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Abstract

This paper deals with the time-varying nonlinear analytical modeling of the electro-

dynamic loudspeaker. We propose a model which takes into account the variations

of Small signal parameters. The six Small signal parameters (Re, Le, Bl, Rms, Mms,

Cms) depend on both time and input current. The electrodynamic loudspeaker is

characterized by the electrical impedance which, precisely measured, allows us to

construct polynomial functions for each Small signal parameter. By using this an-

alytical model, we propose to compare two identical electrodynamic loudspeakers.

One of them is supposed to be run in and the other one is not. The experimental

methodology is based on a precise measurement. In all the paper, the time scale is

assumed to be much longer than one period of the harmonic excitation.
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1 Introduction1

The reference model describing the electrodynamic loudspeaker designed by2

Thiele and Small [1] predicts that the electrodynamic loudspeaker is both a3

linear system and a stationary one. This analytical model is very useful since4

it is simple to use. However, an electrodynamic loudspeaker exhibits nonlin-5

earities which depend on time. Some authors, such as A.J.M Kaiser [2] and6

W.Klippel [3] [4], have studied the nonlinearities of electrodynamic loudspeak-7

ers. These nonlinearities have become better and better known [5] [6] and some8

authors have proposed a new structure of loudspeaker with an ironless motor9

and without any outer rims and spider [7] in order to eliminate these nonlin-10

earities.11

The other drawback of an electrodynamic loudspeaker is that it is an time-12

varying system [8]. Indeed, the electrical resistance Re increases in time due13

to the heat produced by the voice coil. Then, the compliance Cms depends14

on time since the outer rim and the spider become more elastic because of15

the heat produced by the resistance. The Small signal model using lumped16

parameters does not forecast these time-varying phenomena, and such an17

time-varying analytic model taking into account these properties does not18

exist. In this paper, we put forward a way of characterizing experimentally19

the time dependence and the level dependence of the Small signal parame-20

ters. This experimental characterization allows us to compare two identical21

electrodynamic loudspeakers. One of them is supposed to be run in and the22

other one is not. The knowledge of the time necessary to break-in an electro-23

dynamic loudspeaker is very important because this element of information24

gives indications about the physical properties of both the mechanical stiffness25
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k and the mechanical damping parameter Rms. The first section presents the26

Small signal model using lumped parameters and the main nonlinearities of27

an electrodynamic loudspeaker. The second section presents the experimental28

methodology to identify the variations of the Small signal parameters. In the29

third section, the time dependence of the Small signal parameters and its con-30

sequences are discussed. The last section presents an analytical model which31

takes into account the variations of the Small signal parameters in time and32

according to the input current.33

2 The Small signal model using lumped parameters and its limits34

2.1 The Small signal model using lumped parameters35

According to the Small signal model using lumped parameters, two cou-36

pled differential equations are necessary to describe the electrodynamic loud-37

speaker. One of them is called the electrical differential equation and is given38

by:39

u(t) = Rei(t) + Le

di(t)

dt
+ Bl

dx(t)

dt
(1)40

The other one is called the mechanical differential equation and is given by:41

Mms

d2x(t)

dt2
= Bli(t) − Rms

dx(t)

dt
−

1

Cms

x(t) (2)42

The parameters used in Eqs.(1) and (2) are the following:43

i(t)=coil current [A]44

u(t)=input voltage [V ]45
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x(t)=position of voice coil [m]46

Bl=electrodynamic driving parameter [T.m]47

Rms=mechanical damping parameter and drag force [N.s.m−1]48

Cms=mechanical compliance of suspension(spider, outer rim)[m.N−1]49

Mms=equivalent mass of moving voice coil, cone, air[Kg]50

Re=electrical resistance of voice coil[Ω]51

Le=inductance of voice coil [H ]52

Eqs. (1) and (2) allow us to define the electrodynamic loudspeaker electrical53

impedance Ze which is expressed as follows:54

Ze = Re + jLew +
Bl2

Rms + jMmsw + 1
jCmsw

(3)55

Eq. (3) is well known and is often used to describe the electrodynamic loud-56

speaker. However, Eq.(3) does not forecast the distortions created by an elec-57

trodynamic loudspeaker and the time dependence of the Small signal parame-58

ters. Moreover, if we take into account the eddy currents [9] which occur when59

the input frequency increases, the electrical impedance Ze should be written60

as follows:61

Ze(i, t) = Re(i, t) +
jRµ(i, t)Le(i, t)w

jLe(i, t)w + Rµ(i, t)

