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A BIJECTION BETWEEN WELL-LABELLED POSITIVE PATHS AND

MATCHINGS

OLIVIER BERNARDI, BERTRAND DUPLANTIER, AND PHILIPPE NADEAU

Abstract. A well-labelled positive path of size n is a pair (p, σ) made of a word p =

p1p2 . . . pn−1 on the alphabet {−1, 0, +1} such that
Pj

i=1 pi ≥ 0 for all j = 1 . . . n−1, together
with a permutation σ = σ1σ2 . . . σn of {1, . . . , n} such that pi = −1 implies σi < σi+1, while
pi = 1 implies σi > σi+1. We establish a bijection between well-labelled positive paths of
size n and matchings (i.e. fixed-point free involutions) on {1, . . . , 2n}. This proves that the
number of well-labelled positive paths is (2n−1)!! ≡ (2n−1) · (2n−3) · · · 3 ·1. By specialising
our bijection, we also prove that the number of permutations of size n such that each prefix
has no more ascents than descents is [(n − 1)!!]2 if n is even and n!! (n − 2)!! otherwise.

It is shown in [1] that well-labelled positive paths of size n are in bijection with a col-
lection of n-dimensional subpolytopes partitioning the polytope Πn consisting of all points

(x1, . . . , xn) ∈ [−1, 1]n such that
Pj

i=1 xi ≥ 0 for all j = 1 . . . n. Given that the volume of

each subpolytope is 1/n!, our results prove combinatorially that the volume of Πn is
(2n−1)!!

n!
.

1. Introduction

A well-labelled path of size n is a pair (p, σ) made of a word p = p1p2 . . . pn−1 on the al-
phabet {−1, 0,+1}, together with a permutation σ = σ1σ2 . . . σn of [n] ≡ {1, . . . , n} such that
pi = −1 implies σi < σi+1, while pi = 1 implies σi > σi+1. We shall represent a path (p, σ) as
a lattice path on Z

2 starting at (0,0) and made of steps (1, pi) for i = 1 . . . n−1 together with
the label σi on the ith lattice point of the path for i = 1 . . . n. For instance, two well-labelled
paths of size 10 are represented in Figure 1. A well-labelled path (p, σ) is said Motzkin (resp.

positive) if

j
∑

i=1

pi ≥ 0 for all j = 1 . . . n−2 and

n−1
∑

i=1

pi = −1 (resp.

j
∑

i=1

pi ≥ 0 for all j = 1 . . . n−1).
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Figure 1. (a) A well-labelled Motzkin path. (b) A well-labelled positive path.

In this paper, we define a bijection between well-labelled Motzkin paths of size n + 1 and
matchings (fixed-point free involutions) on [2n]. We then define a closely related bijection be-
tween well-labelled positive paths of size n, and matchings on [2n]. This proves that these sets
of paths are counted by (2n − 1)!! ≡ (2n − 1) · (2n − 3) · · · 3 · 1. Both bijections also allow
for a refined enumeration of well-labelled paths (p, σ) according to the number of horizontal

steps (the number of letters 0 in p). More precisely, we show that the number of well-labelled

positive paths of size n with k horizontal steps is
(

n
k

)(

n−1
k

)

k! [(n − k − 1)!!]2 if n − k is even
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2 O. BERNARDI, B. DUPLANTIER, AND P. NADEAU

and
(

n
k

)(

n−1
k

)

k! (n− k)!! (n− k − 2)!! otherwise. Similarly, the number of well-labelled Motzkin

paths of size n with k horizontal steps is
(

n
k

)(

n−2
k

)

k!(n − k − 1)!!(n − k − 3)!! if n − k is even
and 0 otherwise. Observe that well-labelled paths (p, σ) without horizontal steps are completely
determined by the permutation σ. Indeed, in this case the word p encodes the up-down sequence

of the permutation σ. Hence, by specialising our results to paths with no horizontal steps (i.e.
k = 0), we enumerate permutations whose up-down sequence belong to a certain family. For
instance, we prove that the number of permutations of size n such that each prefix has no more
ascents than descents is [(n − 1)!!]2 if n is even and n!! (n − 2)!! otherwise. We also prove that
the number of permutations of size n having one more ascent than descent but such that each
prefix has no more ascents than descents is (n− 1)!! (n− 3)!! if n is even and 0 otherwise. These
enumerative results contrast with those in [2, 4, 5, 6] by the fact that we consider here a family
of admissible up-down sequences rather than a single sequence.

