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Multisensor Input for CPG-Based Sensory—Motor
Coordination

R. Héliot and B. Espiau

Abstract—This paper describes a method for providing in real time a
reliable synchronization signal for cyclical motions such as steady-state
walking. The approach consists in estimating online a phase variable on
the basis of several implicit central pattern generator associated with a
set of sensors. These sensors can be of any kind, provided their output
strongly reflects the timed motion of a link. They can be, for example, spatial
position or orientation sensors, or foot sole pressure sensors. The principle
of the method is to use their outputs as inputs to nonlinear observers of
modified Van der Pol oscillators that provide us with several independent
estimations of the overall phase of the system. These estimations are then
combined within a dynamical filter constituted of a Hopf oscillator. The
resulting phase is a reliable indexing of the cyclic behavior of the system,
which can finally be used as input to low-level controllers of a robot. Some
results illustrate the efficiency of the approach, which can be used to control
robots.

Index Terms—Central pattern generator (CPG), oscillator, sensors,
sensory–motor coordination.

I. INTRODUCTION

A classical way of generating cyclic motions for articulated systems
is to synthesize a rhythm generator, called central pattern generator
(CPG). The CPG concept comes from biology [1], [2]; it is a small
neural network, located at the spinal level, able to generate rhythmic
commands for the muscles. CPGs receive inputs from higher parts of
the central nervous system, and also from peripheral afferents; thus,
its functioning results from an interaction between central commands
and local reflexes. The implementation of this artificial CPG is usually
achieved either by designing and training an adequate artificial neural
network [3], or by using explicitly nonlinear differential equations act-
ing as an adaptable dynamical oscillator [4]. This concept allows us
to easily achieve coordination between different limbs, using indepen-
dent oscillators for each limb, that are coupled together. In that case,
phase oscillators are often used in order to easily model the interaction
between two oscillators [5], [6].

When several actuators that need to be synchronized are consid-
ered, e.g., for multilegged robots, multiple or coupled oscillators can
be used, generally under the control of a master CPG. For this kind
of classical CPG-based approach, the literature is quite extensive [4],
[7]–[9]. However, the need for adaptation of the system to environ-
mental changes, external requirements, or proprioceptive information
through sensory signals is more rarely addressed. We can nevertheless
refer the reader to a few recent papers in the field that give a good
idea of the state of the art; in [10], a robot fish can avoid obstacles
through infrared sensors, the output of that will allow the system to
select CPG model strategies among a set of predefined ones. Fukuoka
et al. [11] modulate the phase of a neural oscillator on the basis of the
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Automatique (INRIA) Rhône Alpes, 38334 Saint Ismier Cedex, France (e-mail:
bernard.espiau@inria.fr).

Digital Object Identifier 10.1109/TRO.2008.915433

1552-3098/$25.00 © 2008 IEEE

HAL
Rectangle 



192 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 1, FEBRUARY 2008

Fig. 1. CPG-based architecture with sensory inputs integration.

measurement of body angle for driving a quadruped robot on rough ter-
rain. A similar approach is reported in [12]. In [13], the synchronization
of the walk of a biped robot is ensured by triggering an oscillator upon
the event emitted by a touch sensor placed on the foot. Simoni and
DeWeerth [14] propose a control scheme for a single-link rigid system
based on a silicon neural CPG, which integrates an internal feedback
from a position encoder.

Nevertheless, there remains a lack in design tools in the domain of os-
cillators and synchronization. A lot of analysis tools are available [15],
[16], but few synthesis ones, as pointed out by Bailey [17] and Righetti
et al. [18]. In fact, it appears that the question of using continuously a
set of sensor measurements as driving inputs to an artificial CPG aimed
at controlling several links in a safe way is still an open question. In
this paper, we propose to address this question in the following way:
we consider a set of nonlinear oscillators, each of them is forced by
the output of a sensor that gives a time-indexed first-order information
on the motion. Whatever is the used technology, this information is
assumed to represent continuously the cyclic motion of the system. We
then reconstruct the useful part of the state of every oscillator through
adequate observers and combine them to finally estimate a single rel-
evant value of the whole synchronized motion: its phase. It should be
emphasized that this phase estimation has to be done online when it
has to be used in a control scheme; therefore, classical offline phase
estimation methods such as Hilbert transform [19] cannot be used.

Finally, our goal is to integrate a set of inputs within a robot control
architecture based on a master-oscillator-based CPG driving the differ-
ent joints (see Fig. 1). Although such a controller is not a pure reflection
of the biology, this simplified architecture is very adequate to control a
robot where the coordination of many degrees of freedom is a critical
issue, as it is the case in bipedal robotics. Here, every individual link
motion synchronized with respect to the inputs can be generated using
the previously estimated phase as a time-scaling variable, and fed into
low-level controllers.

