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An Arbitrary Lagrangian-Eulerian strategy to

solve compressible fluid flows

CEA-DAM, DIF, F 91297, Arpajon, France (philippe.hoch@cea.fr)

Ph. Hoch

Abstract

In this paper, we consider an Arbitrary Lagrangian Eulerian (ALE) alternative
to the computation of bi-dimensional compressible fluid dynamics written in La-
grangian frame. In this formulation, the conservation laws are solved on a mesh
moving at the speed of the flow. In the context of multi-material flows, this La-
grangian description allows the exact preservation of the interface between different
species.

Originally, Lagrangian schemes considered a staggered discretization of unknowns
(density, velocity, energy), the velocity is located at nodes and density, pressure are
cell centered, [33] and more recently, with some improvements [5].

Recently, new schemes have been designed as a full centered version [7] [22].
These two schemes can be seen as an extension of Godunov scheme to fully multi-
dimensional flux (at nodes). Each one verifies a local discrete vertex centered entropy
inequality.

Despite all efforts to obtain robust simulations for Inertial Confinement Fusion
(ICF) computations, nowadays, the pure Lagrangian frame mode does not ensure a
good cell quality during the calculation: for example non convex cell and/or tangled
cell may appear.

A commonly used alternative is to consider an ALE formulation [15]. A pure
Lagrangian phase is followed by a two step process: the rezoning of the Lagrangian
mesh followed by a remapping step.

The aim of this paper is to propose some schemes for each step. In the first
one, we will introduce a strategy that controls the quality of the rezoned mesh for
arbitrary polygonal conformal mesh under the constraint of being close to the La-
grangian grid. For the second one, we propose an extension of [23] swept volume
based remapping method. We propose also a local way to impose a discrete maxi-
mum principle (local bound preservation) for arbitrary second order limiter (or high
order method) without any repair process [21].

Key words: Lagrangian Fluid Dynamics, ALE, Rezoning, Nodal Mesh Quality,
Non linear local mesh relaxation, Conservative Local Remapping, Discrete
Maximum Principle (local bound preserving) enforcement.

Preprint submitted to Elsevier March 8, 2009



1 Introduction

The purpose of the paper is to describe numerical methods for the computation
of two dimensional compressible Euler flows written in Lagrangian framework.
Lagrangian schemes was first based on a staggered version (degrees of freedom
for velocity are located at nodes and thermodynamics variables are considered
as cell centered [33],[4],[5]). Recently full cell centered schemes were proposed
see [7] [22]. We consider an Arbitrary-Lagrangian-Eulerian (ALE) method for-
mulated as a splitting between the pure Lagrangian step and the association
of rezoning [34] [29] [16] [17] [9] plus a remapping step [23]. We will propose
new methods for each part of this second step.
First, for the rezoning process we describe a strategy in order to obtain a
smoothed mesh close to Lagrangian grid. Roughly speaking, the method is
derived by the definition of a nodal mesh quality. We will also explain three
main consequences of this definition, such as non linear mesh relaxation, global
mesh quality measurement, and the possible mixing of different smoothing grid
algorithms.
Second of all, for the remapping step, we introduce an approximate version
of polygon-polygon intersection that computes exact intersection between two
arbitrary meshes. Our approach is intermediate between a pure exact inter-
section algorithm see [32] [14] and the local volume swept region method
in [23],[20] where no intersection is needed. In our case, only a very simple
segment-segment intersection algorithm is needed, offering still a linear com-
plexity algorithm (w.r.t the number of cells). Finally, we discuss for first and
second order accuracy, the local maximum principle for density and any spe-
cific quantities.
The paper is organized as follows. First, we briefly recall the pure Lagrangian
schemes for gas dynamics. Second, we deal with a commonly used alternative
to pure Lagrangian scheme : the non direct ALE formalism constituted by two
steps. Concerning the rezoning step, we introduce the definition of nodal mesh
quality. As a consequence, we can naturally define non linear mesh relaxation,
and adaptive local and mixed smoothing mesh algorithms. These tools help to
control on one hand the quality of the final smoothed mesh and on the other
hand its “proximity” to the Lagrangian grid. Some numerical examples are
given.
To conclude the rezoning part, we give also a variant of Escobar et al [9] for
the smoothing and untangling of meshes with arbitrary connectivity. In our
case, we take into account the local mesh connectivity around the node, the
degree of the node and each individual cell around this node.
In the fourth part, we recall the remapping step needed to recompute the
new values in the cells (and/or nodes) of the new smoothed mesh. The exact
problem is based on the intersection of the Lagrangian and rezoned grids. A
solution to circumvent the computation of polygon-polygon intersection, is to
compute the “swept area” see in [23], which is an intersection free process.
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Here, we propose a modification based on “self” line clipping. For the first or-
der, we obtain a positive scheme under a condition on the node displacement,
and guarantee a discrete local maximum principle (local bound preserving).
For the “second order” version of our local approximate remapper, we use an
iterative process to enforce maximum principle to extensive quantities (such
as density). For intensive quantities such as internal energy, see [31], we use
a non linear representation. Some numerical examples using these tools are
then presented.

2 Lagrangian Hydrodynamics

We are mainly interested in numerical approximation of Euler equations. In
Eulerian frame, these are the conservation of mass, momentum and total en-
ergy:



























∂tρ + ∇.(ρU) = 0,

∂t(ρU) + ∇.(ρU ⊗ U) + ∇P = 0,

∂t(ρE) + ∇.((ρE + P )U) = 0.

(1)

where ρ, U, E represents the density, velocity, and specific total energy. P
stands for the pressure given by a thermodynamical relation P=P (ρ, ǫ), where
ǫ is the specific internal energy of the fluid, for a perfect gaz P = (γ − 1)ρǫ.
To obtain equations on a moving grid, we note that for any quantity q,

dq

dt
= ∂tq + U.∇q

In the pseudo Lagrangian frame (spatial derivatives are still those of (1)), the
equations are:



























ρ d
dt

τ −∇.U = 0,

ρ d
dt
U + ∇P = 0,

ρ d
dt

E + ∇.(PU) = 0.

(2)

where τ = 1
ρ
. A commonly used spatial discretization of this system is done

after integrating (2) on a moving cell C(t):
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

























d
dt

∫

C(t) ρdx = 0,

d
dt

∫

C(t) ρUdx +
∫

∂C(t) PNdl = 0,

d
dt

∫

C(t) ρEdx +
∫

∂C(t)(PU).Ndl = 0.

(3)

d

dt

∫

C(t)
1dx −

∫

∂C(t)
U.Ndl = 0 for volume conservation. (4)

At this stage, there are basically three different kinds of spatial discretization:
staggered, collocated in cell or at nodes.

2.1 Staggered schemes

Two staggered schemes are nowadays in use:

(1) Wilkins [33]. This scheme is commonly used by many codes and can be
considered as a reference. The main features are:
(a) Mixed Q1/P0 (Velocity/Thermodynamics).
(b) Internal energy formulation ρ d

dt
ǫ + P∇.U = 0. The scheme is not

conservative for the total energy.
(c) Hourglass correction (non physical oscillation for non-triangular

mesh can appear otherwise).
(d) Artificial viscosity (to add entropy for capturing shocks in veloc-

ity/pressure).
(2) Shashkov et al. [5][27].

The scheme makes improvement over the previous scheme. The authors
proposed to add more robust tools to correct some defects of Wilkins
schemes.
(a) Sub-zonal pressure forces control more precisely the hourglass modes.
(b) The scheme is conservative for the total energy.
(c) Artificial viscosity have been improved.

2.2 Centered schemes

We briefly recall the centered scheme of Després/Mazeran [7] and Maire et al
[22]. Both of them are finite volume schemes with the following properties:

(1) Momentum and total energy conservation.
(2) Approximate linear Riemann solver: averaged normal to node for De-

sprés/Mazeran and normal to face for Maire.
(3) Nodal fluxes (compatibility of mesh movement and continuity equation).
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The two schemes differ from the intermediate pressure discretization and ex-
hibit some side effects :

• Després/Mazeran nodal solver (first order and more) depends on the aspect
ratio of the mesh while Maire et al does not.

• The method of Després/Mazeran can develop hourglass modes (first order
and more) and needs to be coupled with some hourglass filter or ALE pro-
cess. It is an open question to know if Maire et al scheme possesses such
modes.