Well-labelled positive paths appeared recently in a problem concerning the evaluation of the
volume of the n-dimensional polytope Πn made of the points (x1, . . . , xn) in [−1, 1]n such that
∑j

i=1 xi ≥ 0 for all j = 1 . . . n. Indeed, it was shown in [1] that the set of well-labelled positive
paths of size n is in bijection with a set of n-dimensional subpolytopes forming a partition of Πn

and this was our original motivation for studying well-labelled paths. Given that the volume of

each subpolytope is 1/n!, our results prove combinatorially that the volume of Πn is (2n−1)!!
n! .

The paper is organised as follows. In Section 2, we define a recursive decomposition of
well-labelled positive and Motzkin paths. We then translate these decompositions in terms of
generating functions. For Motzkin paths, solving the generating function equation shows that
the number of well-labelled Motzkin paths of size n + 1 is (2n − 1)!!. From this, a simple in-
duction shows that the number of well-labelled positive paths of size n is also (2n − 1)!!. In
Section 3, we use the recursive decomposition of paths in order to define bijections between
well-labelled positive paths, well-labelled Motzkin paths and matchings. One step of these bi-
jections uses a construction of Chen [3] between labelled binary trees and matchings. Lastly in
Section 4, we use our bijections to count well-labelled positive and Motzkin paths according to
their number of horizontal steps. Specialising this results to the paths with no horizontal steps,
we enumerate permutations whose up-down sequence belong to certain families mentioned above.

2. Decomposition of well-labelled paths

In this section, we define a recursive decomposition of the class A of well-labelled Motzkin
paths and the class B of well-labelled positive paths. We then translate these equations in terms
of generating functions and obtain our first counting results.

We denote respectively by An and Bn the sets of paths of size n in A and B. We denote
respectively by an and bn the cardinality of An and Bn and by

A(z) =
∑

n≥0

an

n!
zn and B(z) =

∑

n≥0

bn
n!
zn

the corresponding exponential generating functions. Observe that a0 = a1 = 0 and b0 = 0. The
following notation will be useful for relabelling objects: given a set I of n integers, we denote by
λI the order preserving bijection from [n] to I (and by λ−1

I the inverse bijection).

2.1. Decomposition of well-labelled Motzkin paths. We first define a recursive decompo-
sition of the class A of well-labelled Motzkin paths. For i ∈ {−1, 0, 1}, we denote by Ai (resp.
Ai

n) the set of paths (p, σ) in A (resp. An) such that p1 = i. Observe that A−1 is made of a
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single element α2 of size 2. The decomposition

A = {α2} ⊎ A0 ⊎ A1

is illustrated by Figure 2 and the following proposition reveals its recursive nature.

Proposition 1. For any positive integer n,

• the set A0
n is in bijection with the set [n] ×An−1,

• the set A1
n is in bijection with the set Cn made of all unordered pairs {(I ′, P ′), (I ′′, P ′′)}

such that I ′ ⊆ [n], I ′′ = [n] \ I ′ and P ′, P ′′ are well-labelled Motzkin paths of respective

size |I ′| and |I ′′|.

=

α2 A0 A1A

⊎ ⊎

Figure 2. Recursive decomposition of well-labelled Motzkin paths.

Proof. • For any path (p, σ) in A0
n one obtains a pair (k, (p′, σ′)) in [n]×An−1 by setting k = σ1,

p′ = p2 . . . pn−1 and σ′ = σ′
1 . . . σ

′
n−1 where σ′

i = λ−1
[n]\{k}(σi+1) for i = 1 . . . n−1. This is clearly

a bijection between A0
n and [n] ×An−1.

• Observe that the set Cn is trivially in bijection with the set C′
n of ordered pairs ((I ′, P ′), (I ′′, P ′′))

such that λI′(σ′
1) < λI′′(σ′′

1 ). Let (p, σ) be a path in A1
n and let k be the least integer such that

∑k

i=1 pi = 0 (observe that pk = −1). We define an element φ(p, σ) = ((I ′, (p′, σ′)), (I ′′, (p′′, σ′′)))
of C′

n by setting

• I ′ = {σ1, . . . , σk} and I ′′ = {σk+1, . . . , σn},
• p′ = p′1 . . . p

′
k−1 and p′′ = p′′1 . . . p

′′
n−k−1, where p′i = −pk−i and p′′i = pk+i,

• σ′ = σ′
1 . . . σ

′
k and σ′′ = σ′′

1 . . . σ
′′
n−k, where σ′

i = λ−1
I′ (σk+1−i) and σ′′

i = λ−1
I′′ (σk+i).