The paper is organized as follows: after having introduced some
basic concepts, we describe the methods used for designing an oscil-
lator, its related observer, and the phase estimation. We then present
the method of fusion of individually estimated phases, and finally, give
some results from real experimental data. Future workplans are drawn
in Section IV.

II. METHODS

The basic assumption in the proposed approach is that considered
motions reflect a cyclical or a periodic activity: this means that all in-
volved signals (sensor outputs, control variables, etc.) can be described
along a cycle. In order to assign to these variables a kind of relative
position on the cycle, the phase ϕ can be introduced as a coordinate
along the limit cycle [15], i.e., as a variable that grows uniformly in the

Fig. 2. Principle of the integration of sensor signals.

direction of the motion and gains 2π during each rotation, thus obeying
the equation

dϕ

dt
= ω0 (1)

where ω0 = 2π/T0 is the frequency of the oscillations when unforced.
Knowing that several variables have to be combined in order to find

a unique synchronization signal, the proposed method works in two
steps (see Fig. 2):

1) phase estimation for each sensor;
2) fusion of individual phases in a global phase variable.
In the following, we will take a bipedal gait observation as an ex-

ample, with three different sensors: a thigh inclination sensor, a shank
inclination sensor, and pressure insoles on both feet. When needed,
especially in the phase estimation part (Section II-A), we will focus on
a specific sensor, the thigh inclination angle signal, in order to illustrate
the method.

A. Phase Estimation

A phase estimator can be issued from an oscillator that has to syn-
chronize with a given cyclic sensory input. The methodology we use
to synthesize such an oscillator can be summarized in the following
steps.

1) Build a phenomenological model of the evolution of the sensor
measurements resulting from a cyclical motion, under the form
of a nonlinear oscillator.

2) Build an observer of this system, wherein the injected actual
sensor measurements are present.

3) Compute the phase from the estimated state variables.
1) Nonlinear Oscillator Model: Let us now consider the modeling

under the form of an oscillator of the time evolution of the thigh in-
clination in standard human gait. From a mechanical point of view,
the motion of a human body restricted to a tree-form kinematical
structure with variable unilateral ground contacts can be modeled us-
ing a Newton–Euler or a Lagrangian approach, leading to a nonlinear
second-order system; from a biomechanical point of view, the standard
steady-state human walking corresponds to minimal metabolic energy
consumption and is naturally reached after some transient steps. All
these facts reflect at the link level, therefore in the thigh angle itself
and its measurement. It finally appears that searching for an oscillator
of second-order type and exhibiting a limit cycle is a natural way of
modeling the steady-state behavior of a human leg link measured with
an adequate sensor.

As detailed in [20], we have, therefore, chosen a Van der Pol equation
as a model of the system, the damping term of that has been modified
to take into account asymmetrical patterns:

ẍ − µ(1 − bx − x2 )ẋ + ω2
0 x = 0. (2)
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Fig. 3. Computation flow of the phase estimator.

2) Observer Design: After having computed offline the three param-
eters of the oscillator that give the best fitting of its limit cycle with
respect to a set of recorded actual measurements, a dedicated nonlinear
observer can be built under the form

Σ′ :

{
ż = −z +

(
k1 − ω2

0

)
y + k2y

2 + k3y
3

x̂1 = y
x̂2 = z − k1y − k2y

2 − k3y
3

(3)

where ki is the coefficient dependent on the oscillator parameters and
y is the current sensor output. All technical developments can be found
in [20].

3) Phase Estimation Through Isochrones: By injecting the mea-
surement y as an input to the observer, we get an estimation of the
state variables x̂1 and x̂2 introduced in (3). Since this observer is it-
self an oscillator, its phase can be computed from its state variables,
even if the estimated state does not belong exactly to the limit cycle.
This can be done using isochrones: the limit cycle of an oscillator
can be parametrized using a phase variable, which can be extended in
its neighborhood. The so-called isochrones sets can be defined in the
vicinity of the limit cycle, demanding that the phase be constant on
each isochrone. We thus get a mapping from the phase space to the
phase variable: ϕ = I(x).

4) Summary: Finally, the online computation scheme for phase esti-
mation is the following (see Fig. 3).

1) Inject the sensor measurement yk in the adapted observer, to
compute its state variables x̂k .

2) From the observer state variables x̂k , compute the phase ϕ̃k of
the oscillator through isochrones.

An important remark has to be made here: the strong synchroniza-
tion of the observer with the given input signal is ensured with this
method; thanks to observer theory, it can be assessed that the behavior
of the observer will asymptotically match the behavior of the observed
system. In practice, the convergence time of the observer is extremely
small with respect to the period of the motion, which means that the
performed filtering is phase-shift free.