• Maire’s nodal solver is very dissipative and needs to be second order for
some flows.

2.3 Nodal Based Finite element methods

For finite element discretization, see the following approach of Barlow [1], and
also recently, G. Scovazzi et al. [26] and [12] have developed a new approach to
Lagrangian shock hydrodynamics based on the variational multi-scale method
applied to nodal based finite element discretizations. These methods are con-
servative for the mass, momentum and total energy, and use an artificial vis-
cosity to improve robustness under shocks conditions.In general way, some
drawbacks of pure Lagrangian scheme are:

• interacting shocks can destroy mesh quality and increase the error
• the mesh can become very distorded for rarefaction waves from a solid into a

light material (vacuum), because high curvature of interfaces and boundaries
(with fast variations) may develop.

Shear and vorticity tend to tangle and fold the mesh, and drive the compu-
tation to breakdown. A commonly accepted solution in these cases is an ALE
approach: it improves the geometrical quality of mesh by a smoothing and
remapping process.

Remark 1 For this paper, we will show results with Wilkins Lagrangian scheme
but it extends of course to any of these. Because most of mesh complexity comes
from cells having more than four nodes, in the following sections, we focus on
quadrilaterals, but the approach is valid and described for arbitrary conformal
connectivity and may be easily extended to three dimensional case.
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3 Mesh rezoning : Escobar connectivity adaptation algorithm and
nodal quality control

The basics of our mesh smoothing approach adapts the Escobar et al algo-
rithm [9] to an arbitrary polygonal mesh. The local transformation that leads
to a local objective function takes into account the local connectivity of the
node and of the cells surrounding it. In a second part, we propose a mesh con-
trol monitoring with nodal quality. Mainly, any smoothing algorithm tends to
produce square quadrilaterals although the Lagrangian initial mesh may have
very large aspect ratio and/or area ratio. In ALE computation, if nodes are
systematically displaced, a lot of numerical diffusion implied by remapping
step tends to smear shocks, and some physical phenomenon may not be cap-
tured. Moreover, we need the smoothed grid to be as close as possible to the
Lagrangian grid (at new time level) to minimize mass fluxing and numerical
diffusion induced. This means that if this grid is almost optimal, we only need
to cure very localized regions. In this way, we propose to give a weight to
Lagrangian nodes. In the context of mesh smoothing, up to our knowledge,
all the algorithms such as elliptic ones Barycentric, Tipton [29], Jun [16], or
optimization based: Reference Jacobian Matrix (RJM) [17], feasible set [13],
condition number [18], Escobar [9] are based on cell quality definition. This
notion describes somehow the regularity of the cell aspect see Knupp [18],
Pebay [24]. In the context of local mesh modification (h-adaptivity [11]) this
notion is very natural, nevertheless for constant connectivity (r-adaptivity see
for example [11]), we propose to define the quality at nodes. It will be justified
after setting some basic notation.

3.1 Notation for ALE unknowns

In this part, we give the basic notation. The superscript/underscript n indi-
cates the node index.







































Mprev, Lagrangian mesh at time t,

M lag, Lagrangian mesh at time t + ∆t (new time level),

Male, Lagrangian rezoned mesh,

Mn, defines the position of node n in the mesh M.

(5)

Recall the following identities:











M lag
n = Mprev

n + ∆tUprev
n , Uprev

n is the velocity of the vertex n,

Male
n = M lag

n + ∆ale
n .

(6)
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The unknown here is ∆ale
n for all nodes in M lag. We need to define some notions

for connectivity:

(1) The Cell/Node and Node/Cell view point:



























N(C) is the set of nodes of cell C,

#N(C) is the number of vertices in cell C,

nC
l : l is the local index of n in the cell C.

(7)

C

1

2

3

4

5

6

n

n

n
n

n

n

1

23

4

5

n

CC

C

C

C

Figure 1. Connectivity cell/node (counter-clock wise) local index nC
l and node/cell

local index Cn
l



























C(n) is the set of cells linked to the node n,

#C(n) is the number of cells linked to the node n.

Cn
l : l is the local index of C linked to the node n.

(8)

(2) The Nodal/Nodal view point:











N(n) is the set of nodes belonging to one of C(n),

#N(n) : number of nodes inside N(n),
(9)

We need to define a more detailed description of different kinds of neigh-
borhood of n in (9): short, medium and long range, see Figure 2.
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ShortC(n)
n = { n′ ∈ C(n) ; |nC

l − n
′C
l | = 1 } = {nn, nm} always two nodes,

MediumC(n)
n = { n′ ∈ C(n) ; |nC

l − n
′C
l | = 2 } ,

MediumC(n)
n =



























{∅} , for simplex,

{nd} , (nd = (nnn = npp) for quadrilateral cell),

{nnn, npp} , for pentagonal cell,

LongC(n)
n = N(C(n))\ShortC(n)

n \MediumC(n)
n .

(10)

For meshes of simplices, N(n) ≡ ShortC(n)
n , and for mesh contain-

ing mixed simplices, quadrilaterals and pentagons, only ShortC(n)
n and

MediumC(n)
n are defined. LongC(n)

n is only defined for at least hexagons.

n

C

medium range

long range

medium range

short range

T
S

n

nnnn
p

npp

nf

α
n

α

α

MS
Tnp

nn

np

n

L

L

S M
Tnn

T
S

n

T
SM

nn

S
T

M

nn

n

n

nn

np

short range

nn
={n,n ,n   }

={n,n   ,n }pp

p ={n  ,n,n  }
n

p

Figure 2. Neighborhood of vertex n in a cell: short/medium/long range and un-
derlying cutting into simplices (see triangles T above) for three consecutive nodes
involving n.

Remark 2 (1) The total number of the set of nodes inside the Short range
is generally called:

degree(n) (11)

(2) The long range of node n (if it exists) is here neglected because it can not
define three consecutive nodes inside the cells.

Most of the time, M lag shows pathologies only in very localized regions of
the computational domain, so that, we can decide to smooth only some nodes
inside a sub-domain.
Moreover, we often need to define three different categories of subset nodes,
labelled with status, Previous, Lagrangian or Relax:
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(1) Previous set:

PREV =
{

n; Mn ∈ M lag; ∆ale
n := −(M lag

n − Mprev
n )

}

, (12)

(2) Lagrangian set:

LAG =
{

n; Mn ∈ M lag; ∆ale
n := 0

}

, (13)

(3) Relax set:

REL =
{

n; Mn ∈ M lag; ∆ale
n is a degree of freedom

}

= {n; n /∈ {PREV ∪ LAG}} . (14)

For the sets PREV and LAG, the displacement is fixed so that belonging
points are not degree of freedom for the rezoning algorithm. Practically, at
initial time we set all nodes to LAG and decide to raise a node to REL if at
some time, a geometric criteria over angles or area has reached a threshold
value. The node will keep this status until the end of the computation (or will
be re-analyzed every time step). A global smoothing process is done by an
iterative procedure where the maximal number of iteration is small (< 20).
The method used to iterate can be formulated at least in two ways:

• Explicit (Jacobi update): Initialize M0
n = MLAG

n for all n, after for each
n ∈ REL, compute M s+1

n with a local smoother with all neighborhood
j ∈ N(n) fixed.
Pros : Permits to conserve symmetry, does not depend on the numbering of
vertices.
Cons : For initial poor non simplicial meshes (tangled), the convergence
towards untangling is very slow, or even worse that untangling is not ob-
tained.

• Semi-implicit (Gauss-Seidel update): Initialize M0
n = MLAG

n for all n, after
for each n ∈ REL, compute M s+1

n with a local smoother with neighborhood
j ∈ N updated by previous pass.
Pros : For initial poor non simplicial meshes (tangled), the convergence is
improved.
Cons : Symmetry is lost (if not fully converged), depends on the numbering
of vertices.