The mapping φ is clearly a bijection between the sets A1
n and C′

n, which concludes the proof. �

Corollary 2. The generating function A(z) of well-labelled Motzkin paths satisfies

A(z) =
z2

2
+ zA(z) +

A(z)2

2
.(1)

Proof. For i ∈ {−1, 0, 1}, we denote by ai
n the cardinality of Ai

n and by Ai(z) =
∑

n≥0
ai

n

n! z
n the

corresponding generating function. The partition A = {α2} ⊎ A0 ⊎ A1 gives

A(z) =
z2

2
+A0(z) +A1(z).

Moreover, the bijection between A0
n and [n]×An−1 gives a0

n = n an−1, hence A0(z) = zA(z) while

the correspondence between A1
n and Cn gives a1

n =
1

2

n
∑

k=0

(

n

k

)

akan−k, hence A1(z) = A(z)2

2 . �

By solving Equation (1) (and using the fact that a0 = 0), one gets

A(z) = 1 − z −
√

1 − 2z.(2)

One can extract the coefficient an either directly from this expression of A(z) or by applying
Lagrange inversion formula to the series C(z) = A(z)/z. Indeed, Equation (1) gives C(z) =

z (1+C(z))2

2 , hence

an+1 = (n+ 1)![zn]C(z) =
(n+ 1)!

n
[xn−1]

(

(1 + x)2

2

)n

=
(2n)!

2nn!
= (2n− 1)!!.



4 O. BERNARDI, B. DUPLANTIER, AND P. NADEAU

We will now determine the number bn of well-labelled positive paths of size n. This can
be done by exploiting a bijection between Bn × [n + 1] × {0, 1} and Bn+1 ⊎ An+1 obtained by
adding one step to a positive path. The bijection is as follows: given a well-labelled positive
path (p, σ) of size n, an integer k in [n + 1] and an integer b in {0, 1}, we define the labelled
path (p′, σ′) = ψ((p, σ), k, b) by setting

• σ′ = σ′
1 . . . σ

′
n+1, where σ′

i = λ[n+1]\{k}(σi) for i = 1 . . . n and σ′
n+1 = k,

• p′ = p′1 . . . p
′
n, where p′i = pi for i = 1 . . . n−1 and p′n is equal to b− 1 if σ′

n+1 > σ′
n and

equal to b otherwise.

Observe that the path (p′, σ′) is well-labelled (by the choice of the step p′n) and is either positive
or Motzkin (since (p, σ) is positive). Moreover, the mapping ψ is a bijection between Bn × [n+
1] × {0, 1} and Bn+1 ⊎An+1 showing that

2(n+ 1)bn = bn+1 + an+1 for all n ≥ 0.(3)

Since an+1 = (2n− 1)!! a simple induction shows that bn = (2n− 1)!! and proves the following.

Proposition 3. The number an+1 of well-labelled Motzkin paths of size n + 1 and the number

bn of well-labelled positive paths of size n are both equal to (2n− 1)!!.

2.2. Decomposition of well-labelled positive paths. We now define a recursive decompo-
sition of the class B of well-labelled positive paths. We denote by β1 the well-labelled path of
size 1 and for i ∈ {0, 1}, we denote by Bi the set of paths (p, σ) in B of size at least 2 satisfying
p1 = i. For a path (p, σ) of size n in B1, we consider the greatest integer k ≤ n such that
∑j−1

i=1 pi ≥ 1 for all j = 2 . . . k−1 and
∑k−1

i=1 pi = 1. We denote by B′ the subset of paths in B1

such that k = n and we denote B′′ = B1 \ B′ the complement. We also denote by B0
n, B′

n and
B′′

n respectively the paths of size n in B0, B′ and B′′. The partition

B = {β1} ⊎ B0 ⊎ B′ ⊎ B′′

is illustrated by Figure 3 and the following proposition reveals its recursive nature.

Proposition 4. For any positive integer n,

• the set B0
n is in bijection with the set [n] × Bn−1,

• the set B′
n is in bijection with the class An of well-labelled Motzkin paths,

• the set B′′
n is in bijection with the set Dn made of the ordered pairs ((I ′, P ′), (I ′′, P ′′))

such that I ′ ⊆ [n], I ′′ = [n] \ I ′, P ′ is a well-labelled Motzkin path of size |I ′| and P ′′ is

a well-labelled positive path of size |I ′′|.