+
Bl(i, t)2

Rms(i, t) + jMms(i, t)w + 1
jCms(i,t)w

(4)

where Rµ(i, t) is the eddy current resistance. Ze(i, t) is a time-varying nonlin-62

ear transfer function; at each time and for different input currents, its value63

changes. In Eq. (4), we assume all the parameters depend on both time and64

input current. Strictly speaking, these dependences exist but it is very diffi-65

cult to find them experimentally and to predict them analytically. All these66
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parameters have not the same sensitivity both to input current and to time.67

Moreover, some parameters vary a lot with the input current but do not create68

important distortions69

2.2 Nonlinearities of electrodynamic loudspeakers70

The nonlinearities that produce distortion phenomena can be classified into71

three categories. The first type corresponds to the motor nonlinearities and is72

described in section (2.2.1). The second type corresponds to the suspension73

nonlinearities and is described in section (2.2.4). The third type corresponds74

to the acoustical nonlinearities [10] and is not described here since these non-75

linearities are not directly produced by the electrodynamic loudspeaker.76

2.2.1 The motor structure77

The force factor Bl is not uniform in the air gap. First, the force factor de-78

pends on the voice coil position. Indeed, the magnetic field induction B is the79

superposition of two fields. One of them is created by the permanent magnet80

and is time independent. This field crosses through the yoke pieces but only81

thirty per cents serves to move the coil. The other one is created by the coil82

and is time dependent. Klippel [3] proposed to model the force factor by using83

a polynomial writing.84

Bl(x) = Bl0 + Bl1x + Bl2x
2 (5)85
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2.2.2 The voice coil inductance86

The coil self inductance depends on the moving part position. This dependence87

generates a reluctant force. This reluctant force is given by:88

Frel(t) =
1

2
i(t)2 dLe(x)

dx
(6)89

We see that when Le does not depend on the voice coil position x, the reluctant90

force Frel(t) equals zero, it is one of the assumptions of the Small signal model91

using lumped parameters.92

2.2.3 Eddy currents93

The electrical conductivity of the iron is high enough to let the eddy currents94

appear in the iron yoke pieces of the motor. Vanderkooy [9] proposed a model95

which takes this phenomenon into account, the electrical impedance varies like96

Le

√
w. The interaction between the eddy currents and the current in the coil97

generates a drag force Fdrag which can be written as follows:98

Fdrag = η(i, x)
dx(t)

dt

1,7

(7)99

where η(i, x) can be defined as the sensitivity of the drag force according to100

the eddy currents ; this one depends on input current and the position of the101

voice coil.102

2.2.4 The suspension103

A classical suspension is mostly made of rubber, impregnated fabric or molded104

plastic. The Small signal model using lumped parameters describes a suspen-105
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sion as an ideal spring but an actual suspension shows non linear behaviour.106

In consequence, its compliance Cms depends on the movement amplitude and107

the induced damping parameter Rms depends greatly on both the amplitude108

and frequency. More generally, many authors use the mechanical stiffness k109

which is defined by:110

k =
1

Cms

(8)111

Like the force factor Bl, k can be written in terms of a polynomial function.112

k(x) = k0 + k1x + k2x
2 (9)113

Such a model has been used by Klippel [3] to model the non linear behaviour114

of both the outer rim and the spider. However, such a model cannot take into115

account the effect of the hysteretic response of elastomers.116

2.3 Time varying properties of the electrodynamic loudspeakers117

2.3.1 The electrical resistance Re118

Many authors studied the non stationnarities of electrodynamic loudspeakers119

as M.Gander [11],[8] and showed that the Small signal parameters depend120

on time. The parameter which seems to be the most sensitive to time is the121

electrical resistance Re. The electrical resistance Re increases in time due to122

the heat produced by the coil:123

Re(t) = ρ
l

S
(1 + α∆T + ...) (10)124
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where α = 4.10−2K−1 for the copper, l is the electric wire length, S is the125

electric wire cross section area and ∆T is the temperature elevation due to126

the heat produced by the coil. The electrical resistance variation can mod-127

ify both the outer rim and the spider properties. The heat produced by the128

electrical resistance due to the heat produced by the coil passes through to129

both the outer rim and the spider. Consequently, their temperature increases.130

The increase in the temperature of the spider and the outer rim generates a131

modification of their mechanical behaviour.132

2.3.2 Time dependence of the mechanical stiffness k133

Although analytical models taking into account the time dependence of the134

mechanical stiffness k do not exist, the properties of the outer rim change135

in time on account of the heat produced by the electrical resistance due to136

the Joule effect. Experimentally, this dependence is visible on the electrical137

impedance and this phenomenon is discussed in this paper. The outer rim and138

the spider exhibit both viscous and elastic characteristics. The type of vis-139

coelasticity which occurs in the case of an actual electrodynamic loudspeaker140

is non linear. In consequence, a volterra equation cannot be used to connect141

stress and strain and a simple model to describe such a behaviour does not ex-142