3.2 Escobar Optimization process extended to arbitrary connectivity

3.2.1 Extension of Escobar method

In reference [9] Escobar et al. propose a way to define all over the space IRd

the functionals found in literature designed to improve the global quality of
a mesh. Their approach permits simultaneously to untangle and smooth a
tetrahedral mesh. They noticed that existing optimization techniques such as
[18] [17] Reference Jacobian Method (RJM) consist in minimizing an objective
function. This last is generally a rational function q(x) = n(x)/d(x) for which
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the denominator d(x) may be zero making it not defined all over the whole

space. The main idea is to replace d(x) by 1
2
(d(x) +

√

d2(x) + 4δ2) see Figure
below to obtain a globally defined and smooth functional. We describe the

δ

Figure 3. Extension of functionnal by denominator modification

construction of such rational function in IR2, let T a simplex in the physical
space xk = (x1

k, x
2
k) ∈ IR2, k=0,1,2 and TR the reference simplex u0 = (0, 0),

u1 = (1, 0),u2 = (0, 1). The affine map between T and TR is given by x =
x0 + Au, where A is the Jacobian matrix of the map referenced to node x0.

W

A

Reference  triangle

(u)
Real   triangle

Ideal  triangle

(x)

(v)

0

1

2

T

T

I

TR

Figure 4. Different transformations between Real, Reference and Ideal triangle.

A =







x1
1 − x1

0 x1
2 − x1

0

x2
1 − x2

0 x2
2 − x2

0





 (15)

The authors considers the equilateral triangle to be an ideal triangle TI whose
vertices are v0 = (0, 0), v1 = (1, 0) and v2 = (1/2,

√
3/2). Let v = Wu be the

linear mapping that transforms TR to TI , in this case, the Jacobian matrix is:

W =







1 1/2

0
√

3/2





 . (16)

Finally, the affine mapping taking TI to T is noted by S = AW−1. The matrix
norm is used: the determinant or trace of S is computed to construct algebraic
quality measures of T see [18]. The Frobenius norm of S, given by |S| =
√

tr(tSS) is used to define an algebraic cell quality : q(S) = 2
|S||S−1|

, the
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maximum value is reached for equilateral simplex, and flat triangle has zero
quality measure. For each node of the mesh, an objective function can be
associated to some simplex in Figure 5, fm = 1/q(S), fm = |Sm||Σm|

2σm
, where

Σ = σS−1, with σ = det(S). Unfortunately, it may happen that σm be 0 (in
case of two consecutive flat edges) or becomes negative so that the previous
function is not defined. Escobar fixes this problem, by the following modified
objective function: f̃m = |Sm||Σm|

σm+
√

σ2
m+4δ2

, defined on the whole space. The full

Escobar functional Fn(x) =
∑NbSimplices

m=1 f̃m is constructed by adding all the
simplices contributions.
Unfortunately, for arbitrary connectivity meshes, we do not know what is an
ideal cell. Moreover, the different simplices (Short or Medium Range) do not
possess the same amount of information. For this reason, the application W
in (16) is only an approximation for general polygons.
In fact, for each simplex, we will introduce a fitted parameter for each class,
Short and Medium. In terms of linear application, it means that we need
to introduce a different matrix (Wα) for each of simplices class, and we will
adapt this to the non homogeneous local connectivity around each node see
Figure 5. From a generic point of view, we have to deal with the following
transformation matrix:

Wα =







1 cos(α)

0 sin(α)





 , Sα = AWα−1 . (17)

Here, we propose an extension of Escobar functional that takes into account
non homogeneous connectivity of the mesh.

Proposition 3
The transformation matrix (17) is computed in the following way:

(1) For all internal simplices (Short Range), to obtain equilibrium (constant
angle) around n, the optimal parameter is given by (see (11) for notation):

αi =
2π

degree(n)
, ∀i = 1, .., degree(n) (18)

(2) For external (diagonal) simplices (Medium Range) belonging to the cell
C around n (see notation (7) (8)), we look an equilibrium inside C, here
parameters are:

αnC
l

,1 = αnC
l

,2 =
2π

degree(n)(#N(C) − 2)
. (19)

Short Proof.

(1) Short Range simplices. We want to balance all information of simplices

11



1
2

3 4

T

T

T

T

T T

T

T

T

1

T

3

T
4

T

2

S
S

S

S

M

M

M

M

M

M
M

M

αα

α
α

α

α

α

α

α
α

α

12

3
4

1,1

1,2α2,1

2,2

3,1

3,2
4,1

4,2

1,1

1,2

2,1

2,2

3,1

3,2 4,1

4,2

n

C C

CC

Figure 5. Neighborhood of node, and adaptation of local Escobar functional to local
connectivity for short and medium neighborhood after cutting cells by simplices.
Here, Ci are the ith local cell linked to node n, TS

i the SHORT range sub-simplex
inside Ci, and Ti,1, Ti,2 the MEDIUM range sub-simplices. The angle αi (resp.
αi,1,αi,2) is the angle inside TS

i (resp. Ti,1, Ti,2) from n.

see Figure (5) so that αi = α∗ (same angle), with the constraint that
∑degree(n)

i=1 αi = 2π.
(2) Medium Range simplices. Using the previous result, let us consider a cell

for which we want to equilibrate the angle inside the cell (see Figure 6)

coming from the node n, here the constraint is
∑#N(C)−2

j=1 αj = 2π
degree(n)

.

2π
degree(n)

Figure 6. Medium range optimal coefficient

�

Using (17) (18) (19), we can consider now the local objective function:
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f̃α
m =

|Sα
m||Σα

m|
σα

m +
√

(σα
m)2 + 4δ2

(20)

Fα
n (x) =

NbSimplices
∑

m=1

f̃α
m (21)

For the numerical approximation of this local functional, we have used the
BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm, see [2]. The parameter
used in BFGS are the stopping criteria |∇Fα

n (x∗)| < 10−4, and re-initialization
of cumulative approximated hessian direction by opposite gradient if the de-
scent direction is too far from it or any 20 iterations. We re-initialize the
line-search any 5 iterations. There is still some improvements to make to de-
termine δ for arbitrary meshes, see [19] for an answer. Practicaly, we choose
to take (after setting (σmin = min σm)) :

δ =











max(
√

ǫ(ǫ − σmin), ǫR|σmin|), if σmin < ǫ, (ǫ = 10−14), (ǫR = 10−7),

0 otherwise.

In next work, we plan to adapt the algorithm to the anisotropic case. At
this point, we have build a method whose goal is to obtain robust smoothing
process, and we will show some test cases.

3.2.2 Numerical test cases related to Escobar with connectivity adaptation

In the following, we test the smoothing effects of the functionnal minimization
(20) on a variety of static mesh (no coupling with hydrodynamics). In the first
test, the initial mesh Figure 7 is composed by four quadrilaterals, and possess
poorly positioned nodes. At convergence, the smoothing techniques must pro-
duce a mesh made of squares for Test 1 Figure (7). The second (resp. third)
test Figure (8) (resp. Figure (9)) consists in untangling a simplicial mesh (resp.
unstructured quadrilateral mesh).
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Test 1: Comparaison with different variation of Escobar functionnal (20) on a simple initial distorded mesh

Iter no 1 Iter no 2 iter no 3

iter no 4 iter no 5 iter no 6

Figure 7. Comparison of evolution w.r.t global update (Gauss Seidel) for three dif-
ferent variations of Escobar algorithm: Original Escobar (red, all α = π/3), Escobar
ortho. (blue, all α = 0), and new Escobar (green, α connectivity adaptation (20)).
Our connectivity adaptation algorithm is always better than the original Escobar
(always in the middle)

14



Test 2: Untangling of an unstructured simplicial mesh

−1.8×10
−9

1.0×10
0

2.0×10
0

−7.1×10
−9

1.0×10
0

2.0×10
0

Mesh    M1

Figure 8. Untangling of static simplicial mesh : (red) Tangled mesh, (blue) Final
smoothed mesh
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Test 3: Untangling of an unstructured quadrilateral mesh

−2.1×10
−9

1.0×10
0

2.0×10
0

−4.4×10
−9

1.0×10
0

2.0×10
0

Mesh    M1

0.4578 1 1.653

0.5078

1

1.67

Mesh    M1

0.5078

1

1.67

Figure 9. Untangling of quadrilateral mesh. Tangled mesh (red) and untangled mesh
(blue) after 2 iterations, Left Fullview, Right Zoom

0.0×10
0

1.0×10
0

2.0×10
0

0.0×10
0

1.0×10
0

2.0×10
0

Mesh    M1

Figure 10. Smoothed mesh after 20 global iterations (blue) obtained from the tangled
mesh (red) 16



The three previous tests of the proposed Escobar with connectivity adaptation
(20) show that the convergence is better than the original Escobar but that
it does not preserve aspect ratio (as the original Escobar and also Reference
Jacobian Method (RJM) [17] and Winslow [34]).