=

B′B

⊎⊎ ⊎⊎

B′′β1 B0

Figure 3. Recursive decomposition of well-labelled positive paths.

Proof. • For any path (p, σ) in B0
n one obtains a pair (k, (p′, σ′)) in [n]×Bn−1 by setting k = σ1,

p′ = p2 . . . pn−1 and σ′ = σ′
1 . . . σ

′
n−1 where σ′

i = λ−1
[n]\{k}(σi+1) for i = 1 . . . n−1. This is clearly

a bijection between B0
n and [n] × Bn−1.

• A bijection between the sets B′
n and An is obtained by reading the positive path backward:

given a path (p, σ) in B′
n one obtain a path (p′, σ′) in An by setting σ′ = σn . . . σ1 and p′ =

p′1 . . . p
′
n−1 where p′i = −pn−i for i = 1 . . . n−1. This is clearly a bijection.

• Let (p, σ) be a path in B′′
n and let k < n be the greatest integer such that

∑j−1
i=1 pi ≥ 1 for
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all j = 2 . . . k−1 and
∑k−1

i=1 pi = 1. We define a pair ((I ′, (p′, σ′)), (I ′′, (p′′, σ′′))) = φ(p, σ) by
setting

• I ′ = {σ1, . . . , σk} and I ′′ = {σk+1, . . . , σn},
• p′ = p′1 . . . p

′
k−1 and p′′ = p′′1 . . . p

′′
n−k−1, where p′i = −pk−i and p′′i = pk+i,

• σ′ = σ′
1 . . . σ

′
k and σ′′ = σ′′

1 . . . σ
′′
n−k, where σ′

i = λ−1
I′ (σk+1−i) and σ′′

i = λ−1
I′′ (σk+i).

We first want to prove that ((I ′, (p′, σ′)), (I ′′, (p′′, σ′′))) is in Dn. It is clear that (p′, σ′) and
(p′′, σ′′) are well-labelled paths and moreover, (p′, σ′) is a Motzkin path. It remains to prove
that (p′′, σ′′) is a positive path. Observe that the step pk is non-zero otherwise it contradicts
the maximality of k. If pk = −1, then (p′′, σ′′) is clearly positive because (p, σ) is positive; and
if pk = +1, then (p′′, σ′′) is positive otherwise it would contradict the maximality of k. Hence,
φ is a mapping from An to Dn. The bijectivity of φ is easy to check after observing that the
step pk can be recovered: it is equal to 1 if λI′(σ′

1) < λI′′(σ′′
1 ) and to −1 otherwise. �

Proposition 4 will allow to define a bijection between positive paths and matchings in the
next section. It also leads to the following relation between the generating functions A(z) and
B(z):

(4) B(z) = z + zB(z) + A(z) +A(z)B(z),

which, by (2), gives B(z) =
1√

1 − 2z
− 1. This result could also have been derived from the

observation that bn = an+1 implies B(z) = A′(z).

3. Bijections with matchings

Proposition 3 suggests that the classes of paths An+1 and Bn are both in bijection with
matchings. The goal of this section is to describe such bijections. For this, we will introduce
intermediate objects called labelled binary trees.

3.1. Bijections between well-labelled paths and labelled binary trees. A labelled binary

tree of size n is a rooted tree with n leaves having n different labels in [n] and such that each
(unlabelled) internal vertex has exactly two unordered children. We call marked labelled binary

tree a labelled binary tree in which one of the (internal or external) vertices is marked. A binary
tree and a marked binary tree are represented in Figure 4. We denote by T the set of labelled
binary trees of size at least 2 and we denote by R the set of marked labelled binary trees. We
will now show that the recursive descriptions of the classes T and R parallel those of the classes
A and B and obtain bijections between T and A and between R and B.

We use the following notation for relabelling trees: if λ is a bijection between two sets of
integers I, J and τ is a binary tree whose leaves have labels in I, then λ(τ) denotes the tree
obtained from τ by replacing each leaf labelled i ∈ I, i = 1 . . . n by a leaf labelled λ(i) ∈ J .

6 3

10 5

1

4 9

7

2 8

9658

24

7

3

(a) (b)

101

Figure 4. (a) A labelled binary tree. (b) A marked labelled binary tree
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Bijection between Motzkin paths and labelled trees. We denote by τ2 the unique labelled
binary tree of size 2 and by T 0 (resp. T 1) the set of labelled binary trees made of the root-vertex
and two subtrees, one of which (resp. none of which) is a leaf. For all integers n ≥ 2, we denote
respectively by Tn, T 0

n and T 1
n the set of trees of size n in T , T 0 and T 1. We now explicit the

recursive nature of the partition
T = {τ2} ⊎ T 0 ⊎ T 1.