ist. Indeed, the outer rim deformations are large and the outer rim properties143

change under deformations.144
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3 Improvement of the Small signal model using lumped parame-145

ters: experimental methodology146

3.1 Introduction147

This section presents a way of deriving the time dependence and the input148

current dependence of the Small signal parameters. For this purpose, an ex-149

perimental way based on a measurement algorithm is described. The electro-150

dynamic loudspeaker is characterized by the electrical impedance which, pre-151

cisely measured, allows us to construct polynomial functions for each Small152

signal parameter. The knowledge of the Small signal parameter variations al-153

lows us to derive analytically the distortions created by the electrodynamic154

loudspeaker.155

3.2 Principle of the measurement156

In order to measure the electrical impedance of a loudspeaker, it must be157

placed in an anechoic chamber in a normalized plane. By varying the fre-158

quency and the input current, we can measure the electrical impedance. So159

as to increase the measurement precision when impedance variation is impor-160

tant, different measurement algorithms have been developed. Basically, the161

aim is to acquire more points when impedance variation is important and less162

information when impedance tends to be constant with frequency.163
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3.3 Measurement equipment and devices164

The electrical impedance is measured by a Wayne Kerr wedge that has an ex-165

cellent precision (10−4Ω). Different algorithms are used to determine at which166

frequencies impedance must be measured. Basically, points must be measured167

when electrical impedance reaches a maximum or when impedance variation168

with frequency is important. To do so, a dichotomic search of the maximum169

impedance is used first to measure accurately the impedance near the reso-170

nance frequency. The second algorithm is called in order to detect important171

variation of impedance while the first algorithm is called to refine measurement172

near impedance maxima.173

3.4 Determination of the Small signal parameters174

The Small signal parameters vary both in time and with the input current.175

As it is very difficult to find the two dependences for each parameter, the176

measurement algorithm is first used to derive the time dependence and after-177

wards to derive the input current dependence. On the one hand, the input178

current level is fixed and the electrical impedance is measured each time. On179

the other hand, Thiele and Small variations in time are neglected and the180

electrical impedance is measured for many input currents. In each case, we181

work with three degrees of freedom. These three degrees of freedom are the182

time t, the input current i and the frequency f = w
2π

. The measured value is183

always the electrical impedance Ze.184
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3.5 Nonlinear parameter variations185

To determine the nonlinear parameter variations, two impedance layers are186

used. One of them can be called the experimental impedance layer Z(exp)
e and187

is determined by using the measurement algorithm described in section (3).188

The other one can be called the theoretical impedance layer Z(theo)
e and is189

determined as follows: the Small signal parameters are assumed to vary with190

either the input current or time. In a first approximation, a polynomial writing191

is used to represent the dependence on the parameters with either the input192

current or time. The expansion is truncated after the 2nd term. Therefore, in193

the case of the input current dependence, we assume the electrical resistance194

Re and Rµ to be constant; the Small signal parameters are expressed as follows:195

Bl(i) = Bl(1 + µBli + µ2
Bli

2) (11)196

Rms(i) = Rms(1 + µRmsi + µ2
Rmsi

2) (12)197

k(i) = k(1 + µki + µ2
ki

2) (13)198

Mms(i) = Mms(1 + µMms
i + µ2

Mms

i2) (14)199

Le(i) = Le(1 + µLe
i + µ2

Le

i2) (15)200

and the electrical impedance becomes:201

Z
(theo)
e1 (i) = Re +

jRµLe(i)w

jLe(i)w + Rµ

+
Bl(i)2

Rms(i) + jMms(i)w + k(i)
jw

(16)

Again, in the case of the time dependence, we assume that Rµ is constant.202

The Small signal parameters are expressed as follows:203

Re(t) = Re(1 + νRe
t + ν2

Re

t2) (17)204
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Bl(t) = Bl(1 + νBlt + ν2
Blt

2) (18)205

Rms(t) = Rms(1 + νRmst + ν2
Rmst

2) (19)206

k(t) = k(1 + νkt + ν2
kt

2) (20)207

Mms(t) = Mms(1 + νMms
t + ν2

Mms

t2) (21)208

Le(t) = Le(1 + νLe
t + ν2

Le

t2) (22)209

and the electrical impedance becomes:210

Z
(theo)
e2 (t) = Re(t) +

jRµLe(t)w

jLe(t)w + Rµ
+

Bl(t)

Rms(t) + jMms(t)w + k(t)
jw

(23)

