated back into a source program.

We briefly present these three steps in turn.

8.1 Optimizations

We describe here how to optimize the woven automaton by taking into account execution time
of instruction. We assume a cost function fcost returning for each instruction of the service a
time interval [bcet(I),wcet(I)] where bcet(I) (resp. wcet(I)) is a best-case (resp. worst-case)
execution time of I. Note that it is always possible to build such a function since the trivial
approximation fcost(I) = [0,+∞] is always safe (if not very useful). Such intervals can be seen
as a new constraint removing all execution traces where I takes less (resp. more) than bcet (I)
(resp. wcet (I)). Again, these constraints are taken into account by a product operation. A
precise cost function (e.g., see [PK89, LMR05]) permits the removal of spurious tests or useless
timers from the woven automaton. For instance, if fcost directly implies that a service releases its
resource before the time limit required by an aspect, no instrumentation will be needed to enforce
this requirement.

In the following, we suppose that we have such a cost function and that it returns the following
results for the instructions of service S1:

fcost(S1Comput) = [2, 10]
fcost(M1.alloc()) = fcost(M2.alloc()) = [0,+∞]
fcost(M1.free()) = fcost(M2.free()) = [0, 0]

The function fcost yields an unbounded time interval for allocations since these instructions depend
on the state of the resource and are blocking. The time information is taken into account by
performing a product with the cost automaton C = (Nc, c0, {k}, ES] ,−→c, Ic) where:

� for any action a such that fcost(a) = [bcet(a),wcet(a)] we have

c0
.,I(a),.−−−−→c qa1, qa1

.,B(a),{k}−−−−−−→c qa2 and qa2
k≥bcet(a),E(a),.−−−−−−−−−−−−→c c0

with qa1 and qa2 fresh states

� the state invariant specifies that control can remain in this state not longer than wcet(a);
that is:

Ic(q) =

{
{k ≤ wcet(a)} if ∃ q k≥bcet(a),E(a),.−−−−−−−−−−−−→c c0 ∈−→c

∅ otherwise

The timer k is reset at the beginning of a. The control remains in the intermediate state at least
until k ≥ bcet(a) and at most until k = wcet(a).

Figure 12 shows this automaton for service S1. We have not represented transitions corre-
sponding to alloc because we do not have useful time information about this instruction.

INRIA

Aspects of Availability 23

k ≤ 10

k ≤ 0

., I(S
1C

omput),
.

., B(S1Comput), {k}

k ≥ 2, E(S1Comput), .

., I(M
.free), .

., B(M.free), {k}

k ≥ 2, E(M.free), .

Figure 12: Automaton constraining execution times of instructions of service S1

Another issue to take into account is that sequencing (i.e., the ; operator) takes no time. In our
framework, this fact can be taken into account by a product with a two-state timed automaton,
the sequencing automaton, E = ({e0, e1}, e0, {seq}, ES] ,−→e, Ie) where:

� each beginning of action goes to state e1 and each end of action goes to e0 resetting the
dedicated timer seq. Intuitively, the state e0 represents the sequencing between actions
(which takes no time) and the state e1 represents an action which may take time.

−→e=

e0

.,I(a),.−−−−→e e1

e1
.,B(a),.−−−−→e e2

e2
.,E(a),{seq}−−−−−−−→e e0

∣∣∣∣∣ B(a) ∈ ES] ∧ E(a) ∈ ES]

� the invariant of state e0 ensures that no time can be spent in this state. No constraint is

placed on state e1.

Ie(e0) = {seq ≤ 0}, Ie(e1) = ∅ and Ie(e2) = ∅

Figure 13 shows this automaton for service S1. To simplify the automaton, we use the special
symbol X which denotes all instructions of the service.

seq ≤ 0

., I(X), .

.,B
(X

),
.

., E(X), {seq}

Figure 13: Automaton for sequencing service S1

The last optimization step consists to take B() transitions at the earliest. This is a bit more
difficult because this transition can be constrained by t ≥ k guards corresponding to wait advices.

RR n° 6754

24 Fradet & Hong Tuan Ha

Each instruction of the woven program described by the three transitions

q0
g0,I(a),r0−−−−−−→ q1 q1

g1,B(a),r1−−−−−−→ q2 q2
g2,E(a),r2−−−−−−→ q3

is transformed using the two following steps:

� the state q1 is made urgent by resetting the clock u on the transition from q0 to q1 and by
having the state invariant I(q1) = {u ≤ 0}.

� a loop is added for each guard (t ≥ k) ∈ g1

q
(t<k),.,.−−−−−→ qw qw

(t≥k),.,u−−−−−−→ q

By definition of abstraction of services, aspect semantics and product of timed automata,
these (t ≥ k) guards represent wait constraints. The state invariant of the state qw is defined
by I(qw) = {t ≤ k} ∪ I(q). The transitions from the state q1 into Reset are also duplicated
on state qw.

For example, when in state q1 which a guard t ≥ k, then either the guard is satisfied and the
action a is performed immediately, or the automaton performs an immediate transition into the
new state qw where time passes until t ≥ k. When t equals k, the transition goes back into state
q1 where a is performed immediately. This case generalizes to any number of wait constraints.