Proposition 5. For any integer n > 2,

• the set T 0
n is in bijection with the set [n] × Tn−1.

• the set T 1
n is in bijection with the set Un of unordered pairs {(I ′, τ ′), (I ′′, τ ′′)} such that

I ′ ⊆ [n], I ′′ = [n] \ I ′ and τ ′, τ ′′ are labelled binary trees in T of respective size |I ′|
and |I ′′|.

Proof. Let n > 2.
• Given an integer k ∈ [n] and a tree τ in Tn−1, one defines a tree τ ′ in T 0

n as the tree made of

a root-vertex, one subtree which is a leaf labelled k and one subtree equal to λ[n]\{k}(τ) (which

is not a leaf). This is a bijection between [n] × Tn−1 and T 0
n .

• Given a pair {(I ′, τ ′), (I ′′, τ ′′)} in Un, one defines a tree τ in T 1
n as the tree made of a root-

vertex, a subtree equal to λI′(τ ′) and a subtree equal to λI′′(τ ′′). This is a bijection between Un

and T 1
n . �

Definition of bijection Φ. Comparing Propositions 1 and 5, it is clear that one can define
a recursive bijection Φ between the class A of well-labelled Motzkin paths and the class T of
labelled binary trees. We now summarise the recursive construction of the image of a well-
labelled Motzkin path (p, σ) by the bijection Φ:

(i) If (p, σ) = α2, then Φ(p, σ) = τ2.
(ii) If (p, σ) has size n > 2 and p1 = 0, then we set p′ = p2 . . . pn−1 and σ′ = σ′

1 . . . σ
′
n−1

where σ′
i = λ−1

[n]\{σ1}
(σi+1) for i = 1 . . . k−1. With these notations, we define Φ(p, σ) as

the tree made of a root-vertex, the subtree made of a leaf labelled σ1 and the subtree
λ[n]\{σ1}(Φ(p′, σ′)).

(iii) If (p, σ) has size n > 2 and p1 = 1, then we consider the least integer k such that
∑k

i=1 pi = 0 and we set (as in the proof of Proposition 1):
• I ′ = {σ1, . . . , σk} and I ′′ = {σk+1, . . . , σn},
• p′ = p′1 . . . p

′
k−1 and p′′ = p′′1 . . . p

′′
n−k−1, where p′i = −pk−i and p′′i = pk+i,

• σ′ = σ′
1 . . . σ

′
k and σ′′ = σ′′

1 . . . σ
′′
n−k, where σ′

i = λ−1
I′ (σk+1−i) and σ′′

i = λ−1
I′′ (σk+i).

With these notations, we define Φ(p, σ) as the tree made of a root-vertex, the subtree
λI′(Φ(p′, σ′)) and the subtree λI′′ (Φ(p′′, σ′′)).

For instance, the image of the Motzkin path represented in Figure 1(a) by the mapping Φ
is represented in Figure 4(a). From the definition of Φ and Propositions 1 and 5, we have the
following theorem:

Theorem 6. For any positive integer n > 1, the mapping Φ is a bijection between well-labelled

Motzkin paths of size n and labelled binary trees with n leaves.

Bijection between positive paths and marked trees. We now define a bijection Φ′ between
well-labelled positive paths and marked labelled binary trees. Before defining the bijection Φ′,
let us explain briefly what led us to consider marked labelled binary trees. As seen in Section
2, the recursive decomposition of positive paths leads to consider blocks corresponding to either
positive paths or Motzkin paths. The recursive relation is captured by Equation (4) which can
be written

B(z) = Ã(z) + Ã(z)B(z),

where Ã(z) = z + A(z) is the series of unmarked binary trees (of size n ≥ 1), or equivalently,
binary trees marked at their root-vertex. This relation suggests that one can interpret B(z) as
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counting marked binary trees.

We denote by ρ1 the marked labelled tree of size 1. We denote by R′ ⊂ R the set of marked
trees of size at least 2 such that the marked vertex is the root. Clearly, this set is in bijection
with the set T of unmarked trees. We denote by R0 (resp. R′′) the set of marked trees made of
a non-marked root and two subtrees, one of which (resp. none of which) is a non-marked leaf.
For all integer n > 1, we denote respectively by Rn, R0

n, R′
n and R′′

n the set of marked trees of
size n in R, R0, R′ and R′′. We now explicit the recursive nature of the partition

R = {ρ1} ⊎ R0 ⊎R′ ⊎R′′.

