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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Relevance of equilibrium in multifragmentation

Takuya Furuta∗

GANIL (DSM-CEA/IN2P3-CNRS), B.P.55027, F-14076 Caen, France

Akira Ono
Department of Physics, Tohoku University, Sendai 980-8578, Japan

The relevance of equilibrium in a multifragmentation reaction of very central40Ca+ 40Ca collisions at 35
MeV/nucleon is investigated by using simulations of antisymmetrized molecular dynamics (AMD). Two types
of ensembles are compared. One is the reaction ensemble of the states at each reaction timet in collision events
simulated by AMD, and the other is the equilibrium ensemble prepared by solving the AMD equation of motion
for a many-nucleon system confined in a container for a long time. The comparison of the ensembles is per-
formed for the fragment charge distribution and the excitation energies. Our calculations show that there exists
an equilibrium ensemble that well reproduces the reaction ensemble at each reaction timet for the investigated
period 80≤ t ≤ 300 fm/c. However, there are some other observables that show discrepancies between the
reaction and equilibrium ensembles. These may be interpreted as dynamical effects in the reaction. The usual
static equilibrium at each instant is not realized since anyequilibrium ensemble with the same volume as that of
the reaction system cannot reproduce the fragment observables.

PACS numbers: 25.70.Pq

I. INTRODUCTION

In medium-energy heavy-ion collisions at around the Fermi
energy, intermediate-mass fragments as well as a large num-
ber of light particles such as nucleons and alpha particles are
copiously produced [1, 2, 3, 4, 5]. This phenomenon is called
multifragmentation. It is a challenging problem to understand
the complex but rich quantum many-body dynamics of mul-
tifragmentation. One of the purposes of studying heavy-ion
collisions is to explore the properties of nuclear matter [6, 7].
This information is valuable not only for nuclear physics but
also for astrophysical interests such as supernova explosions
and the structure of neutron stars [8]. The nuclear matter is
expected to be compressed in the initial stage of a collision
and the created compressed matter then expands afterward.
The study of heavy-ion collisions thus offers a possibility to
probe the properties of nuclear matter in a wide range of den-
sity. Multifragmentation has been considered to occur in the
expanding stage and to have some connection to the nuclear
liquid-gas phase transition, the existence of which is specu-
lated based on the resemblance between the equation of state
of homogeneous nuclear matter and that of a van der Waals
system. Intensive research has been carried out to find evi-
dence of this phase transition in experimental data of multi-
fragmentation. In some works it is claimed that indications
have been obtained [5, 9, 10, 11, 12, 13, 14, 15]. However,
they are not conclusive and much effort is still required.

One of the difficulties is that it is not straightforward to
relate the experimental data of heavy-ion collisions with the
statistical properties of nuclear matter unless the state vari-
ables such as the temperature are well defined in dynamical
reactions. The typical reaction time scale of multifragmen-
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tation reactions is the order of 100 fm/c, which may not be
long enough for the system to reach equilibrium compared
with the typical time scale of successive two-nucleon colli-
sions (a few tens of fm/c). However, there are several reports
that support the achievement of equilibrium. An example is
the existence of several types of scaling laws that appear in
experimental data (e.g. Fisher’s scaling [13] and isoscaling
[16, 17]), which may be understood if the system has reached
equilibrium. Another example is the reasonable reproduction
of the fragment mass (charge) distribution by statistical mod-
els for some multifragmentation reactions [18, 19, 20, 21, 22].
However, the achievement of equilibrium in multifragmenta-
tion reactions is still a controversial issue. One of the difficul-
ties is that the information obtained directly from experiments
is that of the very last stage of the reactions. Even if the sys-
tem reaches equilibrium, the system undergoes the sequential
decay process that distorts the information at the stage of the
equilibrium before the fragments are finally detected in ex-
periments. Another difficulty is that even if the equilibrium is
relevant to multifragmentation reactions the achievementcan
be incomplete. Several aspects are expected to reflect the reac-
tion dynamics, such as the pre-equilibrium emissions of light
particles, the collective flow, and the expansion of the system
[23, 24, 25, 26, 27].

The aim of this paper is to investigate whether the concept
of equilibrium is relevant in multifragmentation, and if so, in
what sense. We examine the achievement of equilibrium in
multifragmentation reactions simulated by antisymmetrized
molecular dynamics (AMD) [28, 29, 30]. AMD is a micro-
scopic dynamical model based on the degrees of freedom of
interacting nucleons. AMD is a suitable model for this study
for the following reasons: It has been shown that various as-
pects of experimental data are reproduced by applying AMD
to nuclear reactions [23, 28, 29, 30, 31, 32, 33, 34, 35, 36].
It has been also argued that the quantum and fermionic statis-
tical properties of nuclear systems are correctly described by
AMD if an appropriate quantum branching process is taken



into account [37, 38, 39, 40]. Furthermore, we can construct
microcanonical equilibrium ensembles for given energies and
volumes by solving the AMD equation of motion of a many-
nucleon system confined in a container for a long time [41].
By extracting temperature and pressure from these equilib-
rium ensembles and interpolating these data, we have drawn
the constant-pressure caloric curves to show that negativeheat
capacity, which is a signal of the phase transition in finite sys-
tems [18, 42, 43], appears in the obtained result.

To investigate the relevance of equilibrium in multifrag-
mentation, we employ the following steps. We perform the
AMD simulation for very central40Ca+ 40Ca collisions at 35
MeV/nucleon. The reaction ensemble at each reaction time
t is constructed by collecting the many-nucleon states at the
time t from different events. We compare this reaction en-
semble with an equilibrium ensemble with appropriately cho-
sen energy and volume. If we are able to find an equilib-
rium ensemble that is equivalent to the reaction ensemble,
we may be able to discuss the connection between the mul-
tifragmentation data and statistical properties of nuclear mat-
ter. This subject has been studied by Radutaet al. [44, 45].
They have compared an ensemble obtained by the stochas-
tic mean-field approach [46] which is a BUU-type transport
model with that obtained by the microcanonical multifrag-
mentation model [47] which is a statistical model. In contrast,
we use the same version of AMD to describe both dynamical
and equilibrium situations so that we can compare the reaction
and equilibrium ensembles directly without being affected by
the model difference.