The timed automaton obtained after the product with the cost and sequencing automata
and the transformation to take earliest the B transition is more precise. These optimizations
have integrated time information and have removed many impossible timed traces The resulting
automaton can be analyzed to remove useless guards, timers and invariants as well as unreachable
states. This process optimizes the overhead introduced by the aspect. It is easily carried out by
tools such as uppaal.

Figure 14 shows the service S1 of Figure 11 after product with the sequencing and cost au-
tomaton corresponding to fcost and simplification.

Aspect A2 prevents the service from retaining the resource M2 more than 35 seconds. The
weaving of A2 has no impact on the code since the automaton makes it clear that S1Comput (i.e.,
the use of M2) lasts at most 10 seconds. This information, initially given by fcost and integrated by
product in the service automaton, permits suppression of the useless interrupt i2 and the related
transitions.

8.2 Verification

The previous product automaton is a formal representation of the woven service. We may now want
to verify that woven services satisfy general availability properties that are not directly specified by
aspects. Actually, aspects are best seen as collections of timed properties (or availability policies)
which are supposed to ensure high-level availability properties. These properties can be verified by
model-checking on the woven automaton. This verification step allows also checking that aspects
are not contradictory. For example, an aspect adding waiting periods (e.g., to lower an allocation
frequency) may conflict with another aspect limiting the duration of another resource allocation.
It is also possible to verify global properties (e.g., absence of deadlocks) on the complete system
composed of the woven services and shared resources.

We have used uppaal to represent services and to verify properties expressed as ltl formulas.
We have woven the aspects A1, A2 and A3 on service S1. We have applied similar aspects on
service S2; namely two aspects enforcing to release resource M1 before 10 seconds and resource M2
before 15 seconds. We have verified that the woven system respected the following properties:

� the system is well timed and has no deadlock. Note that deadlocks are prevented by the
aspect resetting S2 after 35 seconds;

INRIA

Aspects of Availability 25

seq ≤ 0

u ≤ 0

seq ≤ 0 u ≤ 0

i1 ≤ 25

i1 ≤ 25 ∧
seq ≤ 0

i1 ≤ 25 ∧
u ≤ 0

i1 ≤ 25 ∧
k ≤ 10

seq ≤ 0

u ≤ 0

k ≤ 0

seq ≤ 0

u ≤ 0

k ≤ 0

Reset

t ≤ 5

.,
I(M1.free),
{u}

t ≥ 5,
B(M1.alloc),

.

t
<

5
,

.,
.

.,
E(M1.alloc),
{seq, t, i1}

.,
I(M2.alloc),
{u}

., B(M2.alloc), .

i < 25,
E(M2.alloc),
{seq}

i1 ≥
25, ., .

i < 25,
I(S1comput),

{u}

i < 25,
B(S1comput),

{k}

i < 25,
E(S1comput),
{seq}

i1
≥ 25

, .,
.

.,
I(M2.free),
{u}

.,
B(M2.free),
{k}

.,
E(M2.free),
{seq}

.,
I(M1.free),
{u}

.,
B(M1.free),
{k}

.,
E(M1.free),
{seq}

t
≥

5
,

.,
{

u
}

Figure 14: Timed automaton of S1 after weaving and optimization

� the service S1 treats a request in less than 35 seconds. This property can be verified using a
new timer avail reset at the beginning of the request loop and by checking avail≤ 35 for
all states. This property has been ensured by weaving. Indeed, S1 cannot wait more than 25
seconds to get its resources (10 seconds for resource M1 and 15 seconds for resource M2) the
woven service S2 must release resource M2 at most after 35 seconds. Since S1Comput takes
at most 10 seconds, S1 will terminate before 35 seconds. This also means that service S1
will always get access to the needed resources and, more generally, that no denial of service
S1 can arise anymore.

The verification of these properties is very fast (less that 1 second). Since uppaal has been used
to analyze complex protocols, we expect that it could verify availability properties of much larger
systems.

8.3 Concretization

The concretization of a standard automaton into our source code is very simple [FH04]. The
concretization of timed automata requires the introduction of timed instructions (initialization of
timers, checking time invariants, timed guards).

In order to take into account the timing facet introduced in the automaton during weaving,
we extend our source language with timed guards and commands.

Guards are extended with timer comparisons:

g ::= t� k | . . . with � ∈ {<,>,≤, . . .}

The following commands are added:

c ::= start(t) | wait(t, k) | reset(i, k) | cancel(i) | . . .

RR n° 6754

26 Fradet & Hong Tuan Ha

where t and i denote identifiers for a timer and an interrupt, respectively, and k denotes an integer.
These commands are the source code equivalent of the advice instructions. The start(t) command
sets and starts a timer t which could be compared to integer constants in guards. Timers are
also used to slow down an execution using the command wait(t, k) that waits while t < k. The
reset(i, k) command programs an interrupt i to arise after k seconds. The cancel(i) instruction
cancels the interrupt i. The commands are the equivalent in source code of the advice instructions.

