
Minimization of a sparsity promoting criterion for the

recovery of complex-valued signals
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Abstract—Ill-conditioned inverse problems are often encoun-
tered in signal/image processing. In this respect, convex objective
functions including a sparsity promoting penalty term can be
used. However, most of the existing optimization algorithms were
developed for real-valued signals. In this paper, we are interested in
complex-valued data. More precisely, we consider a class of penalty
functions for which the associated regularized minimization prob-
lem can be solved numerically by a forward-backward algorithm.
Functions within this class can be used to promote the sparsity
of the solution. An application to parallel Magnetic Resonance
Imaging (pMRI) reconstruction where complex-valued images are
reconstructed is considered.

Keywords: Regularization, penalization, sparsity, frames,
convex optimization, wavelets, parallel MRI.

I. I NTRODUCTION

To recover a vectorx ∈ RK from the observation of a noisy
signal z ∈ RL through a linear operatorT , the optimization
of penalized convex criteria has been widely investigated in
the regularization of ill-posed inverse problems. This arises
in particular whenL < K, which makes the inverse prob-
lem under-determined and the solution not uniquely defined.
Generally, a regularization parameter within the penalized
criterion balances the characteristics of the solution between
its closeness to the observed data and its regularity. Under
a Bayesian framework, the regularization parameter can be
interpreted as a hyper-parameter of some prior distribution
used to model the objective signal.
In the regularization setting, anℓ1 norm penalty term can be
used in order to promote the sparsity of the solution. Most
of the related studies deal with real-valued signals corrupted
with Gaussian noise [1, 2, 3]. However, some applications
like spectral analysis [4, 5, 6] and parallel MRI reconstruction
[7], deal with complex-valued signals. The work in [8] also
addresses the complex-valued case.

In the real case, efficient optimization algorithms have
been recently developed in [3, 7, 9, 10] relying on the
concept of proximity operators. In this paper, we show
how the forward-backward algorithm can be applied to
the complex case for a class of penalty functions which

promote sparsity. The considered penalty functions allow us
to introduce dependencies between the real and imaginary
parts of complex-valued data.

The outline of this paper is as follows. In the next section
we will detail the proposed optimization algorithm. Section
III is devoted to the application of the proposed approach to
parallel MRI reconstruction and the obtained results are also
presented, before concluding in Section IV.

II. OPTIMIZATION ALGORITHM

Let F be the linear frame analysis operator defined as:

F : C
L → C

K (1)

y 7→ (〈y | ek〉)1≤k≤K ,

where〈· | ·〉 is the standard Euclidean inner product. Let also
S be a linear operator which maps the objective complex-
valued signaly ∈ CL to the observed onez ∈ CL.
Of particular interest is the case when we want to recover
x = (ξk)1≤k≤K , the vector of coefficients ofy in a frame
(ek)1≤k≤K .
We have then:

y =

K∑

k=1

ξkek. (2)

By setting T = SF ∗ where F ∗ is the adjoint synthesis
operator, the frame coefficients ofy can be recovered by
minimizing the following criterion:

∀x ∈ C
K , J(x) = f(Tx − z) + αg(x). (3)

In what follows, we will setα = 1 and use the following
penalty term:

g(x) =

K∑

k=1

ωk|ξk|
pk (4)

where | · | denotes the complex modulus,(ωk)1≤k≤K ∈
[0, +∞[K and (pk)1≤k≤K ∈ [1, +∞[K .



To find the optimal solution minimizing the (non necessarily
differentiable) criterion in (3), we will employ a generalization
of the forward-backward algorithm proposed in [3, 7, 9, 10].
The goal of the algorithm is to iteratively compute the solution,
by making use of the concept of proximity operators which
was found to be fundamental in a number of recent works
in convex optimization. Before presenting the generalized
version of the optimization algorithm, we recall the following
definition.

Definition II.1 [11]
LetΓ0(H) be the class of proper lower semicontinuous convex
functions from a separable Hilbert spaceH to ] − ∞, +∞[
and letϕ ∈ Γ0(H).
For every x ∈ H, the functionϕ + ‖. − x‖2/2 achieves its
infimum at a unique point denoted byproxϕx. The operator
proxϕ : H → H is the proximity operator ofϕ.