Proposition 7. For all integer n > 1,

• the set R0
n is in bijection with the set [n] ×Rn−1,

• the set R′
n is in bijection with Tn,

• the set R′′
n is in bijection with the set Un of ordered pairs ((I ′, τ ′), (I ′′, τ ′′)) such that

I ′ ⊆ [n], I ′′ = [n] \ I ′, τ ′ is a non-marked labelled binary tree of size |I ′| and τ ′′ is a

marked labelled binary tree of size |I ′′|.
The proof of Proposition 7 is similar to the proof of Proposition 5 and is omitted.

Definition of bijection Φ′. Comparing Propositions 4 and 7, it is clear that one can define
a recursive bijection Φ′ between the class B of well-labelled paths and the class R of marked
labelled binary trees. We now summarise the recursive construction of the image of a well-
labelled positive path (p, σ) by the bijection Φ′:

(i) If (p, σ) = β1 then Φ′(p, σ) is the marked tree ρ1.
(ii) If (p, σ) has size n > 1 and p1 = 0, then we define p′ = p2 . . . pn−1 and σ′ = σ′

1 . . . σ
′
n−1,

where σ′
i = λ−1

[n]\{σ1}
(σi+1) for i = 1 . . . n−1. With these notations, we define Φ′(p, σ)

as the tree made of a non-marked root-vertex, the subtree made of a non-marked leaf
labelled σ1 and the marked subtree λ[n]\{σ1}(Φ

′(p′, σ′)).
(iii) If (p, σ) has size n > 1 and p1 = 1, then we consider the greatest integer k ≤ n such

that
∑j−1

i=1 pi ≥ 1 for all j = 2 . . . k−1 and
∑k−1

i=1 pi = 1, and we set (as in the proof of
Proposition 4):
• I ′ = {σ1, . . . , σk} and I ′′ = {σk+1, . . . , σn},
• p′ = p′1 . . . p

′
k−1 and p′′ = p′′1 . . . p

′′
n−k−1, where p′i = −pk−i and p′′i = pk+i,

• σ′ = σ′
1 . . . σ

′
k and σ′′ = σ′′

1 . . . σ
′′
n−k, where σ′

i = λ−1
I′ (σk+1−i) and σ′′

i = λ−1
I′′ (σk+i).

If k = n (that is, (p, σ) is in B′), we define Φ′(p, σ) as the marked tree obtained by
marking the root-vertex of the unmarked tree Φ(p′, σ′) (note that I ′′, p′′ and σ′′ are
empty in this case). Otherwise (that is, if k < n), we define Φ′(p, σ) as the marked
tree made of a non-marked root-vertex, the non-marked subtree λI′(Φ(p′, σ′)) and the
marked subtree λI′′(Φ′(p′′, σ′′)).

For instance, the image of the positive path represented in Figure 1(b) by the mapping Φ′

is represented in Figure 4(b). From the definition of Φ′ and Propositions 4 and 7, we have the
following theorem:

Theorem 8. The function Φ′ is a bijection between well-labelled positive paths of size n and

marked labelled binary trees with n leaves.

Remark. The final height of a positive path (p, σ) of size n is
∑n−1

i=1 pi. It is not hard to prove
inductively that a positive path (p, σ) has an even final height if and only if the mark of the
image tree, ρ = Φ′(p, σ), is on a leaf. Indeed, if (p, σ) = β1 the final height is 0, and the mark
is on a leaf of the tree ρ = ρ1; while if (p, σ) is in B′ the final height is 1, and the mark is on
an internal vertex (the root-vertex) of ρ. In the other cases ((p, σ) ∈ B0 ⊎ B′′), the mark is in
a subtree ρ′ of ρ corresponding to a path (p′, σ′) having a final height of the same parity as (p, σ).
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3.2. Bijections between labelled binary trees and matchings. We will now present a
bijection Ψ due to Chen [3] between labelled binary trees of size n and matchings on [2n−2].
We follow the exposition from [7, p.16] for defining the bijection Ψ and then define a similar
bijection Ψ′ between marked binary trees of size n and matchings on [2n]. The mappings Ψ and
Ψ′ are represented in Figure 5. The first step of this bijection is to attribute a label to each
internal node of the binary tree.
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Figure 5. Bijections between labelled binary trees and matchings.