This paper is organized as follows. In Sec. II, the frame-
work of AMD, which is used to simulate reaction and equi-
librium systems, is explained. In Sec. III, we show the results
of the AMD simulation for the40Ca+ 40Ca collisions at 35
MeV/nucleon, which have been already studied with another
version of AMD [36]. One of the purposes of this section is
to ensure that the modifications introduced in Ref. [41] for
the application to statistical calculations do not spoil the good
reproduction of the reaction data. Limiting the discussionto
the very central reaction, we also argue the time evolution of
the reaction system by showing the fragment observables. In
Sec. IV, we show results of the statistical calculation for an
equilibrium system with 18 protons and 18 neutrons which is
the same system as Ref. [41]. It is confirmed that negative
heat capacity appears in the constant-pressure caloric curves
although several modifications are introduced in this paper. In
Sec. V, we compare the ensembles obtained by the dynamical
simulation (Sec. III) and obtained by the statistical calcula-
tions with various conditions of volume and energy (Sec. IV),
and discuss whether the concept of equilibrium is relevant to
the multifragmentation reaction. Section VI is devoted to a
summary and future perspectives.

II. FRAMEWORK OF AMD TIME EVOLUTION

In this section, we present our AMD framework to calculate
the time evolution of many-nucleon systems. We basically
follow the framework of Ref. [41], although several modifica-

tions are introduced in the present work. We simulate both a
multifragmentation reaction (Sec. III) and an equilibriumsys-
tem (Sec. IV) with the same AMD model.

The wave function of anA-nucleon system|Ψ(t)〉 that
evolves with timet according to the many-body Hamiltonian
is given by a superposition of various reaction channels. As
it is impossible to follow the exact time evolution of|Ψ(t)〉 in
practice, in the AMD formalism we approximate the many-
body density matrix|Ψ(t)〉〈Ψ(t)| by an ensemble of AMD
wave functions|Φ(Z)〉 as

|Ψ(t)〉〈Ψ(t)| ≈
∫ |Φ(Z)〉〈Φ(Z)|
〈Φ(Z)|Φ(Z)〉 w(Z, t)dZ, (1)

wherew(Z, t) is the weight factor for each reaction channel at
time t. This approximation implies that we incorporate the ex-
istence of various reaction channels while we ignore the inter-
ference between channels since it is unimportant for practical
purposes (decoherence).

AMD uses a single Slater determinant of Gaussian wave
packets as a channel wave function

〈r1 · · · rA|Φ(Z)〉 = det
i j

[

ϕZi (r j)χαi ( j)
]

, (2)

where the spatial wave functions of nucleonsϕZ are given by

〈r|ϕZ〉 =
(2ν
π

)3/4
exp

[

−ν
(

r − Z
√
ν

)2]
(3)

andχα denotes the spin-isospin wave function,χα = p ↑,
p ↓, n ↑, andn ↓. The AMD wave function|Φ(Z)〉 is the
many-nucleon state parametrized by a set of complex vari-
ablesZ ≡ {Zi}i=1,...,A. The real and the imaginary parts ofZ
correspond to the centroids of the position and the momen-
tum of each wave packet, respectively, if the antisymmetriza-
tion effect is ignored. The width parameterν is treated as
a constant parameter common to all the wave packets and
ν = 0.16 fm−2 is utilized in this paper, which has been ad-
justed to reasonably describe ground states of light nucleisuch
as 16O. It is shown that the binding energies of nuclei in a
wide range of the nuclear chart are reproduced well with ap-
propriate effective interactions [30, 48]. This choice of chan-
nel wave function is suitable for the simulation of multifrag-
mentation reactions, where each single-particle wave function
should be localized within a fragment. Besides, the AMD
wave function|Φ(Z)〉 contains many quantum features owing
to antisymmetrization and so is even utilized for nuclear struc-
ture studies [49].

According to Eq. (1), the time evolution of theA-nucleon
system may be determined by calculating the time evolution
of the weight factor for each channelw(Z, t). Alternatively
we take another viewpoint that the parametersZ of the wave
function |Φ(Z)〉 are stochastic time-dependent variablesZ(t)
and the time evolution of the many-nucleon state is given by
the ensemble of the various trajectories. The stochastic time
evolution ofZ(t) should be considered as the quantum branch-
ing from a channel|Φ(Z)〉 to many other channels|Φ(Z′1)〉,
|Φ(Z′2)〉, . . . .



The time evolution of the centroidsZ is determined by a
stochastic equation of motion symbolically written as

d
dt

Zi = {Zi,H} + (NN collision)+ ∆Zi. (4)

The first term{Zi,H} is the deterministic term which is de-
rived from the time-dependent variational principle [28, 29,
30]. The Gogny force [50] is adopted as the effective inter-
action and the Coulomb force is also taken into account. The
second term represents the stochastic two-nucleon collision
process where a parametrization of the energy-dependent in-
medium cross section is adopted [30].

The third term∆Zi is a stochastic fluctuation term that
has been introduced to compromise the unrestricted single-
particle motion in the mean field and the localization of
single-particle wave functions at the time of forming frag-
ments [30, 31, 32]. The fluctuation∆Zi is determined so
that the evolution of the width and shape of the single-particle
phase-space distribution in mean-field theories is reproduced
for a certain time durationτcohe by the ensemble average of
the localized single-particle phase-space distribution of each
channel. In practice, we compute∆Zi by solving the Vlasov
equation with the same effective interaction used in the term
{Zi,H}. The time durationτcoheto respect the coherent single-
particle motion in the mean field should be related to many-
body effects in some way since the decoherence is due to the
many-body correlations beyond mean field. In this paper, we
chooseτcohe in such a way that the decoherence probability
becomes approximately proportional to the density at the nu-
cleon location. This stochastic term is essential for the consis-
tency of dynamics with quantum statistics [37, 38, 39, 40].