3.3 Definition of nodal mesh quality and consequences for rezoning step

We begin this section by general considerations.

• The non-linear optimization algorithms such as the Reference Jacobian
Method [17], Escobar [9], etc, are much more time consuming than ellip-
tic linear ones Tipton [29] or Jun [16], or barycentric (Laplace). Moreover,
these schemes does not preserve aspect ratio of the Lagrangian mesh which
can be bad in some situation (planar shock on an initial cartesian mesh).

• The Lagrangian grid needs to be improved as locally as possible.
• The smoothing process does not ensure that all the cells have been really

upgraded with respect to cell quality itself, only some averaged quality is
actually improve.

• In case of real application (i.e. coupled with hydrodynamics), we never
reach convergence at each time step, but we need to control very
closely the quality of the rezoned mesh.

We emphasize that we focus on a process fullfiling the following property:

The smoothed mesh must be

as close as possible to the Lagrangian grid (22)

In pratice, we impose the following constraint on the node displacement:

ClosetoLag(n) :=
∆t|Uprev,∗

n |
|M lag

n Male
n |

(23)







































if 0 ≤ ClosetoLag(n) < 1 then

Male
n := Male

n × ClosetoLag(n)

else

Male
n is accepted.

(24)

where Uprev,∗
n is some averaged Lagrangian velocity of node n see (6). After

node displacement, we ideally expect that new position tends to produce better
surrounding cells, but in practice this is not always true, because of highly non
linear process induced by (23). Our smoothing process is a discretisation of a
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non-linear (degenerate) Elliptic operator with compact support.
We need to define a vertex quality measure for nodal mesh movement. In this
way, the node movement influences simultaneously all the cells around. At this
stage, we have to define the properties of this nodal function, and we will give
some examples of such functions.

Definition 4 A nodal mesh quality function Qn is a measure of the regular-
ity for cells belonging to C(n). It is defined and continuous from IR2 → [-1,1].
Let’s define (see Figure 2):
min sin := minC(n) min(sin(αS

n), sin(αSM
np

), sin(αSM
nn

)),

max sin := maxC(n) max(sin(αS
n), sin(αSM

np
), sin(αSM

nn
)),

min area := minC(n) min(A(T S
n ), A(T SM

np
), A(T SM

nn
)),

max area := maxC(n) max(A(T S
n ), A(T SM

np
), A(T SM

nn
)).

Then, we introduce some basic examples of nodal functions:

sin: Qsin
n = min sin

sin,rel : Qsin,rel
n = min sin

max(max sin,|min sin |)

area,rel : Qarea,rel
n = min area

max(max area,|min area|)

aspect ratio weight: Qar,∗
n =

minC(n) min(Lnp ,Lnn )

maxC(n) max(Lnp ,Lnn )
Qr

n, (r is one of the 3 previous functions, sin,

sin rel, area rel).

All these nodal quality functions must fullfill the following properties:

(1) Qn ≃ 1 iff the mesh around n is locally optimal,
(2) Qn = 0 iff at least a cell around n is locally flat (n is aligned with 2

consecutives j ∈ Short(n)),
(3) Qn < 0 iff at least a cell around n is locally degenerate (non convex or

tangled).

In our case, we need to define functions with negative values. Indeed for arbi-
trary polygonal cells, we need to make a difference between convex flat (Figure
11 Case 1 and Case 2) and strictly non convex cell (and a fortiori tangled cell
Figure 11 Case 3 and Case 4 for which the mesh is considered as unvalid).
We need to mark degenerated nodes, because ideally, we must maintain cell
convexity, at least because the existence of the Jacobian transformation be-
tween Lagrangian and Eulerian continuous frames does need it. This previous
definition 4 does not depend of LongC(n)

n range because it would envolve more
that three consecutive nodes, hence the word “locally” in the three properties
is only based on Short and Medium neighborhood.
The evaluation of these functions is inexpensive because it uses angular and
area criteria which have already been computed to determine if a node needs
to pass from LAG to REL see (13)(14).
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Remark 5 For nodes that are not degree of freedom in the rezoning process
(in PREV or LAG), we decide to give the maximum value Qn := 1 for any
function because their displacement is known, so that their new location can
be considered as optimal.

Q=0
A

B

C

D

A

B

C

D
D

D
B

C C

AA

B

Q<0

Q<0

Q>0
D

DD

D

Case 1 Case 2 Case 3 Case 4

Figure 11. Evolution of the nodal quality for different position in one cell

Remark 6 From the cell quality notion, we can define quality of vertex n by
taking the minimum cell quality of all the neighboring cells (which is exactly
the same for simplices meshes). Here, we propose an alternative but weaker ap-
proach below (with the meaning of Short, Medium and Long range see equation
(10)).

1
2

3 4

Short Range interaction

(direct mate)

Medium Range interaction
(diagonal mate)

T

T

T

T

T T

T

T

T
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T
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T4

T

2

5

6

7

8

9

10 11

12

S
S

S

S

M

M

M

M

M

M
M

M

n

C C

CC

Figure 12. Patch for the different ranges : short and medium range

In definition 4, the reader can easily check that the functions verify:

• Qn < 0 ⇒ it exists a non convex cell in C(n).
• Qn ≥ 0 ⇒ T S

n in ShortC(n)
n and T SM

np
, T SM

nn
in MediumC(n)

n are not tangled.

We give some basic properties of previous nodal function definition.

Properties 7 (1) The function Qsin
n (see definition 4) is optimal for the fol-

lowing patches: local orthogonality with arbitrary aspect ratio (very inter-
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esting for symmetry preservation), this function is well suited for quadri-
lateral (logical connectivity) meshes.

(2) The function Qarea,rel
n is optimal for the following patches: arbitrary iso

area surrounding cells (can preserve symmetry).
(3) The introduction of aspect ratio for the last function is there to control

the ratio of the extremum length of adjacent edges.

120 

O

Figure 13. Quality of central node. Left patch: Q = 1 for all these func-
tions, Middle patch: Qsin = 1, Qsin,rel = 1, Qaire,rel = .25, Right patch:
Qsin = .5, Qsin,rel = 1, Qaire,rel = 1. for all these functions.

As a first consequence of the previous definition 4, we can introduce a global
mesh quality using each individual nodal quality.

Definition 8
Let QM

n
be an arbitrary nodal quality function for node n in mesh M, we define

two global qualities for mesh M:

(1) QM
∞ = minn QM

n

(2) QM
1 = 1

Nv

∑Nv
n QM

n
(Nv : Total number of vertices)

(25)

Beside this definition, we need to define a parameter to compare two given
meshes.

Qref : global reference quality,

Qref ∈ [0, 1] (given by the user or given by some estimate see below).
(26)

Using Qref , we can define:

NbM(Qref ) : the number of nodes such that QM
n < Qref . (27)

We note that QM
∞ is linked at least to one vertex (non uniqueness) with the

worst nodal quality. Practicaly, we use a real number Qmin ∈ (0, 1) such that
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no rezoning occurs when QM
∞ ≥ Qmin. And we set Qref = C1Qmin, C1 ≤ 1,

(C1 ≡ 1/2 as instance). But for simplicity we use Qref ≡ Qmin in the following.
We are now able to quantify the whole mesh quality thanks to (25)(26)(27).
Moreover, we can also compare two meshes M1 and M2.

Definition 9 M1 is strictly better than M2 if and only if one of the three
situations is verified:

(1) If QM1
∞ ≥ 0 and QM2

∞ ≥ 0, then one of the three following cases:
. QM1

∞ > QM2
∞ and NbM1(Qref ) ≤ NbM2(Qref ), OR

. QM1
∞ ≥ QM2

∞ and NbM1(Qref ) < NbM2(Qref ), OR
. QM1

∞ = QM2
∞ and NbM1(Qref ) = NbM2(Qref ) and QM1

1 > QM2
1 .

(2) If QM1
∞ > 0 and QM2

∞ < 0.

(3) If QM1
∞ < 0 and QM2

∞ < 0, then one of the two following cases:
. QM1

1 > QM2
1 and NbM1(Qref ) ≤ NbM2(Qref ), OR

. QM1
1 ≥ QM2

1 and NbM1(Qref ) < NbM2(Qref ).