We sketch how a timed automaton is translated into that extended language. First, the time in-
formation introduced by the cost and sequencing automata are removed since they do not describe
program instructions but merely non-functional properties. Concretization uses the following rules:

� pairs of transitions of the form

(q1
.,I(a),r−−−−→ q2, q2

.,B(c),.−−−−→ q3, q3
.,E(c),.−−−−→ q4)

correspond to a command c and are translated into the instruction lq1 : c ; lq4;

� pairs of transitions of the form

(q1
.,I(g),.−−−−→ q2, q2

.,B(g),.−−−−→ q3, q3
.,E(g),.−−−−→ q4

q1
.,I(g),.−−−−→ q′2, q′2

.,B(g),.−−−−→ q′3 q′3
.,E(g),.−−−−→ q′4)

correspond to a guard g and are translated into the instruction lq1 : g ; lq4 ; lq4′ ;

� pairs of transitions of the form

(q1
g∧G,I(a),.−−−−−−→ q2, q1

¬g∧G,I(a),.−−−−−−−→ q3)

correspond to a guard g added by an aspect and are translated into the instruction lq1 : g ;

lq2 ; lq3. Concretization proceeds with the transitions

(q′1
G,I(a),.−−−−−→ q′2, q

′
1

G,I(a),.−−−−−→ q′3)

� a loop q
t<k,.,.−−−−→ q′

t≥k,.,seq−−−−−−→ q involves the insertion of the command wait(t, k) before the
corresponding program point (i.e., lq);

� the reset of a timer t in a transition q
g,E(a),{t}−−−−−−→ q′ is translated by the insertion of a command

start(t) after the program point corresponding to q′ (i.e., lq′);

� interrupts involves inserting the command reset(i, k) at the initialization of i (i.e., i is within
a reset) and the command cancel(i) at the program point corresponding to the first state
where there is no invariant i ≤ k anymore.

Figure 15 shows the source code of service S1 obtained after the concretization of the automaton
of Figure 14. After the command M1.alloc(), a new interrupt i is set to arise after 25 seconds.
When the service takes less than 25 seconds to complete its treatment, the resource M1 is released
(M1.free()) and the interrupt is canceled (cancel (i)).

INRIA

Aspects of Availability 27

S1 =

l0 : getUser() ; l1
l1 : M1.alloc() ; l′1
l′1 : reset(i, 25) ; l2
l2 : M2.alloc() ; l3
l3 : S1Comput() ; l′3
l′3 : cancel(i) ; l4
l4 : M2.free() ; l5
l5 : M1.free() ; l′6
l6 : endUser() ; l0

Figure 15: Code of service S1 after weaving

9 Implementation issues

We have previously implemented related techniques [CF00, FH04] based on similar steps (abstrac-
tion, weaving, optimization, concretization) in a simpler, untimed, setting. The source language
was a simple Pascal-like imperative language and aspects were safety properties expressed as finite
state automata. The extension to timed properties has not been implemented and the experiments
related in this article were conducted manually. In this section, we review implementation issues
raised by availability aspects. We focus on the core of the technique, that is to say the abstraction,
weaving, optimization, verification and concretization steps.

Abstraction Abstraction relies on a control flow analysis (CFA) to produce a safe control-flow
automaton. This step makes the rest of the approach independent of the source programming
language. In particular, our approach is not limited, nor specialized, to the simple imperative
language taken in the article.

There are many CFA variants and it is always possible to trade precision for efficiency. For first
order languages, determining the control flow graph is considered almost trivial and most research
on CFAs consider higher-order languages whose complexity goes from polynomial to exponential
time [HM07]. It is easy to design linear-time analyses producing a safe control-flow automaton
for a standard imperative language. However, modeling procedure calls and returns by a timed
automaton is a crude approximation of procedural programs. In [CF00] we extend finite automata
with return stacks to represent inter-procedural control flow more precisely. A similar extension
of timed automata, as well as the corresponding weaving, optimization and concretization steps,
could certainly be designed. However, it is unlikely that the verification process could be extended
to tackle these new automata.

Note that only instructions related to resource management need to appear in the control flow
graph. Parts of the program which do not include such instructions may often be summarized by
a single event. Therefore, the automaton produced by the abstraction is typically much smaller
than the base program itself.

Weaving Weaving per se is a timed automata product. It is a simple operation but it may cause
a blow up of the number of nodes of the resulting automaton. Even if the automata representing
the aspects and the program are small, the multiplication of nodes may result in duplicating
large chunks of the base program during concretization. We have previously proposed a method
preventing all duplications in the context of finite state automata [CF00]. We describe the main
ideas of this technique and how it can be adapted to timed automata on small examples.

Figure 16 presents a small example of weaving a safety property using finite state automata
and product. It comprises:

(a) a base program automaton whose traces belongs to the language (aba∗b)∗;

RR n° 6754

28 Fradet & Hong Tuan Ha

(b) an aspect enforcing that each event a is followed immediately by the event b. Otherwise the
program must be reset;

(c) the standard automata product where the program is reset if the loop a∗ is taken more than
once.

a b

a

b Reset

else
a

elseb

(a) Small base program (b) Safety aspect (untimed)

Reset

a b a

b

a

b

(c) Woven program

Figure 16: Weaving as a standard automata product

Apart from the special Reset node, the woven program has one more state (i.e., a new control
point) than the base program. In general, the woven automaton may have n×m states where n
and m are the number of states of the base program and aspect automata respectively.