A least square method is used to identify all the parameters in the both cases ;211

this method is based on the Symplex algorithm. The principle of this algorithm212

is to minimize the difference ∆Ze between the experimental impedance and213

the theoretical impedance. In the case of the time dependence of the Small214

signal parameters, this difference is expressed as follows:215

∆Z1
e (t) =

n=2
∑

n=0

∣

∣

∣

∣

∣

∣Z(exp)
e (t) − Z

(theo)
e1 (t)

∣

∣

∣

∣

∣

∣

2
(24)216

In the case of the input current dependence of the Small signal parameters,217

this difference is expressed as follows:218

∆Z2
e (i) =

n=2
∑

n=0

∣

∣

∣

∣

∣

∣Z(exp)
e (i) − Z

(theo)
e2 (i)

∣

∣

∣

∣

∣

∣

2
(25)219

When the algorithm converges, all the values describing the nonlinear param-220

eters are obtained and allow us to predict analytically the distortions created221

by the electrodynamic loudspeaker by solving the time-varying nonlinear dif-222

ferential equation.223
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4 Time dependence of the Small signal parameters224

This section describes a temporal study of two electrodynamic loudspeakers.225

The electrodynamic loudspeakers used are two woofers (Eminence Alpha). One226

of them is run in and the other one is not. First, the measurement algorithm227

presented in the previous section is used in order to derive all the non-linear228

parameters. Then, time-varying effects experimentally observed are discussed229

and physically interpreted.230

4.1 Obtaining the experimental impedance231

The first step to derive the time dependence of the Small signal parameters232

is to use the experimental impedance layer. As explained previously, the cur-233

rent input current is fixed. A current which equals i = 100mA is injected in234

the electrodynamic loudspeaker. The electrodynamic loudspeaker used is sup-235

posed to be run in. The lower measurement frequency equals 50Hz and the236

upper measurement frequency equals 250Hz. The experimental impedance is237

measured for eight hours. Such an experimental impedance layer is represented238

in Fig.(1). It can be noted that the time-varying effects are not visible in this239

impedance layer but they are clearly shown in Figs.(2),(6) and (7).240
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Fig. 1. Experimental three-dimensional representation of the electrical impedance

modulus of the electrodynamic loudspeaker (x: time 0s to 3.104s) (y: 0Hz to 200Hz)

(z: 0Ω to 25Ω)

4.2 Obtaining the parameters sensitive to time241

4.2.1 Error sheet between the experimental impedance and the theoretical242

impedance243

In the previous section, the experimental impedance layer is determined with244

the measurement algorithm presented in section (3). In this section, the experi-245

mental impedance is compared to the theoretical one calculated with the Small246

signal model using lumped parameters. For this purpose, the difference ∆Z1
e (t)247

between the experimental impedance modulus and the theoretical impedance248

modulus is calculated for each frequency and at each time. This difference249

∆Z1
e (t) is represented in Fig.(2). The mean difference ∆Ze is defined as the250

difference ∆Z1
e (t) divided by the number of points necessary to plot the ex-251

perimental impedance layer. By using the Small signal model using lumped252

parameters with constant parameters, the mean difference ∆Ze equals 0, 20Ω.253
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Fig. 2. Three-dimensional representation of the difference ∆Z1
e (t) between the ex-

perimental impedance and the theoretical impedance ; the theoretical impedance is

based on the Small signal model using lumped parameters with constant parameters

(x: time 0s to 3.104s) (y: 0Hz to 200Hz) (z: 0Ω to 25Ω)

4.2.2 Parameter sensitive to time254

To reduce ∆Ze, we use the Symplex algorithm and the parameter which is the255

most sensitive to time is the equivalent mechanical stiffness k. As a remark,256

although the electrical resistance of the voice coil Re increases in time, its time257

variation is less important than the mechanical stiffness one. Moreover, the258

variations of the other Small signal parameters are not so important as the259

mechanical stiffness variation. In Fig.(3), we represent the difference ∆Z1
e (t)260

between the experimental impedance modulus and the theoretical impedance261

modulus which takes into account the time variation of the mechanical stiffness262

k. This difference is a function of both time and frequency. The impedance263

layer is zoomed for more legibility. The temporal axe varies from 0s to 200s.264

The mean difference ∆Ze equals 0, 19Ω. The figure (4) shows the relative265

mechanical stiffness as a function of time (k0 = 3714N/m). The mechanical266

stiffness k decreases in time since heat produced by the electrical resistance267

passes through to the outer rim and modifies its properties. The increasing268

temperature is one factor contributing to the deformation of the outer rim,269
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Fig. 3. Three-dimensional representation of the difference between the experimental

impedance and the theoretical impedance ; the theoretical impedance is based on

Small signal model using lumped parameters with variable mechanical stiffness (x:

time 0s to 3.104s) (y: 0Hz to 200Hz) (z: 0Ω to 25Ω)