For the functions of a complex variable defined by

φk : C → R (5)

ξ 7→ ωk|ξ|
pk

with k ∈ {1, . . . , K}, it can be deduced from [12, Prop. 2.8],
that the definition of the proximity operator can be extended
as follows:

• if pk = 1, then

∀ξ ∈ C, proxφk
(ξ) =






(
1 −

ωk

|ξ|

)
ξ if |ξ| > ωk

0 otherwise;

• if pk > 1, then

∀ξ ∈ C, proxφk
(ξ) =






(
1 −

νk(ξ)

|ξ|

)
ξ if ξ 6= 0

0 otherwise,
(6)

where νk(ξ) is the unique number in[0, +∞[ such that
νk(ξ) +

(
νk(ξ)/(ωkpk)

)1/(pk−1)
= |ξ|.

We therefore observe that, whenpk = 1, a bivariate
proximal thresholder [13] is obtained, which can be employed
to enforce sparsity. Fig. 2 illustrates an example of original
complex-valued signal (left) and the thresholded one (right)
using the considered proximity operator withpk = 1 and
ωk = 8.
It can be noted that complex-valued valuesξ such that
|ξ| ≤ ωk are set to zero, whereas the moduli of the others
are attenuated.

Provided thatf is a differentiable convex function withβ-
Lipschitz gradient∇f , the employed optimization algorithm
can then be summarized as follows.

Initialize with somex0 ∈ CK , fix the relaxation parameter
λ ∈]0, 1] and the step-size parameterγ ∈]0, 2

β [. Setn = 1.
For n ∈ N∗ do

For k ∈ {1, . . . , K} do
ξn+1,k = ξn,k+

λ
`

proxγφk
(ξn,k−γ(T ∗

∇f(Txn−z))k)−ξn,k

´

end For
end For
return xn = (ξn,k)1≤k≤K

Algorithm 1: Forward-backward

III. A PPLICATION TO PARALLEL MRI (PMRI)
RECONSTRUCTION

A. pMRI basics

Parallel Magnetic Resonance Imaging [14] is a fast acqui-
sition technique to reduce global imaging time in MRI, which
is particularly useful in functional MRI (fMRI) to limit the
distortion artifacts and signal losses. To this end, a number
L of receiver coils with complementary spatial sensitivities
(sℓ)1≤ℓ≤L are employed to acquireL MRI signals at the same
time. The received signal by a given coilℓ corresponds to
the Fourier transform of the desired 2D fieldy weighted by
the corresponding coil sensitivity profilesℓ. For the sake of
simplicity, a regular Cartesian sampling is used during the
acquisition process. However, in parallel MRI, sub-sampling
of the frequency (i.e.k-space) domain is performed along the
phase encoding direction according to a fixed reduction factor
R, which involves a time acquisitionR times shorter than
with conventional MRI. Hence, only reduced size images are
acquired. Fig. 1 shows the difference between conventional
and parallel MRI acquisitions, where a reduction factorR = 2
is applied.
However, the higher the reduction factor is, the more aliased
the images are. Indeed, because of the sampling under the
Nyquist rate, registred data suffer from aliasing artifacts in the
image domain, which increase with the reduction factor. The
challenge here is to unfold the received images by exploiting
the complementarity between the sensitivity profiles of the
used coils, and to reconstruct a non-aliased full Field of View
(FoV) image.
In what follows, we will describe the basic-SENSE method as
proposed by Pruessmann in 1999, as well as the WT regular-
ized reconstruction using the proposed algorithm. Comparison
between the performance of these two methods will be made
on a real data set of T1-weighted anatomical images acquired
at 1.5 Tesla magnetic field withR = 4. This value of the
reduction factor is considered as high for such a low magnetic
field.

B. The SENSE method

In clinical routines, the most customary technique is the
so-called Sensitivity Encoding (SENSE) [14] method. This
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method operates in the spatial domain, and the acquisition
process is modelled by:

z = Sy + n, (7)

where z is the complex-valued received signal,S is the
sensitivity linear operator,y is the objective image andn
is a zero-mean additive Gaussian noise with between-coil
correlation matrixΨ. The SENSE approach corresponds to a
weighted least squares estimation procedure which computes
the following estimator:

ŷWLS = [SH
Ψ

−1S]−1SH
Ψ

−1z (8)

where(·)H stands for the transposed complex conjugate.
A reconstructed image using this method is displayed in
Fig. 3. We notice that this image suffers from aliasing artifacts
with curves having very high or very low intensities. Based
on the nature of these artifacts, we propose to regularize
this reconstruction problem in the Wavelet Transform (WT)
domain to have better spatial and frequency localizations of
these artifacts.