Definition of bijection Ψ [3]. Let τ be a labelled binary tree with n leaves labelled on
[n]. One defines an induced labelling of the n−2 internal non-root vertices of τ by the following
procedure. While there are unlabelled non-root vertices, we consider those among them that
have both of their children labelled. There is at least one such vertex and we consider the vertex
v which has the child with least label; we then attribute to v the least label in [2n−2]\ [n] which
has not yet been attributed. For instance, starting from the tree in Figure 4(a) one obtains
the labels indicated in the fully labelled tree represented in Figure 5(a). One then obtains the
matching π = Ψ(τ) on [2n−2] by letting π(i) = j for all pairs i, j ∈ [2n − 2] which are the
labels of siblings in the fully labelled tree. In [7, p.16] the mapping Ψ is proved to be a bijection
between labelled binary trees of size n and matchings on [2n−2].

Definition of bijection Ψ′. Let τ ′ be a marked labelled binary tree of size n and let τ be
the corresponding unmarked tree. We consider the matching π = Ψ(τ) on [2n−2] and define a
matching π′ = Ψ′(τ ′) on [2n] as follows. If the marked vertex v of τ ′ is the root, then π′(i) = π(i)
for all i in [2n−2] and π′(2n − 1) = 2n. If v is not the root, then we consider its label k and
the label l of its sibling. In this case π′(i) = π(i) for all i 6= k, l in [2n−2], π′(k) = 2n and
π′(l) = 2n − 1. It is clear that the mapping Ψ′ is a bijection between marked labelled binary
tree of size n and matchings on [2n].

Combining the bijections Φ, respectively Φ′, with the bijections Ψ, respectively Ψ′, gives the
following bijective proof of Proposition 3.

Theorem 9. The composition Ψ ◦Φ is a bijection between well-labelled Motzkin paths of size n
and matchings on [2n−2]. Similarly, Ψ′ ◦Φ′ is a bijection between well-labelled positive paths of
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size n and matchings on [2n].

4. Enumerative corollaries

We will now study the number of horizontal steps in well-labelled paths through the bijections
Φ, Φ′, Ψ, Ψ′ and deduce some enumerative corollaries in terms of the up-down sequences of
permutations. Recall that a horizontal step of a well-labelled path (p, σ) is a letter 0 in p. We
say that a leaf in a labelled binary tree is single if its sibling is an internal node.

Theorem 10. For all integers n, k, the mappings Φ and Ψ induce successive bijections between

• well-labelled Motzkin paths of size n with k horizontal steps,

• labelled binary trees with n leaves, k of which are single leaves,

• matchings on [2n− 2] having k pairs (i, j) such that i ∈ {1, . . . , n} and j ∈ {n+1, . . . , 2n−2}.

For example, the Motzkin path of size n = 10 in Figure 1(a) has 2 horizontal steps, the
corresponding labelled binary tree represented in Figure 4(a) has 2 single leaves, and the cor-
responding matching represented in Figure 5(a) has 2 pairs (i, j) such that i ∈ {1, . . . , n} and
j ∈ {n+1, . . . , 2n−2}.

Proof. • The correspondence between the number of horizontal steps of a Motzkin path (p, σ)
and the number of single leaves in the binary tree Φ(p, σ) follows from a simple induction on the
size of (p, σ). Indeed, one creates a single leaf in the recursive construction of Φ(p, σ) exactly
when case (ii) thereof (corresponding to a horizontal step of (p, σ)) occurs.
• The correspondence between the number of single leaves in the binary tree τ and the number

of pairs (i, j) such that i ∈ {1, . . . , n} and j ∈ {n+1, . . . , 2n−2} in the matching Ψ(τ) is an
immediate consequence of the fact that the labels of external vertices are in {1, . . . , n} while the
labels of internal vertices are in {n+1, . . . , 2n−2}. �

Corollary 11. The number of well-labelled Motzkin paths of size n having k horizontal steps is

an,k =

(

n

k

)(

n− 2

k

)

k! (n− k − 1)!! (n− k − 3)!!

if n− k is even and 0 otherwise.