Fig. 4. The relative mechanical stiffness is a function of time [s]

and viscoelastic properties change with decreasing or increasing temperature.270

4.3 Resonance frequency variation271

Another interesting temporal effect is the resonance frequency variation. It is272

quite difficult to obtain the resonance frequency experimental measurement273

in time because its variation is very fast and the time necessary to get the274

measurement points by the algorithm is only about half a second. Fig.(5)275

shows the resonance frequency fres as a function of time. We see in this figure276
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Fig. 5. The resonance frequency [Hz] is a function of time [s]

that the resonance frequency decreases in time. This effect can be explained277

since the mechanical stiffness of suspension ( spider, outer rim) depends on278

time. In consequence, the resonance frequency is not constant and depends also279

on time. In short, the decrease in mechanical stiffness generates the decrease280

in the resonance frequency.281

fres(t) =
1

2π

√

k − k3t − k4t2

Mms
(26)282

4.4 Comparison between two loudspeakers: one of them is not run in and the283

other one is284

This section presents an experimental comparison between two electrodynamic285

loudspeakers. One of them is supposed to be run in and the other one is not.286

The electrodynamic loudspeaker which is run in has been used for one year.287

In consequence, its mechanical properties have changed, particularly for the288

outer rim and the spider which have become both more elastic and worn.289

For five hours, we measured continually the electrical impedance of the two290

electrodynamic loudspeakers. The experimental electrical impedance modulus291

Ze(t) of the electrodynamic loudspeaker which is not run in is represented in292

Fig.(6). As said previously, Ze(t) is plotted at different instants and is a func-293
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Fig. 6. Electrical impedance modulus of the woofer which is not run in. The electrical

impedance modulus [Ω] is a function of frequency [Hz] and is plotted at different

instants around the resonance frequency.

tion of frequency. In this figure, we see that the electrical impedance decreases294

in time and it is mainly due to the change of the mechanical properties. An-295

other interesting point is that the resonance frequency varies quickly in time296

between t0 and t1 which corresponds to 8 seconds. This variation is probably297

due to the dry friction behaviour of the outer rim.298

Fig. (7) represents the electrical impedance modulus of the electrodynamic299

loudspeaker which is supposed to be run in. As in the previous case, Ze(t) is300

plotted at different instants and is a function of frequency. This figure shows301

that the decrease in electrical impedance modulus is less important for the302

woofer which is run in than the one which is not. This diminution is about303

0, 4Ω for the woofer which is not run in, whereas this diminution is 0, 05Ω for304

the woofer which is run in. Moreover, the resonance frequency variation is less305

important for the woofer which is run in than the one which is not. This res-306

onance frequency variation is about 1Hz for the woofer which is not, whereas307

this variation is 0, 4Hz for the woofer which is run in. Furthermore, the reso-308

nance frequency is very different between the two loudspeakers although they309
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Fig. 7. Electrical impedance modulus of the woofer which is run in. The electrical

impedance modulus [Ω] is a function of frequency [Hz] and is plotted at different

instants around the resonance frequency.

are both the same. The resonance frequency of the woofer which is run in is310

about 67Hz whereas the resonance frequency of the woofer which is not run311

in is about 79Hz. This resonance frequency discrepancy is probably due to312

the fabrication scattering and the change in time of the membrane mechanical313

properties.314

4.5 Electrical impedance variation in time315

The previous section shows that the electrical impedance varies in time. The316

aim of this section is to show that the electrical impedance does not vary in the317

same way according to the frequency measurement. For this purpose, we plot318

the electrical impedance for the two loudspeakers at two different fixed fre-319

quencies. One of them is at the resonance frequency and the other one is at 200320

Hz. In Fig. (8), the electrical impedance modulus of the woofer which is run321

in is a function of time. The fixed frequency equals 200Hz and the input cur-322

rent equals 100mA. This figure shows that the electrical impedance modulus323

increases in time. In Figure (9), we still plot the electrical impedance modulus324
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Fig. 8. Electrical impedance modulus of the woofer which is run in. The frequency

equals 200Hz and the input current equals 100mA. The electrical impedance mod-

ulus is a function of time.