Basically, we follow the formalism explained in Ref. [41].
In the present work, we have chosen the probability of deco-
herence for the nucleonk to occur during the time interval∆t
to be

Pdechk = 1− exp

(

−ρk∆t
ρ0τ0

)

, (5)

whereτ0 is chosen to be 5 fm/c, ρk is the density at the wave
packet center of the nucleonk excluding the contribution from
the nucleonk itself, andρ0 = 0.16 fm−3 is the normal nuclear
matter density. To better describe the40Ca+ 40Ca reaction at
35 MeV/nucleon, the dissipation term (corresponding to the
fluctuation term) is assumed to conserve the monopole and
quadrupole moments in coordinate and momentum spaces for
the nucleons that have more than 15 neighboring nucleons as
in Ref. [32]. Furthermore, another modification is introduced
to better incorporate the effect of decoherence, the details of
which are given in the Appendix.

III. APPLICATION TO A REACTION

We apply AMD to 40Ca + 40Ca collisions at 35
MeV/nucleon. This system has been already studied by us-
ing AMD with the instantaneous decoherence [36] and it has
been shown that a good reproduction of experimental data is
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FIG. 1: Density distributions projected on the reaction plane of very
central40Ca+ 40Ca collisions at 35 MeV/nucleon (bimp = 0 fm) from
t = 0 fm/c to t = 300 fm/c for four different events. The size of the
displayed area is 40× 40 fm.

obtained [23, 36]. However, we take a finite coherence time
and we also introduce some modifications explained in Ref.
[41] and the Appendix. Therefore, we confirm the applica-
bility of the present framework by comparing the simulation
results with the experimental data by Hagelet al. [51]. The
ensembles of the many-nucleon states obtained from the dy-
namical simulations in this section are utilized in Sec. V.

The simulations are performed in the usual way. The time
evolutions are calculated up tot = 300 fm/c, when the pro-
duced fragments are no longer strongly interacting each other.
Simulations are carried out for many (∼ 1000) events inde-
pendently. Figure 1 shows the time evolution of the density
projected on the reaction plane for several very central reac-
tion events. The range of the impact parameterbimp < 7 fm
is investigated, which is wide enough to compare the simu-
lation results with the experimental data of central reactions
[51]. The fragments att = 300 fm/c are identified by the con-
dition that two nucleonsi and j belong to the same fragment
if 1√

ν
|Zi − Z j| < rfrag with rfrag = 5 fm, and the decays of

excited fragments are calculated by using a statistical decay
code [52]. To compare the results with experimental data, the
same experimental filter and event selection as in the experi-
ment [51] are applied. The obtained fragment charge distri-
bution is shown in Fig. 2 together with the experimental data
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FIG. 2: (Color online) The fragment charge distribution of the reac-
tion 40Ca+ 40Ca at 35 MeV/nucleon simulated by AMD (full line)
compared with the experimental data of Hagelet al. [51] (points).
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FIG. 3: Partition of total charge into fragments at the final state of
the reaction40Ca+ 40Ca at 35 MeV/nucleon: the experimental data
of Hagelet al.[51] (left) and the AMD result (right).

[51]. In Fig. 3, we also show how the total charge of the sys-
tem is distributed in fragments in the final state. The experi-
mental data show that 20% of protons are emitted as protons,
deuterons, and tritons, 30% of protons are contained in He
isotopes, and the rest of the protons are contained in heavier
fragments. The features of the experimental data are repro-
duced by AMD well, as we see in Figs. 2 and 3. Reasonable
reproduction of the fragments withZ = 1 and 2 is obtained.

In this paper, we have chosen the coherence time parame-
ter τ0 to be 5 fm/c [Eq. (5)]. No significant difference is seen
even if we takeτ0 to be a half or twice this choice. When we
takeτ0 to be much longer such asτ0 ∼ 100 fm/c, excessive
production of heavy fragments is observed and consequently
the amounts of the fragments around the B-Ne region are un-
derestimated compared with the experimental data. The same
trend has been seen when we use the AMD model described
in Ref. [41]. This can be understood because the treatment
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FIG. 4: (Color online) The fragment charge distribution of the very
central (bimp = 0 fm) reaction40Ca+ 40Ca at 35 MeV/nucleon at four
reaction timest = 50∼ 300 fm/c.
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FIG. 5: (Color online) The average excitation energy of fragments as
a function of the fragment mass numberA for the very central (bimp =

0 fm) reaction40Ca+ 40Ca at 35 MeV/nucleon at three reaction times
t = 100∼ 300 fm/c.

in Ref. [41] corresponds to a relatively weak decoherence (a
long coherence time) as explained in the Appendix.

Let us concentrate our arguments on the time evolution of
several observables for very central reaction events (bimp = 0
fm). The fragment charge distribution and the average exci-
tation energy as a function of the fragment mass number are



shown for several reaction times in Figs. 4 and 5, respectively,
by identifying fragments withrfrag = 3 fm. The fragments
identified in this way are not necessarily related to the frag-
ments at the end of the reaction. Nevertheless, these quanti-
ties are helpful to understand the change of the reaction sys-
tem along the time evolution. (The choice of the parameter
rfrag = 3 fm is taken to identify fragments even at early stages
of the reaction, butrfrag = 3 fm seems to be too small to iden-
tify the realistic fragments at timet = 300 fm/c.)

Isolated nucleons and light fragments are identified even at
a very early stage of the reaction (t = 50 fm/c); these are in-
terpreted as pre-equilibrium emissions of light particles. The
heavy fragmentsZ > 20 are negligible at the truncation time
(t = 300 fm/c). The average excitation energies per nucleon
of the fragmentsA ≥ 15 are as high as about 5 MeV att = 100
fm/c and decrease to about 4 MeV att = 300 fm/c.

In many very central reaction events, the produced frag-
ments seem to be divided into two groups, projectile-like and
target-like groups, at the late stage of the reaction (Fig. 1).
Therefore, the two separate equilibrium systems of about half
size will be more relevant to this reaction system rather than a
single large equilibrium system, if the concept of equilibrium
is relevant to this reaction in any sense.