B. Fusion of the Estimated Phases

After having estimated different phases ϕ̃k (t) in Section II-A, we
now address the issue of phases fusion along two possible lines.

1) A Stochastic Filter Approach: We have seen that the phase ϕ was
a way of indexing the cycle and its neighborhood with respect to the
time. An ideal model of the phase is, therefore,

dϕ

dt
= ω0 . (4)

To estimate a global phase of the system, we have to use the individual
estimates ϕ̃k (t), k = 1, . . . , N provided by the N independent ob-
servers driven by the sensor inputs. These estimates can, therefore, be
considered as noisy measurements of the phase ϕ̃k (t) = ϕ(t) + εk (t),
the dynamics of which is described by (4). We can now set as a state
variable

X =

(
x1

x2

)
=

(
ϕ
ω0

)
and finally, write the linear model as{

Ẋ(t) = AX(t) + E1 (t)
Y (t) = CX(t) + E2 (t)

(5)

where

A =

[
0 1
0 0

]
and where

E1 (t) =

[
0

e1 (t)

]
is a state perturbation allowing to cope with phase model errors. Also,
we obtain

Y t = [ϕ̃1 · · · ϕ̃k · · · ϕ̃N ]T

C =


 1 0

...
1 0


 and E2 =


 ε1 (t)

...
εN (t)




where εk (t) is a Gaussian white noise.
The associated continuous Kalman filter can be written as

ˆ̇X(t) = AX̂(t) + K(t)
(
Y (t) − CX̂(t)

)
(6)

with X̂(0) =

(
ϕ̂(t0 )
ω0

)
.

K(t) is the solution of a classical Riccatti equation involving the
covariance matrices Σ1 and Σ2 of E1 and E2 , respectively, and finally,

ϕ̂(t) = x̂1 (t)(mod 2π). (7)

This method requires the estimation of Σ1 and Σ2 . For Σ2 , this can
be done using a training stage dedicated to parameter identification.
Due to the particular form of (4), a single linear regression on each
time-indexed records of ϕ̃k along a cycle gives an indication of the
confidence. Concerning Σ1 , the adjustment has to be done with respect
to the capacity of tracking period variations that is desired.

It should be noticed that the behavior of this Kalman filter is optimal
when noises are white and Gaussian. It is clear that it is not the case.
Furthermore, the ability of the filter to track with a delay, small enough,
the evolution of the system is linked to the realism of the models, which
is not always easily ensured. That is why we have preferred to use,
again, a nonlinear oscillator, which acts in some sense as an adapted
dynamical filter.

2) A Dynamical System Approach: Another possibility is to filter the
different phase measurements through a dynamical system. In the CPG
framework, a central oscillator often plays the role of “pacemaker” (see
Fig. 1). An idea is then to force this central oscillator with the phase
estimations ϕ̃k , so that it synchronizes with them. Oscillator forcing for
synchronization has already been studied [15] and applied successfully
in a CPG-based robot control application [18].

The Hopf oscillator is a good candidate for playing this central role,
since it has a quasiharmonic limit cycle. It is described as

r =
√

x2 + y2

ẋ = γ (µ − r2 ) x − ωy

ẏ = γ (µ − r2 ) y + ωx

(8)

with γ, µ, and ω > 0, and µ is the radius of the limit cycle (which is
almost a perfect circle), γ is a damping coefficient, directly linked to
the convergence speed toward the limit cycle, and ω defines the period
of oscillations.

By adding a forcing term to (8), we obtain

r =
√

x2 + y2

ẋ = γ (µ − r2 ) x − ωy + Cforc

ẏ = γ (µ − r2 ) y + ωx + Sforc

(9)
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Fig. 4. Composite pressure signal built from pressure insoles measurements.

where

Cforc =
n∑

k=1
ck cos(ϕ̃k )

Sforc =
n∑

k=1
ck sin(ϕ̃k )

(10)

represent the forcing terms, with
∑k=1

n
ck = 1. Coefficients ck can be

seen as confidence coefficients in each phase variable ϕ̃k , and can be
directly derived from the statistical analysis presented in Section II-B1.
The final phase ϕ̂ is the phase of the Hopf oscillator and can be easily
extracted using polar coordinates:

ϕ̂ = arctan
y

x
. (11)

The main advantage of this method is that we benefit from a smoothing
effect due to the dynamical model. Noise and transient values are
naturally filtered.

III. IMPLEMENTATION AND RESULTS

A. Sensors

1) Angle Estimation: The inclination of the thigh is measured by an
attitude sensor, developed by the Commissariat Energie Atomique–
Laboratoire d’Electronique et de Technologie de l’Information
(CEA-LETI), which associates three microaccelerometers and three
micromagnetometers in a small volume. Owing to an adequate pro-
cessing, this sensor provides with an estimation of the orientation in
space of the segment to which it is attached [21]. Fig. 5 (top) shows
an example of the obtained estimation of thigh inclination during hu-
man gait. The same sensing procedure was used for shank inclination
reconstruction.