Remark 10 Another possible definition would be to replace the three inequal-
ities in (1) by the same two inequalities of (3) offering a more symmetric
treatment. However, this first definition permits to control the worst quality
node. This definition is then a rule for the case where we want to penalize non
convex meshes.

A second consequence is a way to generalize the global mesh relaxation process
by a local relaxation much more natural and well suited to the proximity
requirement.

Definition 11 Let M1 and M2 be two meshes with the same connectivity,
and QM

n a nodal quality function, we define a third mesh M3 by :

∀n, nth vertex of M3 : M3
n = M1

n + w(QM1

n , QM2

n )(M2
n − M1

n) (28)

w(QM1

n , QM2

n ) is a weight function with values in [0,1].

Examples

(1) w(QM1

n , QM2

n ) = Constant, corresponding to a global mesh relaxation
between M1 and M2.

(2) w(QM1

n , QM2

n ) = 1+QM2
n

2+QM1
n +QM2

n

( QM1

n +QM2

n 6= −2). This is a kind of average

between both, if QM1

n and QM2

n are equal, then w(QM1

n , QM2

n ) = 0.5, and
the function is decreasing in QM1

n for QM2

n fixed, increasing in QM2

n for
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QM1

n fixed.

(3) Heaviside kind of process: w(QM1

n , QM2

n ) =











0, if QM1

n ≥ QM2

n ,

1, else.

in this case (28) is equivalent to:

M3
n =











M1
n, if QM1

n ≥ QM2

n ,

M2
n, else.

(29)

this particular mesh is refered as the two ”intersected ” mesh of M1

and M2.

Properties of non-linear nodal relaxation (28)

(1) Order independent, the construction of M3 is very fast (only positions
differs).

(2) If M1 and M2 are close then M3 is close to M1 and M2 (“between”).
(3) We have to be careful because QM1

n > QM2

n does not implies QM3

n ≥
QM1

n > QM2

n . We can not deduce a comparison principle for the third
mesh. However, in many situations it does, as we will see in numerical
examples Figure 14 and Figure 15, and moreover, we can take the best
mesh over the three using the previous definition (11).

As an illustration of this kind of process, we give some examples of the non
linear relaxation below. For the three examples, we choose the Qsin

n as nodal
function and we choose Qref = 0. We test equation (29) on different static re-
zoning process (no hydrodynamic coupling). For each one, with a given mesh
M1 (the data), we construct a second mesh M2 by using a more or less success-
ful “smoothing” process, and we apply the formula (29) to obtain the third
mesh M3 call mesh M1 Inter M2.

(1) In the first test Figure 14, mesh M1 gets one tangled cell (see the two
nodes just above (0,0)), mesh M2 is obtained using the Jun smoothing
algorithm except for some nodes around the origine (0,0). We put away
two nodes to tangle the mesh in some other regions than M1. Note that
the Jun process has smoothed out the tangled cell from M1. We notice
that M1 ∩ M2 mesh does not possess any tangled cell anymore, only a
slightly non convex cell remains.

(2) In a second test see Figure 15, mesh M1 is the same as the previous
example, but in this case, the smoothing process has produced a valid
and better shaped M2 mesh. Then M1 ∩ M2 mesh is quite close to M2.

In practice, we relax the Lagrangian grid using an iterative smoothing process.
Therefore, we need to define some parameter such that a node is supposed to
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−1 0 1

0

1

Mesh    M1

0

1

−1 0 1

0

1

Mesh    M2

0

1

−1 0 1

0

1

Mesh    M1 inter M2

0

1

Figure 14. First Mesh M1 is characterised by : QM1
∞ =-0.547, NbM1(0)=4, Tan-

gled Cell: 1, the second mesh M2 results from an iteration of Jun’s smoothing
except for some nodes around the origin (0,0), its characteristics are QM2

∞ =-0.999,
NbM2(0)=10, Tangled Cells: 2, the third mesh M3 is the intersected mesh resulting
from (29) with the following characteristic QM3

∞ =-0.008, NbM3(0)=3, Tangled Cell:
0.

−1 0 1

0

1

Mesh    M1

0

1

−1 0 1

0

1

Mesh    M2

0

1

−1 0 1

0

1

Mesh    M1 inter M2

0

1

Figure 15. The first mesh M1 correspond to Mesh M1 in Figure 14 : QM1
∞ =-0.547,

NbM1(0)=4, Tangled Cells: 1, the second smoothed mesh M2 is obtained with
Jun algorithm, it has QM2

∞ =0.109, NbM2(0)=0, Tangled Cells: 0, the third mesh
M3 is the intersected mesh resulting from (29) with the following characteristic
QM3

∞ =0.117, NbM3(0)=0, Tangled Cells: 0.
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be nearly optimal (it then becomes fixed for the next iterate). This number
depends, of course, on the nodal quality function, we call it Qopt and we
associate it to some nodal function (see definition 4) as 10% less than the
optimal values:

Qopt =











0.99, for sin function (81 degree)

0.9, for area, rel function.
(30)

A third consequence is that the nodal quality function gives a priority order
that permits to mix algorithms. Basically, for nodes having acceptable quality
we use some classical smoothing algorithms (or even do nothing) while for bad
quality vertices, we use a more robust (but time consuming) one.
For example, if Qref is fixed in (26), and consider a mesh M to smooth for
one iteration, and let

Q∗ ∈ [0, 1] = max(0, min(C2Qref , C3 + QM
∞)) (C2 = 0.25, C3 = 0.1) (31)

for each node n such that if (QM
n ≥ Q∗), we use an elliptic algorithm with

Jacobi update (Tipton or Jun), but if (QM
n ≤ Q∗), we use an optimiza-

tion algorithm with Gauss-Seidel update (RJM or Escobar type). As
instance, we name the scheme mixed Jun-Escobar if Jun algorithm is used
for the elliptic part and Escobar for the optimization part. The speed-up for
this mixed strategy is between 5 and 10 (w.r.t. optimization applied to every
nodes). Moreover, we can conserve symmetry, orthogonality and aspect ratio
with the first two nodal quality functions (sin based) in definition 4.
We name Smooth, the function that transforms mesh M in a smoothed mesh.
It depends on M , proximity constraint (23), and the nodal quality:

Smooth(M, ClosetoLag, {QM
n }). (32)

In fact, we propose the following strategy : for this part, we use equations
(23)-(32) and definitions 4 and 11.

Let M lag and Qref be given,
M0 = M lag, compute ClosetoLag0

Choice of a nodal quality function
Evaluation of Nodal quality and Global mesh quality of M0

if Qlag
∞ ≥ Qref then

Male := M lag, stop
else
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for i=1,MaxIterSmooth do
M i,∗=Smooth(M i−1, ClosetoLagi−1,{QM i−1

n } )
for all node n do

if QM i−1

n ≥ Qopt then
M i

n = M i−1
n

else
M i

n = M i,∗
n

end if
end for
Evaluation of Nodal quality and Global mesh quality of M i

if i=1 then
MBEST = M1

else
Compute MBEST =BEST(M i,MBEST )

end if
ClosetoLagi=ClosetoLag0

for all node n such that QM i

n < 0 do
ClosetoLagi(n)=-1 (NO CONSTRAINTS)

end for
end for

if MBEST better than M lag then
Male := MBEST , stop

else
We use non linear relaxation (28) with M1

n, M2
n beeing two of the follow-

ing meshes : Lagrangian M lag, Best MBEST , Last Iteration MMaxIterSmooth,
Previous Mprev, or any intermediate (Lagrange/Rezoned or Previous/Rezoned).
Moreover, for each of the non linear relaxation, we replace Qopt by a
quantity depending on Qref .
for all node n do

if QM lag

n ≥ Q∗
ref , (1 ≥ Q∗

ref > Qref ) then
M3

n = M lag
n

else
M3

n = M1
n + w(QM1

n , QM2

n )(M2
n − M1

n)
end if

end for
end if

end if

In short terms, this approach can be viewed as an over layer of some previous
versions of an ALE smoothing algorithm. At the end, we can check QM

∞ , QM
1

and NbM(Qref ) for both Lagrangian and final rezoned meshes (named Male).
This approach is:

(1) Independent of the smoothing algorithm.
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(2) Compatible with any kind of nodal statute (depending on criteria
such as angles, area, neighborhood).