IV. APPLICATION TO STATISTICAL CALCULATIONS

We are able to study the statistical properties of many-
nucleon systems in equilibrium by using AMD as in Ref. [41].
We calculate the time evolution of the system ofAtotal nucle-
ons (Ntotal neutrons andZtotal protons) confined in a spheri-
cal container of radiusrwall for a long time. We regard the
Atotal-nucleon state at each time as a sample of an equilibrium
ensemble. The total energyEtotal of the system is conserved
throughout the time evolution so that the obtained ensemble
is a microcanonical ensemble specified by the total energy
Etotal, the volumeVtotal =

4
3πr

3
wall and the number of nucleons

Atotal(Ztotal,Ntotal). By extracting statistical information (tem-
peratureT and pressureP) from the ensembles, we can con-
struct caloric curvesT (Etotal, P).

We utilize the same AMD model used to simulate the reac-
tion 40Ca+ 40Ca at 35 MeV/nucleon in the previous section
to study the equilibrium system of (Ztotal,Ntotal) = (18, 18),
which is the same system as studied in Ref. [41]. We calcu-
late ensembles for various energiesE∗total/Atotal = 5 ∼ 8 MeV
and volumesrwall = 5 ∼ 15 fm (Vtotal/V0 = 2.5 ∼ 67). E∗total
stands for the excitation energy relative to the ground state of
the 36Ar nucleus (Eg.s. = −8.9Atotal MeV) andV0 = Atotal/ρ0

corresponds to the volume for the system with normal nuclear
matter densityρ0. The obtained constant-pressure caloric
curves are shown in Fig. 6. Although several changes (ex-
plained in Sec. II and the Appendix) have been introduced
in this paper, the characteristic feature of the phase transition
in finite systems [18, 42, 43], namely negative heat capac-
ity, can be recognized in the constant-pressure caloric curves
with P ≤ 0.3MeV, as has been seen in Ref. [41]. The caloric
curve for the liquid phase, namely the line obtained by con-
necting the leftmost points of the constant-pressure caloric
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FIG. 6: (Color online) The constant-pressure caloric curves for the
Atotal = 36 (Ntotal = 18, Ztotal = 18) system obtained by AMD. The
lines correspond to the pressureP = 0.005, 0.01, 0.02, 0.03, 0.05,
0.07, 0.10, 0.15, 0.20, 0.25, 0.30 and 0.40 MeV/fm3 from the bottom
upward. Statistical uncertainties are shown by error bars.The curves
of E∗total/Atotal = T 2/(8 MeV) andE∗total/Atotal = T 2/(13 MeV), and
the line of Etotal/Atotal = (E∗total + Eg.s.)/Atotal =

3
2T are drawn for

comparison.

curves, shifted slightly left compared with the result of Ref.
[41] and, connected to that, the critical point seems to be af-
fected slightly. This is mostly due to the change of decoher-
ence, as explained in Sec. VB in Ref. [41].

The created equilibrium ensembles in this section are uti-
lized in Sec. V.

V. COMPARISON BETWEEN A DYNAMICAL
SIMULATION AND STATISTICAL CALCULATIONS

In this section, we compare two ensembles - a reaction en-
semble and an equilibrium ensemble - to study whether the
concept of equilibrium is relevant in multifragmentation reac-
tions.

A reaction ensemble An ensemble obtained by collecting
the states at a certain reaction time from many events of
a dynamical multifragmentation reaction simulated by
AMD (Sec. III). The reaction ensemble is specified by
the reaction timet, and we consider the ensembles ob-
tained from the reaction40Ca+40Ca at 35 MeV/nucleon
in Sec. III. We use only very central reaction events
(bimp = 0 fm).

An equilibrium ensemble: An ensemble obtained by calcu-
lating the time evolution of a many-nucleon system in a



container for a long time by AMD and regarding a state
at each time as a sample (Sec. IV). The equilibrium
ensemble here is a microcanonical ensemble specified
by the total energyEtotal, container volumeVtotal, and
number of nucleonsAtotal(Ztotal,Ntotal). We consider the
system of (Ztotal,Ntotal) = (18, 18) studied in Sec. IV.

We utilize the same AMD model to calculate both situations
so that we are able to compare the reaction and equilibrium
ensembles without ambiguities.

The comparison of the reaction and equilibrium ensembles
is performed by calculating the same observables for both en-
sembles. In this paper, the fragment charge distributionYZ

and the average excitation energy as a function of the frag-
ment mass number〈E∗/A〉A are chosen as the observables
(“fragment observables”). To make a detailed comparison
with many observables, we introduce three classes of frag-
ment observables by choosing different values of the fragment
identification parameterrfrag: rfrag(1) = 3 fm, rfrag(2) = 2.5 fm
andrfrag(3) = 2 fm (see Sec. III). The fragment observables
with differentrfrag can be regarded as different observables for
the comparison of ensembles.

For a given reaction timet, we compute a quantity

δ2 =
1

3× 13

[ 3
∑

i=1

16
∑

Z=4

{

ln Y (i)
Z react− ln

(NY (i)
Z equil

)

}2
]

+
1

3× 14

[ 1
ǫ2

3
∑

i=1

15
∑

A=2

{

〈E∗/A〉(i)A react− 〈E
∗/A〉(i)A equil

}2
]

(6)

and search the equilibrium ensemble that gives the minimum
value ofδ2. HereYZ and 〈E∗/A〉A are the yield of the frag-
ments with the charge numberZ and the average excitation en-
ergy of the fragments with mass numberA, respectively. The
subscripts “react” and “equil” indicate that the observables for
the reaction ensemble and for the equilibrium ensemble, re-
spectively. The superscript (i) denotes that the observables are
calculated with the fragments identified byrfrag(i). The factor
ǫ is a dimensional constant of energy and taken as 1 MeV in
this paper. The factorN is a normalization constant that is
optimized to give the minimum value ofδ2. The yieldsYZ of
the fragments withZ = 1 ∼ 3 are omitted to computeδ2 to
avoid the effect of pre-equilibrium emissions.