To prevent duplication, we define a so-called instrumented product where the state of the aspect
automata is encoded and manipulated as an integer variable. Figure 17 (a) presents the direct
instrumented product of the previous example. The automaton keeps the same number of states
(except from Reset). Instead, the automaton is equipped with additional structures (variable,
guards and assignments) to mimic the aspect automaton. The variable s represents the state of
the aspect (initially 1). Each transition of the base program tests s and makes it evolve as if the
aspect was executed in parallel. For instance, the loop-state can execute a if the aspect is in state
1 (in which case it goes to state 2), or performs a reset if the aspect is in state 2. That automaton
is easily encoded in uppaal which allows guards and assignments on bounded integer variables.

A naive instrumented product adds an assignment and a guard for each event of the base
program in the alphabet of the aspect but many optimizations are possible. In our example, it is
easy to show that s is always equals to 1 in the initial state and equals to 2 in the second state.
Tests and assignments are useless for the corresponding transitions; they can be suppressed (see
Figure 17 (b)). In [CF00], we describe how to produce optimal (in terms of number of assignments)
instrumentations. Actually, it is easy to show that assignments are only needed (yet not always)
to distinguish between paths arriving at the same node. For a simple imperative base program,
this involves adding at most an assignment for each conditional or loop statement.

The technique is easily adapted to timed automata. Figure 18 presents instrumented product
with the same base program automaton as before and an availability aspect enforcing that each
event a is followed by an event b after at most 5 time units (otherwise the program must be reset).

The naive instrumented automata product is shown in Figure 18 (c). The encoding is similar
as before. The underlying transition relation is encoded using guards and assignments on the

INRIA

Aspects of Availability 29

Reset

s := 1 s = 1, a, s := 2 b, s := 1

s = 1, a, s := 2

b, s := 1

s = 2, a

s = 2, a

(a) Direct instrumentation

Reset

s := 1 a b

a, s := 2

b, s := 1

s = 2, a

(b) Optimized instrumentation

Figure 17: Weaving as an instrumented automata product

state variable s. As a state may represent several states of the underlying product automaton,
invariants can be disjunctions made of the invariants of the represented states.

The automaton, optimized using the same techniques as before, is shown in Figure 18 (d). The
transition from the second state to Reset is useless since the action b occurs immediately after a.
It will be removed by subsequent temporal optimizations (see Section 8)

The resulting automaton is nearly an uppaal automaton. The only departure is the disjunctive
invariants which must be conjunction in uppaal. However, in our case, the disjunctions are
mutually exclusive and it is very easy to rewrite this automaton into pure uppaal syntax before
performing the verification step.

Instrumented product entails a linear code expansion in the worst case whereas a synchronized
product may entail a quadratic blowup. The complexity remains the same with multiple aspects
which can be represented by a single aspect (their product automaton) and woven, as before, using
a single variable representing its state.

Of course, the standard or instrumented product automata represent the same automaton. The
instrumentation is just a compact encoding that will not change the complexity of the verification
step. The objective of this technique is only to prevent the production of too large programs. The
size of a woven program will always remains close to the size of the corresponding base program.
This benefit comes at the price of assigning and testing the variable representing the state of
the aspect. Even if a small time overhead is preferable to a space explosion, there are also cases
where the standard product is more appropriate. A possible extension would be to give the user
the opportunity to specify on which automaton (or on which parts of an automaton) standard or
instrumented product must be used.

Optimization, verification and concretization The optimization step is expressed as a prod-
uct with small automata. It relies in part on a cost analysis which may be expensive to be precise.
Again, many tradeoffs between cost and precision are possible. For example, it is possible to
produce efficiently a cost function by assigning their wcet to basic blocks of instructions and
[0,+∞] to those containing problematic constructs such as while loops, recursion, etc.. The veri-
fication step is potentially highly costly. Model checking timed properties (e.g., TCTL) for timed
automata is PSPACE-complete [AD94]. Instrumented product does not improve this step since
all the encodings (using a bounded integer variable and disjunctive invariants) entails expansion

RR n° 6754

30 Fradet & Hong Tuan Ha

a b

a

b

i < 5

Reset

else
a, i

else

i ≥ 5i < 5, b

(a) Small base program (b) Timed aspect

s = 1 ∨ (s = 2 ∧ i < 5)

Reset

s := 1 s = 1, a, s := 2; {i} i < 5, b, s := 1

i
≥

5
s = 1, a, s := 2; {i}

s = 2, a

i ≥
5

b, s := 1

(c) Direct instrumentation

s = 1 ∨ (s = 2 ∧ i < 5)

Reset

s := 1 a, {i} b

i
≥

5

s = 1, a, s := 2; {i}

s = 2, a

i ≥
5

b, s := 1

(d) Optimized instrumentation

Figure 18: Weaving as an instrumented timed automata product

of the model before or during the verification. Nevertheless, uppaal is able to verify properties
of large systems. The last step, concretization, is a linear time traversal of the automaton.

To summarize, the verification is the only step whose cost may be prohibitive. However, this
is an optional step in the weaving process. The main objective is to express resource management
policies separately and to implement (weave) them automatically. Actually, with appropriate
tradeoffs the weaving of availability aspects can be implemented in linear time.