(3) Adaptive choice (in time) of the nodal quality function and
adaptation of Qref . The function that analyses all the meshes can jump
between Qsin

n and Qarea,rel
n from one rezoning step to the very next one. To

do this, we use some detector for symmetries and orthogonality. Moreover,
at the end of the previous algorithm, we can use some time adaptative
Qref (at each rezoning step), depending on the quality numbers QM

∞ ,
QM

1 and NbM(Qref ) of the previous overall rezoning step. We decide to
increase by some factor Qref between two consecutive rezoning phases
after two hydrodynamics step if:

Increase Qref : At least two of three assertions are verified: QM lag

∞ ≥ QMale

∞ , QM lag

1 ≥
QMale

1 , NbM lag

(Qref ) ≤ NbMale

(Qref ).
In this situation, this mean that Qref is perhaps too small, so that
the rezoning mesh is too close to Lagrangian grid and then we need
to limit the Lagrangian nodal weight for the next step.

On contrary, we decrease by some factor Qref if:

Decrease Qref : At least two of three assertions are verified: QM lag

∞ ≤ QMale

∞ , QM lag

1 ≤
QMale

1 , NbM lag

(Qref ) ≥ NbMale

(Qref ).

An interesting behavior of this algorithm is that it can be seen as a generalisa-
tion of ALE-n-cycle (smoothing process is applied after every n hydrodynamic
Lagrangian steps), it gives an automatic and adaptive trigger of smoothing
procedure. Examples of this strategy coupled with hydrodynamic is shown in
section 5.

4 Remapping : Self intersection, discrete maximum principle and
non-linear representation

In this section, we now have to compute the Lagrangian variables (ρ,U, E, ǫ, ...)
on the new rezoned mesh in a conservative way. The aim of this part is to pro-
pose an approximate geometric scheme verifying a discrete maximum principle
(local bound preserving) for the first order under a positivity condition and
more precise than [23]. For second order, we propose to enforce this discrete
maximum principle using a local iterative high order reduction. Let us begin
to recall the exact geometric problem and some approximation of [23].
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REMAPPING
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Figure 16. Mesh before (left) and after rezoning (right) : Remapping, quantity QC

(resp. Qn) stands for centered quantity (resp. for nodal), and the N (resp. A) super
script for Q stands for new quantity (resp. old).

The notation for this chapter is:

(1) For a cell C, we note C’ a neighbor cell (by edge if no set is precised),
and |C| its volume, we will suppose here that all the volumes are strictly
positive.

(2) Let e be an edge (Figure 17), we suppose it is oriented from n1(e) to
n2(e) (for example from the lower global node to the greater) and we call
left(e) (resp. right(e)) the left cell (resp. right) to e. We note lC,e the local
index of e in C. We then define the following sign function:

sign(C,e) =











+1 if e is trigonometric oriented in cell C,

−1 else.
(33)

We have of course sign(C,e)=-sign(C’,e) for two adjacent cells C and C’.

C

C

e

’

e
left(e)

right(e)

n2(e)

n1(e)

Figure 17. Edge connectivity

(3) N(C) the set of all C’ that share at least one vertex with C.
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Let recall the following geometric relation (see [23]) between the old and new
mesh cells,

CN = CA ∪
(

∪C′∈N(CA)C
N ∩ C ′A

)

/
(

∪C′∈N(CA)C
A ∩ C ′N

)

, (34)

This relation is valid when CN is inside N(CA), and is equivalent to the
extended flux form:

∫

CN
QdV =

∫

CA
QdV +

∑

C′∈N(CA)

FQ
CC′ (35)

The quantity FQ
CC′

def
:= [

∫

CN∩C′A QdV − ∫

CA∩C′N QdV ] is the exact flux obtained
by the computation of exact intersection between the Lagrangian and
rezone polygonal meshes), mainly by using a polygon-polygon intersection
algorithm. Note that the local conservation comes from the fact that

FQ
CC′ = −FQ

C′C .

and we will impose that approximate flux verifies this relation.
The first order scheme can be written as:

|CN |Q̄N
C = |CA|Q̄A

C +
∑

C′∈N(CA)

(

|CN ∩ C ′A|Q̄A
C′ − |CA ∩ C ′N |Q̄A

C

)

(36)

The positivity condition : |CA| ≥ ∑

C′∈N(CA) |CA ∩C ′N |, gives a local discrete
maximum principle (with respect to edge and corner neighboring cell). In
order to avoid any intersection calculation, they approximate the multi −
dimensional problem (35) by edge flux based on swept regions δFe which
are algebraic volumes V (δFe) swept by edges displacement. This procedure
is by construction intersection free (Figure 18).

e

n2(e)

n1(e)

C

C ’

δF
e

e

n2(e)

n1(e)

C

C
’

Figure 18. First order flux based on area swept by edge displacement δFe of Mar-
golin-Shashkov flux: donor cell interpretation (only one swept region at most)
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In term of flux representation the first order Margolin-Shashkov [23] scheme
(here we put as superscript MS for their name, and 1 for the order) can be
reinterpreted as (35) via fluxes:

FMS,1
CC′ =











|V (δFCC′)|Q̄A
C′ , if V (δFCC′) > 0

−|V (δFCC′)|Q̄A
C , else.

(37)

= max(0, V (δFCC′))Q̄A
C′ + min(0, V (δFCC′))Q̄A

C (38)

We rewrite the scheme in terms of individual edge flux:

FMS,1
e = V (δFe)Q

e,



























Qe :=











Q̄A
right(e) if V (δFe) ≥ 0,

Q̄A
left(e) else.

sign(left(e), e) = 1, sign(right(e), e) = −1.

(39)

The reader can then check that (37) rewrites into (39)

FMS,1
CC′ = sign(C, e)V (δFe)Q

e

We propose a modification of this flux which is based on segment-segment
intersection (with at most one intersection point to compute per edge), this is
an intermediate approach from time consuming polygon-polygon intersection
and cheap no intersection computation algorithms. It basically consists in
computing the intersection point of right situation in Figure 18. The reason
is that the previous flux do not give any exchanges for null algebraic swept
volume, see Figure 19:

δ

−δ

x

x

Feδ )=0V(

Figure 19. No contribution for zero algebraic first order flux volume of scheme (37),
far from exact solution if large discontinuity.

Definition 12
Self-intersection flux, is based on the computation of a “self-tangled” patch
created by edge displacement : eA ∩ eN = {S∗} and S∗ 6= {∅}.
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e

S*

n2(e)

Figure 20. Self-intersection flux : Two sub-zonal volume computation when
S∗ = eA ∩ eN 6= {∅}

The first order self intersection flux writes:

F self,1
e =

nblmt(e)
∑

k=1

V (Ze
k)Q

e
k (40)

Where we use the notation:

(1) nblmt(e) is the number of cells in MA that eN goes through. It may takes
only three values (0,1 or 2) corresponding to:



























0 ⇔ edge is either static or sliding,

1 ⇔ no self-intersection, (it recovers Margolin-Shashkov (37)),

2 ⇔ self-intersection.

(41)

(2) Ze
k is the kth sub-volume (Figure 20), and V(Ze

k) his algebraic volumes,
note that if nblmt(e)=2, then we have always V(Ze

1).V(Ze
2) < 0.

(3) Qe
k is defined by:

Qe
k =











Q̄A
C′ if V (Ze

k) ≥ 0,

Q̄A
C else.

(42)

sign(left(e), e) = +1, sign(right(e), e) = −1. (43)

In terms of discrete balance, our scheme writes:
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F self,1
CC′ =



























FMS,1
CC′ , if S∗ = {∅}, else

|V (Ze
2)|Q̄A

C′ − |V (Ze
1)|Q̄A

C , if V (Ze
2) > 0

|V (Ze
1)|Q̄A

C′ − |V (Ze
2)|Q̄A

C , else.

(44)

where |V (Ze
k)| denotes the absolute value of the algebraic sub volume fluxed.

In fact (44) can also be rewriten:

F self,1
CC′ =

nblmt(e)
∑

k=1

sign(C, e)V (Ze
k)Q

e
k. (45)

Proposition 13 If the flux volumes (40) and cell volumes |CA| and |CN | are
computed with the same formula, then the following positivity condition:

|CA| ≥
∑

e∈C

|
nblmt(e)

∑

k=1,V (Ze
k
)<0

V (Ze
k)| (46)

implies a discret local maximum principle (local bound preserving) with respect
to edge neighborhood (and then on node neighborhood).