Proof. By Theorem 10, the number an,k counts matchings on [2n− 2] with exactly k pairs (i, j)
such that i ∈ {1, . . . , n} and j ∈ {n+1, . . . , 2n−2}. To enumerate such matchings, first choose

these k pairs: there are
(

n
k

)

possibilities of choosing the integers i in {1, . . . , n}, there are
(

n−2
k

)

possibilities for choosing the integers j in {n+1, . . . , 2n−2} and then k! possibilities to define the
pairing between the chosen integers in {1, . . . , n} and the chosen integers in {n+ 1, . . . , 2n− 2}.
After that, it remains to choose a pairing of the n − k unmatched integers in {1, . . . , n} and a
pairing of the n− k − 2 unmatched integers in {n+1, . . . , 2n−2}. Such matchings exist only if
n− k is even and there are (n− k − 1)!!(n− k − 3)!! of them in this case. �

We now examine horizontal steps in positive paths. We say that a leaf in a marked labelled
binary tree is quasi-single if it is not marked and its sibling is either marked or internal.

Theorem 12. For all integers n, k, the mappings Φ′ and Ψ′ induce successive bijections between

• well-labelled positive paths of size n with k horizontal steps,

• marked labelled binary trees of with n leaves, k of which are quasi-single leaves,

• matchings on [2n] having k pairs (i, j) with i ∈ {1, . . . , n} and j ∈ {n+ 1, . . . , 2n− 1}.
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Proof. • The correspondence between the number of horizontal steps of a positive path (p, σ) and
the number of quasi-single leaves in the marked tree Φ′(p, σ) follows from a simple induction on
the size of (p, σ). Indeed, one creates a quasi-single leaf in the recursive construction of Φ′(p, σ)
exactly when case (ii) of the definition of either Φ or Φ′ occurs.
• We now consider a marked labelled binary tree τ ′ of size n > 1. Let v be the marked vertex

and let τ be the non-marked tree obtained by forgetting the mark. The number k of single leaves
in τ and the number k′ of quasi-single leaves in τ ′ are related by

• k′ = k if v is internal,
• k′ = k − 1 if v is a leaf and its sibling is internal
• k′ = k + 1 if v and its sibling are both leaves.

Similarly, the definition of Ψ′ gives a relation between the number l′ of pairs (i, j) of the matching
Ψ′(τ ′) such that i ∈ {1, . . . , n} and j ∈ {n + 1, . . . , 2n − 1} and the number l of pairs (i, j) of
the matching Ψ(τ) such that i ∈ {1, . . . , n} and j ∈ {n+ 1, . . . , 2n− 2}:

• l′ = l if the label of v is larger than n,
• l′ = l−1 if the label of v is not larger than n and the label of its sibling is larger than n,
• l′ = l + 1 if the label of v and its sibling are not larger than n.

Theorem 10 gives k = l, hence the previous discussion gives k′ = l′ and concludes the proof. �

Corollary 13. The number of well-labelled positive paths of size n having k horizontal steps is

(5) bn,k =















(

n

k

)(

n− 1

k

)

k! [(n− k − 1)!!]2 if n−k is even,

(

n

k

)(

n− 1

k

)

k! (n− k)!! (n− k − 2)!! otherwise.

The proof of Corollary 13 is very similar to the Corollary 11 and is omitted. We now study
the consequence of these results in terms of the up-down sequences of permutations.

An ascent of a permutation σ = σ1σ2 . . . σn is an index i < n such that σi < σi+1; a descent

is an index i < n such that σi > σi+1. The enumeration of permutations with a given sequence
of ascents and descents, called up-down sequences (or shape) was investigated for instance in
[2, 4, 5, 6]. Here we will count permutations of size n such that their up-down sequences belong
to a certain family, while previous works focused on the enumeration according to a single up-
down sequence.

We say that a permutation σ has a positive up-down sequence if for all j ≤ n the number of
ascents less than j is no more than the number of descents less than j. We say that σ has a Dyck

up-down sequence if it has one more ascent than descents but for all j < n the number of ascents
less than j is no more than the number of descents less than j. Observe that a well-labelled
path (p, σ) with no horizontal steps is completely determined by the permutation σ (indeed, the
word p is determined by the up-down sequence of σ). Moreover, the well-labelled path (p, σ) is
positive (resp. Motzkin) if and only if the permutation σ has a positive (resp. Dyck) up-down
sequence. Thus, the following theorem immediately follows by looking at the specialisation k = 0
in Corollaries 11 and 13.

Theorem 14. For any integer n, the number of permutations of size n having a positive up-

down sequence is [(n−1)!!]2 if n is even and n!! (n−2)!! otherwise. The number of permutations

of size n having a Dyck up-down sequence is (n− 1)!! (n− 3)!! if n is even and 0 otherwise.

We would be happy to see a more direct bijective proof of these specialisations.

Acknowledgement: We are very thankful to Sylvie Corteel for fruitful discussions and for
providing us with the conjectural formula for the numbers bn,k.
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