10 Case study

Our case study is the program of an automatic teller machine (ATM) which is a standard software
engineering example (see e.g., [SDV95, RKW95]). An ATM usually includes several constraints
about, for example, the duration or the number of tries to enter the PIN. The implementation
of these constraints is usually scattered across the program and represents a typical crosscutting
concern.

We show how our approach can simplify the implementation of these constraints by specifying
them separately from the basic functionality. Some constraints are temporal and require the use of
timers and waiting loops; others are untimed safety properties. Our approach permits to describe
all of them as aspects. In that respect, the case study shows that our technique can be applied to
general, timed or untimed, safety properties.

INRIA

Aspects of Availability 31

The base functionality of the ATM is defined by the following program:

ATM =

l0 : waitCard() ; l1
l1 : pinPrompt() ; l2
l2 : enterPin() ; l3
l3 : checkPin() ; l4 ; l1
l4 : amountPrompt() ; l5
l5 : enterAmount() ; l6
l6 : checkAmount() ; l7 ; l4
l7 : cashCollection() ; l8
l8 : cardReturn() ; l0

In its initial state, the ATM waits for a user to insert a card (waitCard()). Then, it prints a

prompt asking for the PIN (pinPrompt()), waits for it (enterPin()) and checks it (checkPin()).
If it is invalid, the ATM loops and asks for a new PIN. If the PIN is valid, it asks for the amount
to withdraw (amountPrompt()), waits for it (enterAmount()) and checks it (checkAmount()). If it
is invalid, the ATM loops and asks for a new amount. If the amount is valid, the ATM yields the
corresponding cash (cashCollection()) and returns the card (cardReturn()).

We consider three different constraints concerning the time limit to enter the PIN, the number
of tries allowed and the maximum duration of the treatment after a correct PIN is entered. They
are described by the three following aspects.

Aspect A1 specifies that the PIN have to be entered between 5 and 60 seconds after printing
of the prompt.

A1 =
{
a1 = pinPrompt . {reset(i1, 60), start(t1)}; a2

a2 = enterPin . {wait(t1, 5), cancel(i1)}; a1

}
After the instruction pinPrompt, an interrupt i1 is programmed to be triggered 60 seconds later
and the timer t1 is started to enforce that enterPin is executed at least 5 seconds after pinPrompt.
Then, the instruction enterPin cancels the interrupt i1.

Aspect A2 specifies that after entering three invalid PINs, the ATM must be reinitialized.

A2 =

a1 = checkPin . nop; a2

a1 = checkPin . nop; a1

a2 = checkPin . nop; a3

a2 = checkPin . nop; a1

a3 = checkPin . reset(i2, 0); a1

a3 = checkPin . nop; a1

The reinitialization is done using an immediate reset (reset(i2, 0)).

Aspect A3 imposes that the duration of the treatment after a correct PIN is entered may not
exceed 180 seconds.

A3 =
{
a1 = checkPin . reset(i3, 180); a2

a2 = cardReturn . cancel(i3); a1

}
In these aspects, the reset returns the card and reinitializes the ATM in its initial state waiting

for a card. This is the correct behavior when time constraints are violated. However, an actual
ATM usually keeps the card after three invalid PINs. A parameterized reset instruction would be
sufficient to express these different kinds of reinitializations.

All the instructions of the base program are not of interest for the aspects. The abstraction
aggregates the instructions from l4 to l7 into a single composite one. In order to present a simpler
automaton, we use the instruction treatment to represent the block of instructions from l4 to
l8 (i.e., including cardReturn). The aspect A3 is rewritten to check that the duration between
checkPin and the end of treatment does not exceed 180 seconds.

Figure 19 shows the timed automaton of the ATM obtained after abstraction, weaving and
optimization. Aspects A1 and A3 are woven by a standard timed automata product. Since

RR n° 6754

32 Fradet & Hong Tuan Ha

a standard product with aspect A2 would duplicate nodes, we weave it using an instrumented
product (see Section 9).

As in section 8, we make use of timers (here u, k and seq) to take into account the execution
time of instructions, the immediate sequencing of instructions and to take B() transitions at the
earliest. We have considered that all the basic instructions of the ATM lasted one second except
the instructions waiting for the user’s input which have an unbounded execution time. That
timing information permits to analyze the automaton to remove useless transitions. For example,
the interruption i1 of aspect A1 can only be triggered in three states of the woven automaton.

seq ≤ 0 u ≤ 0 seq ≤ 0

u ≤ 0

k ≤ 1

seq ≤ 0

u ≤ 0

seq ≤ 0

u ≤ 0

k ≤ 1

u ≤ 0k ≤ 1

seq ≤ 0

u ≤ 0

Reset

s := 1

.,
I(waitCard()),
{u}

.,
B(waitCard()),
.

.,
E(waitCard()),
{seq}

s ≤ 3, I(pinP rompt),
{u}

s
>

3
,

.,
.

., B(pinP rompt), {k}

., E(pinP rompt),
{seq, i1}

., I(enterP in), {u}

., B(enterP in), .

i 1
<

5,
.,

.

i 1
>
=

5∧

i 1
<

60
,
.,

.

i1
>
=

60, ., .