Short Proof.

(1) First we have to prove that each volume |CN | of new cells and the volume

balance ˜|CN | := |CA| +
∑

e∈C

∑nblmt(e)
k=1 V (ZCC′

k ) are equal. A sufficient
condition is to compute all the volume (exact) with this formula (always
possible in two dimension). We recall that the volume of any polygonal
cell C given by trigonometric oriented nodes (M1, ...,Mq) is calculated by
:

|C| =
1

2

q
∑

n=1

( ~OMn ∧ ~OMn+1).~e3

Let ~∆n the displacement field for node n: ~OM
N

n = ~OM
A

n +~∆n, we compute

( ~OM
N

n ∧ ~OM
N

n+1) = ( ~OM
A

n + ~∆n) ∧ ( ~OM
A

n+1 + ~∆n+1)

= ~OM
A

n ∧ ~OM
A

n+1 + ~OM
A

n ∧ ~∆n+1 + ~∆n ∧ ~OM
A

n+1 + ~∆n ∧ ~∆n+1.

After suming for all the nodes and using anti symmetry property of ∧
operator, that is to say

∑q
n=1

(

~OM
A

n ∧ ~∆n+1 + ~∆n ∧ ~OM
A

n+1

)

= 0, we

obtain:

q
∑

n=1

( ~OM
N

n ∧ ~OM
N

n+1) =
q

∑

n=1

( ~OM
A

n ∧ ~OM
A

n+1) +
q

∑

n=1

(~∆n+1 ∧ ~∆n+1)
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which gives the result. This geometric constraint

|CN | = |CA| +
∑

e∈C

nblmt(e)
∑

k=1

V (ZCC′

k ) (47)

implies that a uniform constant state is preserved by the scheme, and it
is a necessary condition to obtain the proof.

(2) On second hand, we notice that the discrete balance of fluxes (40) writes:



























|CN |Q̄N
C = |CA|Q̄A

C +
∑

e∈C

∑nblmt(e)
k=1 V (ZCC′

k )Q̄∗
CC′

with Q̄∗
CC′ =











Q̄A
C if V (ZCC′

k ) < 0,

Q̄A
C′ if V (ZCC′

k ) > 0.

This is a convex combination iff (47) is verified with is given by the posi-
tivity condition (46). �

4.1 Second order and Discrete Maximum principle remapping

Our second order remapping extension for self intersection flux (40) writes (we
put 2 as superscript for second order schemes):

F self,2
e =

nblmt(e)
∑

k=1

∫

Ze
k

Qe
k + ∇Qe

k(x − xe
k)dx (48)

where ∇Qe
k (resp. xe

k) is a gradient evaluation (resp. the centroid) correspond-
ing either to ∇QC or ∇QC′ (resp. the cell C or C’) depending on the upwinding
rule for Qe

k (42). The linear part in (48) is integrated by an exact quadrature
formula.

4.1.1 Density and extensive quantities remapping

In the case of an arbitrary limiter of the gradient, it is well known that the
second order approximation of density :

ρA,2 = ρA
C + ∇ρA

C(x − xC), xC centroid of C xC :=
1

|C|
∫

C
xdx. (49)

does not warranty discrete maximum principle of density on new mesh MN . In
[28],[21] the authors propose a conservative post-processing method to impose
a discrete maximum principle (local bound preserving). We propose here an
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other alternative obtained by an always symmetric local iterative process, and
based at most on local neighbors N(C).
Here, we use the result for first order (46) that is the corner stone of this
approach. For second order scheme, if a cell does not verify the discrete max-
imum principle, we reduce the initial gradient contribution both inside and
on the neighbor donor cells. We apply a more restrictive reduction factor on
the limitation of gradients. To achieve it, we iteratively divide the limitation
coefficient by a factor (two as instance) until the discrete maximum principle
is obtained for cells violating it. For such a cell C and neighbor donor cells,
we apply the following iterative process:

ρA,2,(i) = ρA
C +

1

2i
(∇ρA

C)0(x − xA
C). (50)

Here, (∇ρA
s )0 is the initial gradient. We emphasize that this process does al-

ways converge (∃i; i < ∞) to a value such that discrete maximum principle
is obtained for C. This function is continuous and tends to the first order
representation that verifies this property.

Remark 14 (1) This process can be extended to higher (more than second)
order conservative reconstruction.

(2) The numerical flux (48) with the reconstruction (50), can be seen as an
other way to obtain results of Flux Corrected Transport in [25],[30]. We
want to keep high order evaluation everywhere if discrete maximum prin-
ciple is satisfied and reduce order locally in an iteratively manner until it
is obtained.

(3) This approach can be done on arbitrary extensive quantity, for intensive
one see next subsection for specific quantities.

4.1.2 Specific quantities remapping

Here, we will give a way to obtain discrete maximum principle for specific
energy (and velocity) for “second order” approximation.
Let consider the following projections ρA → ρN and (ρe)A → (ρe)N so that

the specific energy is defined by eN := (ρe)N

ρN .
We have at least two ways to consider second order approximation:

(1) a linear representation for (ρe):

(ρe)A,2 = (ρe)A
C + ∇(ρe)A

C(x − xA
C) (51)

It is well known that there is no discrete maximum principle in e
even if it is true for ρ and (ρe).
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(2) In [31], the authors propose to rewrite (51) as (ρe)2 = ρCeC +eC∇ρC(x−
xC) + ρC∇eC(x − xC) so that:

eA,2,nl = eA
C +

ρA
C(x − xA

C)

ρA
C + ∇ρA

C(x − xA
C)

∇eA

C
(52)

giving a non-linear representation of e.

In the case of staggered hydrodynamics, we do the same with the velocity
(on the dual mesh). The iterative process applied to non-linear representation
writes:

eA,2,nl,i = eA
C +

ρA
C(x − xA

C)

ρA
C + ∇ρA

C(x − xA
C)

1

2i
∇eA

C (53)

Remark 15 We suppose here that discrete maximum principle is obtained for
density (for instance using (50)). This ensures the reconstruction (53) to be
continuous, and the iterative process to converge also.

In the following, we perform a numerical study of the projection for specific
energy and velocity. In our test, we use a gradient computed by green formula
and we use the limiter in [8], and we don’t need to apply (53) in our test
cases. We want to show that self-intersection and non-linear representation as
proposed in this paper are well suited for a remapping step of an ALE scheme.
For the test cases, we consider three options:

I Flux volume computation:
(0) Without self-intersection procedure.
(1) With self-intersection procedure.

II Gradients computed by Green formula and limitation based on [8].
(a) The limitation for specific quantities sC (projection of (ρs)C)

(0) Non linear limitation (first ρC then sC)
(1) Standard linear limitation (on (ρs)C)

(b) and velocity
(-1) First Order
(0) Non linear limitation (same as specific quantity)
(1) Standard linear limitation (same as specific quantity)

The initial data of the test cases on density and temperature are based on
[31], with the following velocity (Figure 21) below :

34



Figure 21. Initial data for test cases Planar geometry (density ρ and temperature
T on Left, velocity U=(u,v) on Right)
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For this initial data, we will consider three different “rezoning” test cases. Test
1 is diagonal advection see Figure 22, Test 2 is random cyclic rezoning Figure
23, and Test 3 is a cyclic rezoning Figure 24. For the latter, the advection
speed is given by:

if 0 ≤ t ≤ 0.5











0.1 t sin(5πx)cos(5πy)

0.1 t cos(5πx)sin(5πy)
if 0.5 ≤ t ≤ 1











0.1 (1 − t) sin(5πx)cos(5πy)

0.1 (1 − t) cos(5πx)sin(5πy)
(54)

For all cases, we take cartesian grid with nx=ny=50.
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Test 1 : Influence on specific quantity
Test Case : Advection (diagonal direction (0.005,0.005))

Initial density min/max :0.001/1, initial temperature min/max : 0/1

nx=ny Flux cell limiter density min/max Temperature min/max

50 self intersection or not Non-Linear 0.001/0.953157874 0/0.999775443

50 self intersection or not Linear 0.001/0.953157874 0/1.023732158
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Figure 22. No global discrete maximum principle on temperature for linear
limiter.