2) Pressure Insoles: We also used feet pressure information as a
sensory input. To this end, a Pedar [22] system was employed: it is an
accurate measuring system of the pressure distribution that represents
local loads between the foot and the shoe. To obtain a single sensory
signal from data from both the feet, we build the composite pressure
signal as

Pc =
∑

i

pi
right fo ot −

∑
i

pi
le ft fo ot (12)

where the pi s are local load measurements for each foot. In such a way,
Pc is positive when the right foot stands on the ground and left leg is in
swing phase and negative in the opposite case. Fig. 4 shows a typical
plot of this pressure signal.

B. Phase Estimation Results

As indicated earlier, we recorded measurements during human gait
from three different sensors: a thigh inclination, a shank inclination,

Fig. 5. Estimation of one-sensor phase. Sensor input (thigh inclination) (top).
Estimated state variables of the observer in the phase space (dotted line), com-
pared to the reference limit cycle provided by the oscillator model (middle).
Estimated phase (from 0% to 100%) (bottom).

and insoles pressure. As an illustration of the method, we present here
phase estimation results for a single sensor only: the thigh inclination.
Fig. 5 shows three consecutive measurement cycles, together with the
reference limit cycle of the Van der Pol oscillator; it should be noticed
that, although the estimated state variables do not always belong to the
limit cycle, they stay rather close to it.

Using the isochrones-based estimation of the phase from the recon-
structed states, we get a phase estimation that is monotonous, quasi-
piecewise linear, and synchronous to the input signal. Nevertheless,
noises and transient biases are still present. That is why it is of great
interest to combine several phase information, in order to get a more
reliable result.

C. Fusion Results

Fig. 6 presents the result of the fusion of individual estimated phases
using the dynamical system approach (Section II-B2). We can clearly
notice that the three estimated phases ϕ̃k are all noisy, and some of them
with large biases. The final estimated phase ϕ̂ is nicely filtered: all noise
alterations have disappeared, the signal is perfectly smooth and almost
linear.

Remark: One could wonder why the sensor inputs are not directly
injected into a Hopf oscillator. In fact, since the Hopf oscillator has
a quasi-harmonic behavior, only inputs with sinusoidal shapes would
lead to a correct phase estimation. In some sense, the “phase estima-
tion” stage provides with a conditioned input, i.e., a linearly growing
phase, without distortions. Besides, as said earlier, it ensures the syn-
chronization properties of the system.

D. Bipedal Robot Teleoperation

This experiment consisted in installing three sensors on the leg and
feet of a human, in order to compute online a biped robot command,
such that the robot “follows” the rhythm of the human gait. This was
done as follows: basically, the desired trajectories of each active joint
of the robot (ankle, knee, and hip sagittal angles on both legs of the
biped robot) are standard Winter’s patterns [23], and are tracked using
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Fig. 6. Results of phases fusion. Estimated phases from three different sensors
(Top). Final estimated phase (bottom).

Fig. 7. Generated trajectory for one DOF (knee angle) of the biped robot (on
the right).

a PID controller with gravity and friction compensation. The phase
estimated by the method presented earlier allows them a kind of online
time scaling of these trajectories, realizing in that way the aimed syn-
chronization. The experiments were conducted on the BIP robot, the
robot being hanged. This 15-jointed robot [24] has two legs and a trunk,
the legs sizes and masses distribution corresponding to the ones of a
standard male adult. We thus fully validated the desired sensory–motor
coordination, following the computation scheme presented in Fig. 1.
An example of the trajectory generated for a single depth of field (DOF)
is shown in Fig. 7.

IV. DISCUSSION

In this paper, we have presented a new CPG-type method for online
phase estimation using dynamical systems. Sensor signals are used to
drive a set of modified Van der Pol oscillators, which provide through
an adequate observer several independent estimations of the overall
phase of the system. These estimations are again combined within a
dynamical filter consisting of a Hopf oscillator. The resulting phase
is a reliable indexing of the cyclic behavior of the system. A major
feature of the approach is the strong synchronization of the whole
system with respect to the perceived cyclic motion. Potential appli-
cations of the method are numerous: in robotics, it can be used for
teleoperating a biped robot synchronized with external signals, such

as a real human walk. From another point of view, the method allows
to strongly generate synchronized trajectories for four- or six-legged
robots. The method could be extended to incorporate internal sensor
feedback in complement of the external measurements presently used.
In that case, note that the stability of the closed-loop system should be
assessed.
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