In Sec. III, we have seen that the reaction system seems to
be composed of two separate equilibrium systems if equilib-
rium is relevant to this reaction. The system (Ztotal,Ntotal) =
(18, 18) we studied in Sec. IV is about half the size of the
reaction system. We therefore compare the reaction ensem-
ble of Sec. III and the equilibrium ensembles of Sec. IV. A
value ofN ≈ 2 is expected to compare the equilibrium sys-
tem of (Ztotal,Ntotal) = (18, 18) with the reaction system of
40Ca+ 40Ca. In early stages of the reaction, a heavy frag-
ment withZ > 20 is identified when the projectile-like and
target-like groups overlap spatially. It is not appropriate to
compare such situations with an equilibrium ensemble with
(Ztotal,Ntotal) = (18, 18). We therefore exclude from the re-
action ensemble the states in which a heavy fragment with
Z > 20 is identified withrfrag(1) = 3 fm. We start the com-

TABLE I: The state variables of the equilibrium ensemble that re-
produces the fragment observables of the reaction40Ca+ 40Ca at 35
MeV/nucleon at each reaction timet = 80∼ 300 fm/c.

t E∗total/Atotal Vtotal/V0 T P N δ2

[fm/c] (MeV) (MeV) (MeV/fm3)

80 6.9 3.3 8.1 0.042 1.4 0.46
100 6.5 3.9 7.1 0.029 2.0 0.18
120 6.3 5.0 6.1 0.019 2.1 0.12
140 6.1 6.2 5.9 0.013 2.0 0.13
160 5.9 6.4 5.6 0.011 2.0 0.12
180 5.7 6.6 5.4 0.010 2.0 0.13
240 5.4 9.2 4.7 0.007 1.8 0.11
300 5.3 13.2 4.1 0.005 1.9 0.15

parison after the reaction timet = 80 fm/c at which we find a
significant number of adopted states.

The reaction ensembles at the timet = 80, 100, 120, 140,
160, 180, 240 and 300 fm/c are compared with the equilib-
rium ensemblesE∗total/Atotal = 5 ∼ 8 MeV andrwall = 5 ∼ 9
fm (Vtotal/V0 = 2.5 ∼ 14). When the energy of the equilib-
rium systemE∗total/Atotal is varied, a large change is observed
in 〈E∗/A〉A. However, when the volume of the equilibrium
systemVtotal is varied, the change of the shape ofYZ is no-
ticed. Therefore, by reproducingYZ and〈E∗/A〉A, we are able
to find an equilibrium ensemble (specified byEtotal andVtotal)
that reproduces the reaction ensemble, if it exists. The observ-
ables for the equilibrium ensemble depend on the size of the
system, but we have confirmed that this dependence is com-
pensated by the freedom of the normalization factorN when
we change the number of nucleons in the equilibrium system
to Atotal = 20.

Figure 7 is the comparison of the observables between the
reaction and equilibrium ensembles. The equilibrium ensem-
ble is chosen to minimize theδ2 value for the reaction ensem-
ble at each reaction timet = 80 ∼ 300 fm/c. Overall features
of the fragment observables of both ensembles agree well at
every reaction time except for small details. The comparisons
of 〈E∗/A〉A for the fragments identified withrfrag = 2.5 and 2
fm are not shown in Fig. 7, but the agreement between the two
ensembles are as good as in the case ofrfrag = 3 fm. Table
I shows the energy, volume, temperature and pressure of the
best-fit equilibrium ensembles. The normalization factorN
andδ2 values are also listed in the table. The larger volume is
required to reproduce the later stage of the reaction while the
energy per nucleon decreases gradually. As a consequence,
the temperature and pressure of the system decrease along the
reaction time. In the caloric curves of Fig. 8, we show the
reaction path by connecting the points (E∗total/Atotal, T ) of the
equilibrium systems corresponding to different reaction times.
All these points seem to be located in the region of liquid-gas
coexistence that includes the region of negative heat capacity,
and therefore it seems that the fragmentation of this reaction
is connected to the nuclear liquid-gas phase transition.
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FIG. 7: (Color online) Comparison of the fragment charge distribution (left three columns) and the average excitation energy of fragments
(rightmost column) of the reaction ensemble at each reaction time t = 80 ∼ 300 fm/c obtained from the very central (bimp = 0 fm) reaction
40Ca+ 40Ca at 35 MeV/nucleon and those of the best-fit equilibrium ensemble of thesystem (Ztotal,Ntotal) = (18, 18). The reaction time of the
reaction ensemble and the energy and the volume of the equilibrium ensemble are shown in the leftmost column. The values of rfrag for the
fragment identification are indicated.
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These results may be interpreted as follows. The fragment
observables of the reaction system become equivalent to those
of an equilibrium system by the timet = 80 fm/c at latest. The
equivalence of the reaction and equilibrium systems is kept
for a while although the reaction system cools by breaking the
fragments as well as by emitting light fragments and nucleons.
A natural question arises as to when the equivalence between
the reaction and equilibrium systems is achieved and at what
time the equivalence ends, which corresponds to the time of
freeze-out. Unfortunately, it seems that the current choice of
observables is not suitable to discuss the beginning and the
end of the equivalence. Because the identification of frag-
ments is impossible at earlier stages of the reaction, it seems
difficult to find out-of-equilibrium effects after freeze-out with
the resolution we have obtained in this paper even if they ex-
ist. Even at a very late stage such ast = 300 fm/c, it seems
that the fragment observables of the reaction are still wellex-
plained by an equilibrium ensemble.

Even though the overall features match well, there are also
small discrepancies in the fragment observables between the
reaction and equilibrium ensembles. The yields of light par-
ticles (Z = 1 and 2) of the equilibrium ensemble are much
less than those of the reaction ensemble, which is due to the
effect of pre-equilibrium emissions of light particles. We also
notice two systematic deviations at the early stage of the reac-
tion (t ∼ 100 fm/c), which may be due to dynamical effects.
One is the deviation inYZ for heavy fragments. The equilib-
rium ensemble overestimates these fragments when the frag-
ments are identified byrfrag(1) = 3 fm but it underestimates

these fragments withrfrag(3) = 2 fm. The other difference is
in the value of〈E∗/A〉A for heavy fragments (A > 15), where
the equilibrium results give slightly higher values than the re-
action results, even though the values of〈E∗/A〉A for lighter
fragments (A ≤ 15) for the reaction and equilibrium ensem-
bles match well. It will be possible to discuss dynamical ef-
fects that exist in the reaction ensemble by further comparison
in future studies.

Let us compute other observables in both the reaction and
corresponding equilibrium ensembles. In the following cal-
culations, we use the fragments identified by usingrfrag = 3
fm.