Test 2 : Random Cyclic Rezoning

nx=ny Flux cell limiter density min/max Temperature min/max

50 Self intersection Non linear 0.001/0.999994937 0/0.999999724

50 Self intersection linear 0.001/0.999994937 0/1.000276494

50 No Self intersection Non linear 0.000999984/0.999997086 -0.000008013/0.999999854

50 No Self intersection linear 0.000999984/0.999997086 -0.000015653/1.000144011
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Figure 23. Random cyclic rezoning and resulting temperature: No global discrete
maximum principle on density and temperature if no self-intersection
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Test 3 : Influence on velocity (dual mesh remapping): cyclic Rezoning

Recall : Norm of the velocity (min/max initially 0/5)

nx=ny Flux Nodal limiter norm speed min/max

50 Self intersection First Order 0/4.976664317

50 Self intersection Non linear 0/4.999652095

50 Self intersection linear 0/5.705191088

50 No Self intersection First Order 0/4.977538773

50 No Self intersection Non linear 0/4.999712297

50 No Self intersection linear 0/5.704911304
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Figure 24. Effect of Non linear speed limiter. Norm of the velocity. From Left to
Right : First order (Minimum 0, Maximum 4.97666), non linear second order (Min-
imum 0, Maximum 4.99965), linear second order (Minimum 0, Maximum 5.70519).
The non-linear second order is clearly the sharpest w.r.t. exact solution (21).

The remapping with the following options gives the best results:

(1) Self-intersection for the volumes fluxing.
(2) Linear limitation on ρ (primal cells) and non-linear on specific quantities.
(3) Linear limitation on ρ (dual cells) and non-linear on velocity.

It always ensures a discrete maximum principle on ρ, and specific quantities
for first order scheme if and only if the positivity condition (46) is verified. For
second order (in difficult cases) or for higher order methods, a local iterative
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process is sometimes needed on (50) for extensive quantities and (53) for
intensive ones. We will focus on higher order schemes in a future paper.

5 Numerical results when coupling with hydrodynamic scheme

In this section, we now want to show how to use the tools developped in the
previous section when coupled to a Lagrangian scheme. We recall that we
propose:

(1) Rezoning in section 3: Nodal mesh quality tools, mixed Elliptic-Optimization
algorithms.

(2) Remapping in section 4: Self-intersection flux volumes, non-linear limita-
tion for specific quantities and velocity. Local iterative gradient reduction
for discrete maximum principle enforcement.

In each of the following cases, we use the Wilkins scheme as hydrodynamic
scheme. We also use pseudo-viscosity schulz-tvd [3] with linear coefficient 0.5
and quadratic coefficient 0.7.
The anti-hourglass [10] coefficients is choosen in such a way:

(1) For the Sedov test case (Figure 25), we take standard hourglass coefficient
as 0.25.

(2) For the planar shock case (Figure 30) and three materials case of [6] see
Figure 32, we do not take any hourglass method.
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5.1 Sedov test case

The Sedov test case is defined by the initial state (ρ = 1, P = 0,U = 0),
γ = 5/3, on an initial cartesian grid 50 × 50. A dirac energy ǫ = 5000 is put
in the cell in contact with the origin.

Figure 25. Lagrangian mesh and corresponding density at time 1e-5s

Figure 26. Comparison of ALE computation: density/mesh at time 1e-5s. All the
node are degree of freedom from the beginning. Both use systematically two iter-
ations of Jun rezoner, on the right we add the nodal quality control explained in
section 3, Qref is adapted at each rezoning phases see remark 17 (3). This results
in much less diffusive computation than no control at all (left).
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Figure 27. Lagrangian mesh and corresponding density at time 2e-5s

Figure 28. Comparison of ALE computation: density/mesh at time 2e-5s with the
same parameter as in Figure 26.

Remark 16 With the nodal mesh quality control, we can note that:

(1) the Lagrangian mesh is only smoothed wherever it is effectively distorded.
(2) With the adaptation of Qref , the total effective number of smoothing is

very small (because QM lag

∞ > Qref), moreover the number of steps between
two such effective smoothing is not constant in time, because it can not
be known in advance.
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5.2 The case of Planar shock with non regular grid

The initial gas is at rest, and the density is equal to 1, γ = 1.4, and we impose
to the left boundary condition a constant velocity v=(vz,0) so that an initial
shock is coming from left and traveling to the right (vz=5.107). The mesh is
depicted in Figure 29. It is composed with unstructured quadrilaterals. We
run this test in pure Lagrangian Figure 30 and in two ALE regimes Figure 31.

Figure 29. Initial mesh for planar shock with non regular grid.

Figure 30. Lagrangian mesh and corresponding density at time 20 ns
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Figure 31. ALE computation without nodal mesh quality control using Jun (Top),
and with nodal mesh quality controld with Mixed Jun/Escobar (Bottom) based on
remark/equation (31) at times 20ns see Figure 30 for pure Lagrangian computation.
Here, we decide to relax (to consider a degree of freedom) a node until the end from
the moment where an angle around it is less than π

4 . Note that our new algorithms
(Bottom) and strategy is superior in both shock arrival times and numerical diffusion
with respect to a standard smoothing algorithm (Top).
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5.3 Three materials instability problem [6]

Let an initial regular cartesian grid with nx = 71, ny = 31. We take three
perfect gases (with different γ) at rest in three different zones see Figure below:

(0,3)

ρ=1
P=0.1

ρ=1

(0,0) (7,0)(1,0)

ρ=0.125
P=0.1

γ=1.5

γ=1.6

γ=1.4

P=1

Figure 32. Comparison at time t=5s, Lagrangian, and two ALE computations
with 5 global smoothing iterations Top Lagrangian, Middle : Mixed Jun-Esco-
bar (Jun) without nodal mesh quality tools, Bottom : Mixed Jun-Escobar
adapted with nodal mesh quality (sin/area rel, with adapted Qref ).43



Figure 33. Resulting mesh/concentration of Figure 32. Top : Without any nodal
quality treatment, and Bottom with nodal quality control.

Note here that:

• In this test case we use isothermal/isobar mixing modeling.
• The Lagrangian computation produces invalid grids, causing the time step

to be very small and finally to stop.
• The ALE where rezoning is done for all nodes at each time step (Top)

produce a quasi Eulerian grid, causing more numerical diffusion see oblique
shock (Figure 32 Middle and Bottom) .

• The nodal mesh quality ALE (Bottom in Figure 32 or Bottom Figure 33)
produces smoothed grid only in regions with poorly positioned vertices. This
strategy permits to gain naturally both accuracy and small mass fluxing.

6 Conclusion and future works

In this paper we have proposed a strategy for Arbitrary Lagrangian Eulerian
computation. The rezoning step is done under nodal quality control indepen-
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dently of the smoothing algorithm. This definition is based on some simple
rules and permits to compare iso-connectivity meshes. This definition gets
several consequences.
Mainly, in the case where we want the smoothed mesh to be close to the La-
grangian, it naturally gives a way to control it through a non linear nodal
mesh relaxation. Second, it gives two global mesh quality definition that per-
mit to track non convex cell. And thirdly, it gives a priority order for node
that allows to mix different smoothing algorithms (depending on the values of
the node quality) and also updating method (Jacobi or Gauss Seidel).
A future extension of the present work will be to design such definition when
physical weights (scalar or tensorial) need to be taken into account. More-
over, we have proposed to extend the Escobar algorithm [9] to heterogenous
conformal mesh: it gives naturally different Jacobian matrix for each simplex.
A natural extension would be to adapt it to anisotropic nodal mesh quality
when weights or tensor are defined in the smoothing process.
For the remapping step, we propose to take into account a segment-segment
intersection (simpler than a full polygon-polygon intersection) and compare
result for density, velocity and internal energy. The second order extension for
specific quantities use the non linear limitation of [31]. We show results on
the coupling between this new approximate flux volume scheme and this non
linear limitation. Moreover, we proposed an iterative process to enforce the
discrete maximum principle both on extensive and intensive quantities using
this new approximation.
Future work based on this strategy will be investigated: it involves higher
order remapping which are forced to verify a discrete maximum principle by
iterative processes when density and internal energy are computed. Finally, we
have shown that the overall tools developped here are well suited when cou-
pled with Lagrangian hydrodynamic schemes to control mesh displacement
for rezoning phase and discrete maximum principle (local bound preserving)
for remapping phase.
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