., E(enterP in), {seq}

i1
>=

60
, .,

.

.,

I(checkP in),
{u}

., B(checkP in), {k}

.,

E(checkP in),
s++; {seq}

i 1
>
=

60
,
.,

.

.,
I(checkP in),
s := 1; {u}

.,
B(checkP in),
{k}

.,
E(checkP in),
{i3, seq}

.,
I(treatment),
{u}

.,
B(treatment),
.

i3 < 180,
E(treatment),
{seq}

i3
>= 180

, ., .

Figure 19: Timed automaton of the ATM after weaving and optimization

The state of the automaton A3 is encoded by the integer variable s which is initialized to 1.
Transition E(checkP in) is annotated by s++ which summarizes the state-transition table of the
aspect A2 (the state of A2 changes each time an invalid PIN is entered). The program is reset
after E(checkP in) if s > 3 i.e., if more than three invalid PINs have been entered.

It can be verified that the complete treatment (from the insertion of the card until it is returned)
takes between 6 and 363 seconds (at worst, 3*61 seconds to enter a PIN and 180 seconds for the
treatment).

INRIA

Aspects of Availability 33

Concretization of the woven automaton yields the following program:

ATM =

l0 : s := 1 ; l1
l1 : waitCard() ; l2
l2 : s > 3 ; l3 ; l4
l3 : reset(i2, 0) ; l0
l4 : pinPrompt() ; l5
l5 : reset(i1, 60) ; l6
l6 : start(t1) ; l7
l7 : wait(t1, 5) ; l8
l8 : cancel(i1) ; l9
l9 : enterPin() ; l10
l10 : checkPin() ; l13 ; l11
l11 : s++ ; l2
l12 : reset(i3, 180) ; l13
l13 : amountPrompt() ; l14
l14 : enterAmount() ; l15
l15 : checkAmount() ; l16 ; l13
l16 : cashCollection() ; l17
l17 : cardReturn() ; l18
l18 : cancel(i3) ; l1

Usually, the specification of an ATM does not separate the basic functionality from the treat-

ment of errors. Our approach makes the separation of these concerns possible.

11 Related work

Yu and Gligor [YG90] present a method to verify that a resource allocator remains available. In
their framework, a denial of service is defined as a scenario between one or several users preventing
some others to access a resource.

They consider systems composed of users and resources. Users are specified by sequences of
requests. Resources are formally specified by:

� a collection of access operations. For example, mutex resources involve the operations take
and release;

� an internal state (a set of variables). A mutex resource has a boolean indicating whether the
resource is allocated or free as well as a variable recording the identity of the user owning
the resource;

� properties specifying the proper use of the resource. Such properties might be, for example,
that users’ requests are processed one at a time in a fifo ordering.

Yu and Gligor’s model considers finite time availability properties. Typically, properties ex-
press that requests will be processed in a finite (but not necessarily bounded) amount of time.
Bounded time availability properties are stronger constraints. Yu and Gligor make clear that some
constraints must be enforced on users to guarantee the availability of resources. User agreements
define properties (e.g., liveness) that users must satisfy. For example, a user performing a request
take on a mutex resource must eventually perform a release. Their methodology allows to prove
that the system specification and user agreements guarantee the expected availability properties.
For a mutex resource, it consists to show that every take and release requests are eventually per-
formed. Availability is guaranteed if user agreements ensure that any take is eventually followed
by a release.

Millen [Mil94] considers other availability policies based on bounded (the resource will be
granted before a given delay) or probabilistic (the resource will be granted according a probabilistic

RR n° 6754

34 Fradet & Hong Tuan Ha

law) waiting time. His model relies on a global monitor managing all resource accesses. The
monitor uses a Denial Protection Base (DBP) extending the standard Trusted Computing Base
(TCB). A DBP ensures that all requests are performed through the monitor and that resources
can be released by the monitor. Ensuring the access to resources is not sufficient to prevent every
denial of service. Indeed, the resource can be released by the monitor before the user is done.
Users should specify the resource they need but also the time they need to retain it.

Our framework can be seen as an adaptation of Yu and Gligor’s framework to bounded time
policies. In particular, our services can be seen as their users and aspects as user agreements. In
both cases, availability properties can be proved by taking into account the specification of the
system and aspects/user agreements. Of course, the major difference is the use of aspects which
allows a better separation of concerns and, above all, an automatic instrumentation of programs
using weaving. As Millen’s monitors we consider bounded time properties. However, we make
use of local properties which are designed for and woven to each service. Local policies often
suffice to ensure availability properties. They are also easier to design, understand and implement
efficiently.

Cuppens and Saurel [CS99] introduce a framework based on temporal and deontic logics to spec-
ify availability policies. They can verify the internal consistency of availability policies, whether a
policy ensure specific and required availability properties or if a (logical specification of a) system
satisfies an availability policy. Their approach is suitable to verify policies a posteriori but not to
enforce them.

J-Seal2 [BHV01] is a secure mobile agent system proposing a simple and global mechanism
to ensure availability of processors and memory. The system provides resource control to limit
the usage of physical resources like CPU and of logical resources like threads. Their main goal
is a completely portable implementation of resource control. It is described in terms of code
instrumentation but it is not generic enough to be used for other types of resources (e.g., resources
with exclusive access).