First, we compute the kinetic observables, which should
also agree in the two ensembles if complete equilibrium is
achieved in the reaction. Unfortunately, it is not straightfor-
ward since we are comparing the reaction system of40Ca+
40Ca with the equilibrium system of (Ztotal,Ntotal) = (18, 18)
and thus kinematics is different. However, we are using the
very central reaction events (bimp = 0) and the fragments in
the reaction system seems to be categorized into two groups,
projectile-like and target-like groups, and therefore theob-
servables related to the transverse momentum may be little
affected by the difference of kinematics. To further reduce
the influence of different kinematics, we define the transverse
direction on an event-by-event basis for the reaction system.
Choosing thez′-axis obtained by connecting the center of
mass of the nucleons located in the positive side of the beam
axis (the projectile-like group) and that of the nucleons located
in the negative side (the target-like group), we compute the
transverse momentum (Px′ , Py′) of each fragment projected on
thex′y′-plane perpendicular to thez′-axis. For the equilibrium
system, thez′-axis can be taken arbitrarily. We calculate the
following quantities as functions of the fragment mass number
A;

E⊥(A) =
1

2µ(A)
〈P2

x′ + P2
y′〉A (7)

Eflow
⊥ (A) =

〈Pflow
⊥ 〉2A

2µ(A)
(8)

where the brackets〈 〉A denote the average for all the frag-
ments with mass numberA in the ensemble. The momen-
tum and the position of a fragment are denoted byPσ andRσ
(σ = x′, y′, z′), respectively.Pflow

⊥ is the momentum compo-
nent in the transverse radial direction (Rx′ ,Ry′);

Pflow
⊥ =

Px′Rx′ + Py′Ry′
√

R2
x′ + R2

y′

. (9)

The reduced massµ(A) of a fragment is defined by

1
µ(A)

=
1

mN

(

1
Asystem− A

+
1
A

)

(10)

wheremN is the nucleon mass andAsystem is the number of
nucleons in the system. We takeAsystem= 40 for the reaction
system since the reaction system seems to be composed of two
groups, and we takeAsystem= 36 for the equilibrium system.
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FIG. 9: (Color online) Comparison of the observables related to the
fragment transverse momenta (E⊥ andEflow

⊥ ) of the reaction ensem-
ble (“React”) at each reaction timet = 80 ∼ 300 fm/c with those of
the corresponding equilibrium ensemble (“Equil”).E⊥ andEflow

⊥ are
shown in the left column as functions of the fragment mass number
A, and the differenceE⊥ − Eflow

⊥ is shown in the right column. The
dashed horizontal lines indicate the temperatureT of the equilibrium
ensembles.

The comparison between the reaction and equilibrium ensem-
bles is shown in the left panels of Fig. 9 for the observables
E⊥(A) and Eflow

⊥ (A) at various reaction times. Large differ-
ences between the ensembles are found for these observables
especially at the late stage of the reaction. For instance, non-
negligibleEflow

⊥ for the reaction ensemble (shown by squares)
is noticed att & 140 fm/c, whereasEflow

⊥ for the equilib-
rium (shown by circles) is almost zero for all the times as
it should be for equilibrated systems. (Att = 80 fm/c, the

statistical results are insufficient to draw conclusions.) How-
ever, the differenceE⊥(A) − Eflow

⊥ (A) agrees quite well be-
tween the reaction and equilibrium ensembles, as shown in
the right panels of Fig. 9, at all the shown times. Further-
more,E⊥(A)−Eflow

⊥ (A) has nearly no dependence on the mass
numberA, and its value almost agrees with the value of the
temperatureT of the equilibrium ensemble shown by the hor-
izontal line at each reaction time. This surprising agreement
also suggests a consistency of the model, since the tempera-
ture has been extracted from an equilibrium ensemble without
using the information of fragment kinetic energies. Thus the
reaction results for the observables related to the fragment mo-
menta seem to be still consistent with the equilibrium results
if we subtract the flow effects from the reaction results.

Second, we estimate the size of the reaction system. The
volume listed in Table I is that of the equilibrium system that
gives the best fit for the fragment observables of the reaction
system. However, the real volume of the reaction system may
be different from this. To estimate the size of the reaction
system, we compute the root mean square radius of the total
system in thex′y′-plane

Rsystem
⊥ =

〈
√

1
NS(A>5)

∑

i∈S(A>5)

(R2
ix′ + R2

iy′)

〉

(11)

by using the nucleon positionsRiσ(σ = x′, y′, z′), where
S(A > 5) denotes the nucleons that belong to the fragments
with mass number greater than 5, andNS(A>5) is the number
of these nucleons in each event. The nucleons that belong to
light fragments (A ≤ 5) are omitted from the calculation in
Eq. (11) to minimize the effect of pre-equilibrium emissions.
The results are given in Fig. 10. The radiusRsystem

⊥ of the reac-
tion ensemble is larger than that of the equilibrium ensemble
at all the reaction times and the difference increases with time.
For the reaction ensemble, the system may be more extended
along the beam axis owing to the memory of reaction dynam-
ics and then the difference of the volume between the reaction
and equilibrium systems will be more prominent. Therefore,
the difference ofRsystem

⊥ shown in Fig. 10 suggests that the real
volume of the reaction system is larger than the volume of the
corresponding equilibrium system typically by 50 % or more.
Conversely, if the real volume is required to agree between re-
action and equilibrium ensembles, any good fitting ofYZ will
not be obtained, because of the strong volume dependence of
YZ of the equilibrium system as can be seen from Fig. 7. (The
dependence ofYZ on the system energy is weak, as mentioned
eqrlier.) Thus the usual static equilibrium at each instantis not
realized. This may be because fragments are formed in a dy-
namically expanding system and the observables of fragments
recognized at a reaction timet may be reflecting the history of
the state of the system beforet rather than the volume at that
instantt.