Fig. 9. Electrical impedance modulus of the boomer which is run in. The frequency

equals the resonance frequency and the input current equals 100mA. The electrical

impedance modulus is a function of time.

of the woofer which is run in, but the fixed frequency equals the resonance325

frequency. The temporal behaviour of the electrical impedance is very different326

according to the frequency measurement. Actually, the electrical impedance of327

the woofer which is run in decreases a lot at the beginning and increases only328

after three hour measurement. Moreover, the electrical impedance modulus329

varies more in time at the resonance frequency than another frequency (here:330

200Hz).331
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Fig. 10. Electrical impedance modulus of the woofer which is not run in. The fre-

quency equals the resonance frequency and the input current equals 100mA. The

electrical impedance modulus is a function of time

The same experimental measurements are done with the electrodynamic loud-332

speaker which is not run in. Again, an experimental measurement is realized333

with a fixed frequency which equals the resonance frequency. Such an experi-334

mental measurement is represented in Fig.10 This figure shows that the elec-335

trical impedance decreases in time. The behavior of the electrical impedance336

is very different according to the electrodynamic loudspeaker used at the res-337

onance frequency. The figure (10) shows the electrical impedance modulus of338

the woofer which is not run in as a function of time. The fixed frequency equals339

200Hz and the input current equals 100mA.340

As seen previously in the case of the run in electrodynamic loudspeaker, the341

electrical impedance modulus increases in time. In Fig.(11), the electrical342

impedance modulus decreases in time. Moreover, we see that the electrical343

impedance modulus varies more at the resonance frequency than another fre-344

quency (here: 200Hz).345
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Fig. 11. Electrical impedance modulus of the woofer which is not run in. The fre-

quency equals 200Hz and the input current equals 100mA. The electrical impedance

modulus is a function of time.

4.6 Running in an electrodynamic loudspeaker346

The aim of this section is to show the time necessary to consider that an347

electrodynamic loudspeaker is run in. For this purpose, we use the electrical348

impedance modulus of the electrodynamic loudspeaker. We take a frequency349

which equals the resonance frequency, an input current which equals 100mA350

and we plot the electrical impedance modulus at each instant. Such an elec-351

trical impedance modulus is plotted in Fig.(12). This figure shows that the352

electrical impedance modulus does not vary after 104s, which corresponds to353

about three hours. It can be concluded that this is the time necessary for354

breaking in this electrodynamic loudspeaker.355
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Fig. 12. Electrical impedance modulus of the woofer which is not run in. The fre-

quency equals the resonance frequency and the input current equals 100mA. The

electrical impedance modulus is a function of time.

5 Analytical study of the distortions created by an electrodynamic356

loudspeaker357

5.1 Obtaining the experimental impedance358

The way of obtaining the experimental impedance is similar to the one de-359

scribed previously. In order to derive the input current dependence of Small360

signal parameters, the first step is to use the experimental impedance layer.361

The time dependence of Small signal parameters is neglected and the input362

current varies from 20mA to 200mA. The Wayne Kerr wedge cannot deliver363

currents higher than 200mA. The electrodynamic loudspeaker used is sup-364

posed to be run in. The lower measurement frequency equals 50Hz and the365

upper measurement frequency equals 650Hz. The experimental impedance366

layer is represented in Fig.(13).367
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Fig. 13. Experimental three-dimensional representation of the electrical impedance

modulus of the electrodynamic loudspeaker (x:0.05A to 0, 2A) (y: 0Hz to 650Hz)

(z: 0Ω to 25Ω)

5.2 Obtaining the parameters sensitive to the input current368

5.2.1 Error sheet between the experimental impedance and the theoretical369

impedance370

In the previous section, the experimental impedance layer is determined with371

the measurement algorithm presented in section (3). In this section, the experi-372

mental impedance is compared to the theoretical one calculated with the Small373

signal model using lumped parameters. For this purpose, the difference ∆Z2
e (i)374

between the experimental impedance modulus and the theoretical impedance375

modulus is calculated for each frequency and at each intensity. The intensity376

step is 10mA. This difference ∆Z2
e (i) is represented in Fig.(14). We define377

the mean difference ∆Ze as the difference ∆Z2
e (i) divided by the number of378

points necessary to plot the experimental impedance layer. By using the Small379

signal model using lumped parameters with constant parameters, the mean380

difference ∆Ze equals 2, 04Ω.381
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Fig. 14. Three-dimensional representation of the difference ∆Z2
e (i) between the ex-

perimental impedance and the theoretical impedance ; the theoretical impedance is

based on the Small signal model using lumped parameters with constant parameters

(x:0, 05A to 0, 2A) (y: 0Hz to 200Hz) (z: 0Ω to 6Ω)

5.2.2 Parameters sensitive to the input current382

To reduce ∆Ze, the Symplex algorithm is used and five nonlinear parameters383

are taken into account to reduce ∆Ze. In Fig.(15), we represent the differ-384

ence ∆Z2
e (i) between the experimental impedance modulus and the theoretical385

impedance modulus which takes into account the Small signal parameter vari-386

ations. This difference is a function of both the input current and frequency.387