Nandivada and Palsberg [NP05] abstract a TCP server into a timed automaton. A WCET
analysis is performed on the intermediate RTL code produced by gcc. They focus on flooding
attacks which are also represented as timed automata. uppaal is applied to the whole system
(server and attacker) to verify the ability of the TCP server to survive denial-of-service attacks.
They do not consider the enforcement availability properties but we could reuse their timing
analysis to abstract our services and infer time information.

Several AOP-related approaches also rely on automata. Let us mention:

� Ligatti, Bauer and Walker [LBW05] who introduce edit automata which may terminate
programs as well as suppress or insert sequences of actions. These automata are used to
implement security monitors and enforce safety properties;

� Sipma [Sip03] represents aspects as transformations of transition systems. That framework
is used to formally analyze common aspect constructs.

� Altisen, Maraninchi and Stauch [AMS06] investigate the use of AOP for reactive languages.
They propose a dedicated aspect language and prove that weaving preserves the usual be-
havioral equivalence for reactive systems.

Their respective goals and techniques are quite different from ours; in particular, none of them
consider timed properties and automata.

12 Conclusion

We have proposed a formal framework to enforce availability properties on services sharing re-
sources. At a practical level, we have defined a domain-specific aspect language dedicated to the
prevention of denial of service. At a methodological level, our approach promotes a formal view
of AOP with aspects as properties and weaving as an automata product.

INRIA

Aspects of Availability 35

We have shown in [Hon07] the correctness of the whole approach (abstraction, weaving, con-
cretization) in a simpler (untimed) setting. We have shown that if a program respects the aspect
(a safety property) then the woven program has the same behavior. If a program does not respect
the aspect then the woven program is stopped just before the violation. With availability aspects,
proofs need to refer to the timed semantics of services. We have not completed that generalization
yet but we believe that the structure of the proofs remains identical.

The implementation of our technique is likely to be realistic. The representation of services
should remain of moderate size since code unrelated to resource management can be represented
by a single instruction. The costs of analyses (control flow, execution time) can be controlled by
adjusting the precision of their approximation. Finally, if a weaving based on a standard automata
product may involve a code explosion in some cases, it is easy to circumvent this problem by
replacing code duplication by code instrumentation (see [CF00]).

This research belongs to a series of work considering aspects as formal properties on execution
traces. The joint technique is to translate programs and aspects into (various forms of) automata
and to express weaving as a kind of automata product.

� in [CF00], we have proposed a technique to enforce user-defined security policies expressed
as automata. A potential use of the method is the securing of applets using a just-in-time
weaving of the policies/aspects. The instrumentation performed by weaving ensures that
the applet will be stopped just before it tries to infringe the policy;

� in [FH04], we have proposed domain-specific aspects to specify and enforce scheduling policies
to networks of communicating processes. A scheduling aspect (expressed as an automaton)
selects a subset of allowed execution traces of the set of all possible interleavings. This tech-
nique permits transformation of a network into an equivalent (and more efficient) sequential
program;

� in this article, we have generalized our previous framework to timed automata in order to
express and enforce properties on execution time. We can prevent some execution traces
and also modify their timed behavior. Our aspect language is expressive enough to specify
many different availability policies.

That series shares the same goal of keeping the semantic impact of weaving under control in
order to permit reasoning (analyses, verification, proofs) on aspect-oriented programs. In general
purpose aspect languages with unrestricted advice, it is very difficult, in general, to predict the
effect of weaving and to reason compositionally.

We are currently completing the formalization of the concretization and the associated correct-
ness proofs. A useful extension would be to provide better support for the prevention of deadlocks.
Limiting the duration of resource allocation or enforcing an allocation ordering (cf. section 6.2)
permits avoidance of deadlocks. However, these techniques are not always satisfactory. The system
can often be stuck waiting for a time limit to be reached. Worse, a bad allocation ordering may
involve systematic interrupts of services which will not be able to perform their task anymore. A
better solution would be to transform services such that they allocate some resources earlier (but
therefore longer) to satisfy the allocation ordering specified by the aspect. We have not formalized
this transformation but it seems that static analyses techniques would be useful to find the best
timing satisfying the allocation ordering. Another option would be to specify global policies for
deadlock prevention. Shared variables representing the availability of resources could be used to
schedule their allocation to services. Using such information, an aspect could state, for example,
that allocating a resource is not possible if another resource is already allocated to another service.

Another interesting research direction would be to model in our framework more sophisticated
availability policies relying, for example, on dynamic performance evaluation, admission control
or priorities.

Acknowledgements This work has been supported by the ACI Dispo project.

RR n° 6754

36 Fradet & Hong Tuan Ha

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[Alu99] Rajeev Alur. Timed automata. In 11th International Conference on Computer Aided
Verification, volume 1633 of Lecture Notes in Computer Science, pages 8–22. Springer,
1999.

[AMS06] K. Altisen, F. Maraninchi, and D. Stauch. Aspect-oriented programming for reactive
systems: Larissa, a proposal in the synchronous framework. Sci. Comput. Program.,
63(3):297–320, 2006.