Third, we calculate the root mean square radii of fragments
Rrms(A) for the reaction and equilibrium ensembles to inves-
tigate whether the properties of the created fragments in the
reaction system are the same as those in the equilibrium sys-
tem (Fig. 11). We find thatRrms(A) of intermediate-mass frag-
ments (A = 6 ∼ 20) for the reaction ensemble are system-
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FIG. 12: The time dependence of the difference of the fragment root
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librium ensembles, averaged over the intermediate-mass fragments
(A = 6 ∼ 20).

atically (about 5 %) larger than those for the equilibrium en-
semble. We also calculate the average of the difference of
Rrms(A) between the ensembles over a range of intermediate
mass fragments (A = 6 ∼ 20);

∆Rrms =
1
15

20
∑

A=6

{

Rreact
rms (A) − Requil

rms (A)
}

. (12)

We plot ∆Rrms as a function of the reaction time in Fig.
12. The difference is large at the early stage of the reaction
(t ∼ 100 fm/c) and reduces with time at the late stage of the
reaction. In fact, the radii of the intermediate-mass fragments
in the reaction ensemble att ∼ 100 fm/c are larger than those
in any of the equilibrium ensembles that we have investigated.
This may be an indication of the fragment formation mecha-
nism in which the fragments in the reaction are made from the
expanding dilute system where surface effects are less impor-
tant. It may also be related to the finding that the symmetry
energy extracted from the multifragmentation reactions shows
almost no surface effect [53].

VI. SUMMARY

In this paper, we have investigated the relevance of the
equilibrium concept in multifragmentation by comparing re-
action and equilibrium ensembles. The reaction ensemble at
each reaction timet is constructed by gathering the many-
nucleon states at timet in AMD simulations of very central
40Ca+ 40Ca collisions at 35 MeV/nucleon. The equilibrium
ensemble is prepared by solving the AMD equation of motion
of a many-nucleon system (Ztotal,Ntotal) = (18, 18) confined



in a container for a long time. We then compare the reaction
ensemble at eacht with equilibrium ensembles at various con-
ditions of volume and energy. We have used exactly the same
AMD model in simulating both situations. To our knowledge,
this is the first work that directly compares the multifragmen-
tation reaction and the corresponding equilibrium system by
describing both situations with one model.

The AMD model used in this paper has been modified from
that in Ref. [41] to better incorporate the effect of decoher-
ence. We have confirmed the validity of the current version
of AMD by comparing the result of40Ca+ 40Ca reactions at
35 MeV/nucleon with the experimental data [51]. We have
also confirmed that the constant-pressure caloric curves ofthe
equilibrium system (Ztotal,Ntotal) = (18, 18) constructed with
the same AMD show negative heat capacity which is the sig-
nal of the phase transition in finite systems.

The comparison between the reaction and equilibrium en-
sembles has been performed by computing the fragment
charge distribution and the average excitation energies offrag-
ments (fragment observables) for both ensembles. We are able
to find an equilibrium ensemble that reproduces overall fea-
tures at each reaction timet = 80 ∼ 300 fm/c. For the later
stage of the reaction, an equilibrium ensemble with a larger
volume and a slightly lower energy is required. This is con-
sistent with the scenario that the system created by heavy-ion
collisions cools during expansion. Unfortunately, it is diffi-
cult to identify the beginning and the end of the equivalence
between the reaction and equilibrium systems, and it will be
interesting to further develop the study to explore these. Ex-
perimentally, isotope thermometers have been utilized to ex-
tract the temperature from reactions [54, 55]. By comparing
it with the temperature obtained by numerical simulation, it
may be possible to identify the reaction stage relevant to the
experimentally obtained isotope temperature.

The reaction ensembles have been constructed without any
assumption of thermal equilibrium. Nevertheless, we can find
an equilibrium ensemble that is almost equivalent to the re-
action ensemble as far as the fragment observables are con-
cerned at each reaction time aftert = 80 fm/c. This is a rather
surprising result, since there are certainly some observables
that reflect the reaction dynamics. In fact, we have given sev-
eral examples of the observables that show some discrepancy
between the reaction and corresponding equilibrium ensem-
bles. The fragment transverse kinetic energies are different
from those of the equilibrium system, especially for the late
stages of the reaction. However, the difference can be ex-
plained by simple flow effects. If the flow effects are sub-
tracted, the fragment kinetic energies of the reaction system
is still consistent with those of the equilibrium system. The
size of the reaction system is larger than that of the equilib-
rium system. Namely, the real volume of the reaction system
is larger than the volume assigned by fitting the fragment ob-
servables. The difference becomes larger at the later stages of
the reaction. The usual static equilibrium at each instant is not
realized since any equilibrium ensemble with the same vol-
ume as that of the reaction system cannot reproduce the frag-
ment observables. The fragment radii in the reaction system
are larger than those in the equilibrium system. The difference

is large at the early stage of the reaction (∼ 100 fm/c) and de-
creases with time. This may be an indication of a fragment
formation mechanism in which the fragments are made from
an expanding dilute system in the reaction.

Only a small difference between the reaction and equilib-
rium ensembles is seen in the fragment observables studied in
this paper. However, dynamical effects may become essential
even for the fragment observables when the incident energy is
increased or the impact parameter is varied. It has been sug-
gested that neck formation play an important role in semipe-
ripheral collisions [56], but in this paper we ignored this ef-
fect. It is an interesting question whether the equivalence
between the multifragmentation reaction and the equilibrium
system still holds under such circumstances. It is also inter-
esting to compare observables such as the momentum distri-
bution of fragments and the system size of multifragmentation
reactions with those of the corresponding equilibrium systems
in the explicit presence of expansion and flow effects [57, 58].