The mean difference ∆Ze equals 0, 39Ω.388

In table (1), all the parameters and their expansions are described and the389

sensitivity to the least square is precise. This table shows that the parameter390

which is the more sensitive to the input current is the equivalent damping391

parameter Rms.392

5.3 Obtaining the time-varying nonlinear differential equation393

This section presents the time-varying nonlinear differential equation of the394

electrodynamic loudspeaker which is run in. For this purpose, we take into395
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Fig. 15. Three-dimensional representation of the difference between the experimental

impedance and the theoretical impedance ; the theoretical impedance is based on

the Small signal model using lumped parameters with variable parameters (x: 0A

to 0, 2A) (y: 0Hz to 200Hz) (z: 0Ω to 25Ω)

Ranking Parameter Law of variation ∆Ze[Ω] Sensitivity

1 Rms 1.1(1 + 4.09i − 8.36i2) 1.24 33%

2 Bl 5.5(1 + 0.33i − 1.02i2) 1.67 18%

3 Mms 0.009(1 + 0.56i − 0.22i2) 1.74 14%

4 k 7440(1 − 0.2i + 0.9i2) 1.86 8%

5 Le 0.0017(1 − 1.68i + 7.58i2) 1.98 3%

6 Rµ 2, 28 2.04 0%

7 Re 3, 17 2.04 0%

Table 1

Ranking of the parameters according to their sensitivity to the least square algo-

rithm
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account the nonlinear parameters defined in the previous section and we also396

take into account the time variation of the mechanical stiffness k. The time-397

varying nonlinear differential equation is defined by Eq.(27) in the case when398

we also take into account the variation of the electrical resistance Re in time.399

a(i)
d3x(t)

dt3
+ b(i, t)

d2x(t)

dt2
+ c(i, t)

dx(t)

dt
+ d(i, t)x(t) = u(t) (27)400

with401

a(i) =
(Mms(1 + µMmsi + µ2

Mmsi
2)) (Le(1 + µLei + µ2

Lei
2))

Bl(1 + µBli + µ2
Bli

2)
(28)402

b(i, t) =

(

(Mms(1 + µMmsi + µ2
Mmsi

2)Re(1 + νRe
t + ν2

Re

t2
)

Bl(1 + µBli + µ2
Bli

2)

+
Rms(1 + µRms

i + µ2
Rms

i2)Le(1 + µLe
i + µ2

Le

i2)

Bl(1 + µBli + µ2
Bli

2)
(29)

403

c(i, t) =
Re(1 + νRe

t + ν2
Re

t2) (Rms(1 + µRmsi + µ2
Rmsi

2))

Bl(1 + µBli + µ2
Bli

2)

+
(Le(1 + µLei + µ2

Lei
2)) k(1 + νkt + ν2

kt
2)(1 + µki + µ2

ki
2)

Bl(1 + µBli + µ2
Bli

2)

+
(Bl(1 + µBli + µ2

Bli
2))

2

Bl(1 + µBli + µ2
Bli

2)
(30)

d(i, t) =
Re(1 + νRe

t + ν2
Re

t2) (k(1 + νkt + ν2
kt

2)(1 + µki + µ2
ki

2))

Bl(1 + µBli + µ2
Bli

2)
(31)404

5.4 Solving the time-varying nonlinear differential equation405

We explain here how to solve the equation defined in the previous section. We406

can point out that the coefficient a(i) defined in Eq.(28) is the only coefficient407

which is constant in time. We use the notation Ret and kt to indicate that these408
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parameters depend on time. To solve the time-varying nonlinear differential409

equation, a Taylor series expansion is used.410

5.4.1 Discussion about the time-varying differential equation411

It is noticeable that the temporal variations of the Small signal parameters412

do not create any important distortions. Indeed, if we assume all the Small413

signal parameters to be constant with the input current, the general differential414

equation of the electrodynamic loudspeaker is written:415

ã
d3x(t)

dt3
+ b̃(t)

d2x(t)

dt2
+ c̃(t)

dx(t)

dt
+ d̃(t)x(t) = u(t) (32)416

with417

ã =
MmsLe

Bl
(33)418

b̃(t) =
MmsRe(1 + νRe

t + ν2
Re

t2)

Bl
+

RmsLe

Bl
(34)419

c̃(t) =
Re(1 + νRe

t + ν2
Re

t2)Rms + Bl2 + k(1 + νkt + ν2
kt

2)Le

Bl
(35)420

d̃(t) =
k(1 + νkt + ν2

kt
2)Re(1 + νRe

t + ν2
Re

t2)