[BHV01] Walter Binder, Jane G. Hulaas, and Alex Villaz. Portable resource control in java. In
OOPSLA ’01: Proceedings of the 16th ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications, pages 139–155. ACM Press, 2001.

[BY03] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In
Lectures on Concurrency and Petri Nets, LNCS vol. 3098, pages 87–124. Springer, 2003.

[CF00] Thomas Colcombet and Pascal Fradet. Enforcing trace properties by program trans-
formation. In Symposium on Principles of Programming Languages (POPL’00), pages
54–66, 2000.

[CS99] F. Cuppens and C. Saurel. Towards a formalization of availability and denial of service. In
Inf. Syst. Tech. Panel Symp. on Protecting Nato Information Systems in the 21st century,
1999.

[DFS02] Rémi Douence, Pascal Fradet, and Mario Südholt. A framework for the detection and
resolution of aspect interactions. In Proc. of Conference on Generative Programming and
Component Engineering (GPCE’02), LNCS vol. 2487, pages 173–188. Springer–Verlag,
2002.

[DFS04] Rémi Douence, Pascal Fradet, and Mario Südholt. Trace-based aspects. In Mehmet
Aksit, Siobhn Clarke, Tzilla Elrad, and Robert Filman, editors, Aspect-Oriented Software
Development, pages 201–217. Addison-Wesley, 2004.

[FH04] Pascal Fradet and Stéphane Hong Tuan Ha. Network fusion. In Prog. Lang. and Syst.:
Second Asian Symposium, (APLAS’04), LNCS vol. 3302, pages 21–40, 2004.

[FH05] Pascal Fradet and Stéphane Hong Tuan Ha. Systèmes de gestion de ressources et aspects
de disponibilité. In 2e Journée sur le Développement de Logiciels Par Aspects (JFDLPA
2005), September 2005.

[FH06] Pascal Fradet and Stéphane Hong Tuan Ha. Systèmes de gestion de ressources et as-
pects de disponibilité. L’Objet - Logiciel, bases de données, réseaux, 12(2-3):183–210,
September 2006.

[FH07] Pascal Fradet and Stéphane Hong Tuan Ha. Aspects of availability. In Proc. of the
sixth international conference on generative programming and component engineering
(GPCE’07), pages 165–174. ACM Press, 2007.

[HM07] David Van Horn and Harry G. Mairson. Relating complexity and precision in control flow
analysis. In ICFP ’07: Proceedings of the 12th ACM SIGPLAN international conference
on Functional programming, pages 85–96, 2007.

[Hon07] Stéphane Hong Tuan Ha. Programmation par aspects et tissage de propriétés. Application
à l’ordonnancement et à la disponibilité. PhD thesis, Rennes University, January 2007.

INRIA

Aspects of Availability 37

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. Lecture Notes in Computer Science,
2072:327–355, 2001.

[Lap92] J.-C. Laprie. Dependability: Basic Concepts and Terminology. Dependable Computing
and Fault-Tolerant Systems. Springer, 1992.

[LBW05] J. Ligatti, L. Bauer, and D. Walker. Edit automata: enforcement mechanisms for run-
time security policies. Int. J. Inf. Security, 4(1-2):2–16, 2005.

[LMR05] Xianfeng Li, Tulika Mitra, and Abhik Roychoudhury. Modeling control speculation for
timing analysis. Real-Time Syst., 29(1):27–58, 2005.

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Int. J.
on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[LZ97] Jussipekka Leiwo and Yuliang Zheng. A method to implement a denial of service protec-
tion base. In ACISP ’97: Proceedings of the Second Australasian Conference on Infor-
mation Security and Privacy, pages 90–101. Springer-Verlag, 1997.

[Mil94] J. K. Millen. A resource allocation model for denial of service protection. Journal of
Computer Security, 2(2), 1994.

[NP05] V. Krishna Nandivada and Jens Palsberg. Timing analysis of TCP servers for surviving
denial-of-service attacks. In IEEE Real-Time and Embedded Technology and Applications
Symp., pages 541–549, 2005.

[PK89] P. Puschner and Ch. Koza. Calculating the maximum, execution time of real-time pro-
grams. Real-Time Syst., 1(2):159–176, 1989.

[RKW95] B. Regnell, K. Kimbler, and A. Wesslen. Improving the use case driven approach to re-
quirements engineering. In IEEE International Conference on Requirements Engineering,
pages 40–48, 1995.

[Rus94] J. Rushby. Critical system properties: Survey and taxonomy. Reliability Engineering and
Systems Safety, 43(2):189–219, 1994.

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and
System Security, 3(1):1–50, February 2000.

[SDV95] S. Somé, R. Dssouli, and J. Vaucher. From scenarios to timed automata: building
specifications from users requirements. In Asia Pacific Software Engineering Conference,
pages 48–57, 1995.

[Sip03] Henny Sipma. A formal model for cross-cutting modular transition systems. In Workshop
on Foundations of Aspect-Oriented Languages (FOAL’03), 2003.

[YG90] C.-F. Yu and V. D. Gligor. A specification and verification method for preventing denial
of service. IEEE Trans. Soft. Eng., 16(6):581–592, 1990.

RR n° 6754

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