In this paper, we studied only one particular reaction,
namely very central40Ca+40Ca collisions at 35 MeV/nucleon.
The reaction mechanism changes from one reaction to an-
other. It is therefore interesting to apply the same approach to
other reactions, such as a reaction of heavier nuclei where cre-
ation of a single thermal source is expected [44, 45], and a re-
action of nuclei with different isospin compositions where the
occurrence of isospin diffusion has been claimed[59, 60]. It is
important to explore the effects of various reaction parameters
such as the reaction system, the incident energy and the im-
pact parameter on the achievement of equilibrium. If the con-
cept of equilibrium is relevant, it is interesting to explore how
these parameters influence the parameters to specify the equi-
librium system. This study will offer guidelines for combining
experimental data of various heavy-ion collisions to construct,
for example, equation of states and constant-pressure caloric
curves.
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APPENDIX A: IMPROVED IMPLEMENTATION OF
DECOHERENCE

The reaction40Ca+ 40Ca at 35 MeV/nucleon has already
been studied by AMD [23, 36] and it has been shown that
several aspects of the experimental data [51] are nicely re-
produced. The AMD model used in these studies adopts the
instantaneous decoherence of the single-particle motion [36].
In contrast, in Ref. [41] and in this paper, we utilize the AMD
model in which the coherence of the single-particle motions
are kept for a finite duration. When we directly applied the



AMD formalism given in Ref. [41] to the reaction40Ca+ 40Ca
at 35 MeV/nucleon, excessive productions of heavy fragments
are obtained and, connected to that, amounts of lighter frag-
ments around the B-Ne region are underestimated compared
with the experimental data. This is because the coherence time
chosen by the formalism in Ref. [41] is too long and the effect
of decoherence is hindered for some cases, and thus it fails
to give enough quantum fluctuations to break the heavy frag-
ments. A modification is necessary to better incorporate the
effect of decoherence and reproduce the experimental data.
This is rather technical but the summary is given in this Ap-
pendix.

In the AMD formalism, special care is taken for the nu-
cleons that are almost isolated. For instance, the zero-point
kinetic energies of these nucleons are subtracted since the
wave functions of such nucleons should have sharp momen-
tum distributions rather than Gaussian ones correspondingto
the wave packet in Eq. (3). This change of interpretation is
necessary for the consistency of Q-values of nucleon emis-
sions and fragmentation [28, 29, 30] and is very important for
the definition of temperature [41]. In Ref. [41], we judge the
“degree of isolation” of the nucleonk by introducing

Ik = [1 − w(qk)]I(0)
k + w(qk), (A1)

whereqk counts the neighboring nucleons of the nucleonk in-
cluding itself,w(q) is a continuous function from one when
the number of neighboring nucleonsqk is small (q . 2.5) to
zero, andI(0)

k corresponds to the inverse number of the neigh-
boring nucleons. Detailed definitions of these functions are
given in Appendix A in Ref. [41].

In the AMD formalism, the phase-space distribution
g(x; X, S ) is considered to compute the time evolution of the
mean-field propagation. The distribution for each nucleonk is
parametrized by

g(x; Xk, S k) =
1

8
√

detS

× exp
[

−1
2

6
∑

a,b=1

S −1
kab(xa − Xa)(xb − Xb)

]

, (A2)

wherex gives the six-dimensional phase-space coordinates

x = {xa}a=1,...,6 =

{√
νr,

p

2~
√
ν

}

, (A3)

andS k andXk specify the shape and the centroids of the dis-
tribution, respectively.Xk is identified with the physical coor-
dinateWk [28, 29, 30]:

Xk = {Xka}a=1,...,6 = {ReWk, ImWk} . (A4)

In Ref. [41], one condition was imposed ong(x; Xk, S k) for
each nucleonk by using the degree of isolationIk. The con-
dition was

Trp S k ≤
3
4

(1− Ik), (A5)

where Trp S k = S k44 + S k55 + S k66 denotes the momentum
spreading of the distributiong(x; Xk, S k). Namely, if the left-
hand side of Eq. (A5) is getting larger than the right-hand side,
S k was reduced to satisfy the equality of Eq. (A5) and the re-
duced part was converted into a stochastic Gaussian fluctua-
tion to the centroidXk (the details are explained in Sec. III
in Ref. [41]). The purpose of this condition is to ensure full
consistency of the energy conservation and to allow precise
evaluation of the temperature. When a recovery of the phase-
space distributiong(x; X, S ) for nucleonk took place as a re-
sult of decoherence, we replaced the shape of the distribution
S k with

S kab =



























1
4 (a = b = 1, 2, 3)
1
4(1− Ik) (a = b = 4, 5, 6)

0 (a , b)

, (A6)

where the momentum widths were chosen to be1
4(1 − Ik)

rather than the standard Gaussian width 1/4 to satisfy Eq.
(A5).

The condition is arbitrary as long as Trp S k ≃ 3
4(1− Ik) is

satisfied for the nucleonk that is utilized to measure the tem-
perature. Unfortunately, it turns out that the condition (A5)
utilized in Ref. [41] tends to hinder the effect of decoherence
unphysically at the surface of fragments. This is becauseIk

increases close to unity when the nucleonk is located near the
surface of the fragment to which the nucleonk belongs. The
increase ofIk results in keeping Trp S k small, even though the
recovery of the phase-space distribution defined by Eq. (A6)
frequently occurs. There is no physical reason why the effect
of decoherence is suppressed at the surface of fragments andit
is more natural that the effect of decoherence for the nucleon
k is as large as those for the other nucleons belonging to the
same fragment even though the nucleonk is located near the
surface. We thus introduce a new function

I∗k = w(qk)[1 − w(qk)]I(0)
k + w(qk) (A7)

and replaceIk in Eq. (A5) and Eq. (A6) with this newly de-
fined functionI∗k, while we keepIk, which appears in the
equation of motion as it is (see Sec. III in Ref. [41]). The
difference betweenI∗k andIk is only that the first term of Eq.
(A1) is multiplied byw(qk) so thatI∗k ∼ 0 when the nucleon
k is located inside of a fragment, whereasI∗k ∼ Ik when the
nucleonk has only a few neighboring nucleons. In addition to
this modification, we change the criteria to choose the nucle-
ons that are used to measure temperature of the system. It has
been shown that, to calculate the temperature of the system
correctly, it is necessary to choose the subsystem consisting
of the nucleons with negligible quantum effects among them
based on only the nucleon spatial coordinates without using
momentum variables (see Appendix B in Ref. [41]). For this
purpose, there was a condition that the nucleons that are used
to measure the temperature are chosen not to have more than
one other nucleon within a distance of 3 fm in Ref. [41]. We
replace this condition with{k; w(qk) ≥ 0.9}, which has similar
meaning to the aforementioned condition and guarantees that
the difference betweenI∗k andIk for these nucleons is 1% at



most. This replacement is justified by the study that the mea-
sured temperatures are independent of the choice of nucleons

utilized to measure the temperature as long as necessary con-
ditions are satisfied (see Sec. VC in Ref. [41]).
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