Bl
(36)421

The time-varying differential equation defined in Eq.(32) is a hypergeometric422

equation and can be solved in the general case by using the theory of the Power423

Series Method [12]. However, if we take u(t) = Ae(jwt) where A is a term of424

amplitude, the response does not contain terms in e(j2wt),e(j3wt),etc... In con-425

sequence, we deduct that the time dependence of the Small signal parameters426

does not generate any distortions.427
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5.5 Solving the nonlinear differential equation428

The nonlinear differential equation can be solved at each time. By assuming429

the electrical resistance to be constant in time, the only parameter sensitive to430

time is the mechanical stiffness. To simplify the resolution of the time-varying431

nonlinear differential equation, we can write that at each time, the nonlinear432

differential equation is stationary. The distortions predicted by the nonlinear433

differential equation depend on time but can be solved at each time. The434

study of the nonlinear small signal parameters can be done with either the435

input current or with the position of voice coil. In fact, the relation between436

the input current i and the position x(t) of the voice coil is linear. Indeed,437

by using the classical approach, Laplace Law describes the movement of the438

voice coil at first order.439

Mms

d2x(t)

dt2
= Bli(t) (37)440

If we consider that the current is varying sinusoidally in time, above the fre-441

quency resonance, the displacement of the voice coil is proportional to the442

Laplace force and in opposed directions. The displacement of the voice coil443

can be described by:444

x = −
Bli

Mmsw2
(38)445

where w is the radian frequency of the input current. In consequence, it exists446

a parameter α which verifies:447

x = αi (39)448
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where α = − Bl
Mmsw2 . All the Small signal parameters can be expressed as a449

Taylor series expansion. By inserting all these expansion series in Eq.(28),450

we obtain a classical nonlinear differential equation. Its solution is given by451

Eq.(40). The solution is developed until the order 2 (µ2).452

x(t) = x0(t) + µx1(t) + µ2x2(t) + ... (40)453

where x0(t) is the solution of the nonlinear differential equation of the elec-454

trodynamic loudspeaker when the terms with orders higher than zero are455

neglected, x1(t) is the solution of the nonlinear differential equation when the456

terms with orders higher than one and smaller than one are neglected, x2(t) is457

the solution of the nonlinear differential equation when the terms with orders458

higher than two and smaller than two are neglected. In short, the solution of459

the nonlinear differential equation of the electrodynamic loudspeaker is given460

by:461

x(t) = A cos(wt) + B sin(wt) + C cos(2wt) + D sin(2wt) + ... (41)462

The terms A and B can be found by inserting A cos(wt)+B sin(wt) in Eq.(27)463

with an excitation u(t) which equals P sin(wt) where P is an amplitude. The464

terms C and D can be found by taking the terms with orders higher than one465

and smaller than one into account,etc...466

5.6 Experimental and theoretical displacement spectrums467

This section presents the experimental and the theoretical displacement spec-468

trums of the electrodynamic loudspeaker which is run in. The theoretical dis-469

placement spectrum is obtained by calculating the Fourier transform of the470
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Fig. 16. Experimental and theoretical spectrums of the electrodynamic loudspeaker

which is run in. The input current equals 100mA and the input frequency equals

100Hz.

solution given in Eq.(41). The experimental displacement spectrum is obtained471

by using a laser Doppler velocimeter. The theoretical displacement spectrum is472

consistent with the experimental displacement spectrum. The theoretical and473

experimental first-harmonic and second-harmonic shows a very good agree-474

ment. However, the theoretical third-harmonic is lower than the experimental475

one. This discrepancy between the theoretical third-harmonic and the exper-476

imental one shows the limit of the use of a series Taylor expansion. It can be477

noted that the experimental spectrums have been measured at low frequen-478

cies. For higher frequencies, the theoretical model should take into account479

membrane modes.480

6 Conclusion481

The aim of this paper is the study of the time-varying effects and nonlinear ef-482

fects of electrodynamic loudspeakers. A temporal study based on a very precise483

measurement shows the time dependence of the membrane mechanical stiffness484

k. However, this time dependence does not create any distortions. Moreover,485

two identical electrodynamic loudspeakers are compared and important time486
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discrepancies are discussed. The resonance frequency between an electrody-487

namic loudspeaker which is run in and one which is not is extremely different488

and does not vary in time in the same way. Then, the time-varying nonlinear489

differential equation of the electrodynamic loudspeaker is solved by using a se-490

ries Taylor expansion. For this purpose, the time-varying effects are neglected491

but can be taken into account by solving the nonlinear differential equation492

at different instants. The theoretical displacement spectrum is consistent with493

the experimental displacement spectrum.494
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