C. The regularized approach

The Maximum A posteriori (MAP) criterion under a
Bayesian framework has been adopted to estimatex̂ =
(ξ̂k)1≤k≤K , the vector of frame coefficients ofy, based on
the observation vectorz. F ∗ is then applied to recover the
estimateŷ in the image domain.
The following 2D sparsity-promoting prior, for which the
potential function is given by (5), is used to model the frame
coefficients:

∀ξ ∈ C, hωk,pk
(ξ) = Che−ωk|ξ|

pk
, (9)

where Ch is a normalization constant,ωk ∈ R∗
+ and pk ∈

[1, +∞[.
Since a zero-mean circular Gaussian noise corrupts the ac-
quisition process, the likelihood of the data can be expressed
as:

L(z | y) ∝ exp
(
− ‖ z − Sy ‖2

Ψ
−1

)
. (10)

where‖ · ‖Ψ−1 =
√

(·)HΨ
−1(·) is a norm onCL.

Combining Equations (9) and (10) leads to the following MAP
criterion to be minimized:

J(x) =‖ z − Tx ‖2
Ψ−1 +

K∑

k=1

ωk|ξk|
pk , (11)

wheref =‖ z − T · ‖2
Ψ−1 is a differentiable convex function

with β-Lipschitz gradient.

Using a decomposition onto a Symmlet wavelet basis of
length 8 over 3 resolution levels and the proposed algorithm
to minimize the criterionJ , the obtained regularized image
is given in Fig. 4. It can be observed that aliasing artifacts
are considerably smoothed when compared with the SENSE
reconstruction in Fig. 3, but not completely removed: some of
them still exist because they were extremely large. By evalu-

ating the Signal to Noise Ratio (SNR = 20 log10

( ‖yref‖2

‖yref−by‖2

)
)

for the reconstructed images, whereyref is a reference image
acquired with conventional MRI acquisition and̂y is the
reconstructed image, it turns out that the proposed algorithm
gives an SNR improvement of0.76 dB with respect to
the basic SENSE reconstruction. Note that such a value is
considered as significant in pMRI reconstruction. To illustrate
the convergence of our algorithm, Fig. 5 gives the evolution
of J versus the iteration number. It is clear that after about 30
iterations, convergence has been reached, and the estimateŷ
corresponds to a good estimation of the optimal MAP solution.

IV. CONCLUSION

We have proposed an algorithm to minimize sparsity
promoting criteria for the regularization of inverse problems
involving complex-valued signals. Application to parallel
MRI reconstruction shows that this algorithm reduces aliasing
artifacts in the reconstructed image compared with standard
reconstruction techniques. The considered method can be
applied to other classes of inverse problems as well.
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[11] J.-J. Moreau, “Proximité et dualité dans un espace hilbertien,” Bull. de
la Soc. math. de France, vol. 93, pp. 273–299, 1965.

[12] P. L. Combettes and J.-C. Pesquet, “A proximal decomposition method
for solving convex variational inverse problems”,Inverse Problems, vol.
24, 27 p., Dec. 2008.

[13] P. L. Combettes and J.-C. Pesquet, “Proximal thresholding algorithm
for minimization over orthonormal bases”,SIAM J. Optim.,vol. 18, pp.
1351–1376, 2007.

[14] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger,
“SENSE: sensitivity encoding for fast MRI,”Magnetic Resonance in
Medicine, vol. 42, no. 5, pp. 952–962, July 1999.

3



−|ξ| −|proxφk
(ξ)|

−40
0

40

−40

0

40

−60

0

 

Re
Im

 
−40

0

40

−40

0

40

−50

0

Re
Im

Fig. 2. Original signal (left) and thresholded one (right) withpk = 1 andωk = 8.
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Fig. 1. Sampling of thek-space.

Fig. 3. Reconstructed image using SENSE (SNR = 13.74 dB).

 

 

Fig. 4. Reconstructed image using the proposed algorithm (SNR =

14.50 dB).
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Fig. 5. Convergence curve of the proposed algorithm w.r.t the
iteration number.
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