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ABSTRACT

In this paper, an ill-posed inverse ellipsometric problem for thin film characterization is studied. The aim is to determine 
the thickness,  the refractive index  and the coefficient  of  extinction of  homogeneous  films deposited on a substrate 
without assuming any a priori knowledge of the dispersion law. Different methods are implemented for the benchmark. 
The first method considers the spectroscopic ellipsometer as an addition of single wavelength ellipsometers coupled only 
via the film thickness. The second is an improvement of the first one and uses Tikhonov regularization in order  to 
smooth out the parameter curve. Cross-validation technique is used to determine the best regularization coefficient. The 
third method consists in a library searching.  The aim is to choose the best combination of parameters  inside a pre-
computed library. In order to be more accurate, we also used multi-angle and multi-thickness measurements combined 
with  the  Tikhonov regularization  method.  This  complementary  approach  is  also  part  of  the  benchmark.  The  same 
polymer  resist  material  is  used  as  the  thin  film  under  test,  with  two  different  thicknesses  and  three  angles  of 
measurement. The paper discloses the results obtained with these different methods and provides elements for the choice 
of the most efficient strategy. 
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1. INTRODUCTION

Ellipsometry is a very commonly used optical technique that proved to be highly accurate for numerous applications 
such as thin film thickness measurement. It measures the change in the polarization state of the incident light reflected 
from the surface of a sample. The ellipsometry uses  the properties of the reflected light, in order to search for some 
physical or optical properties of the sample. Reader can refer for example to the complete reference on ellipsometry 
edited by Tompkins and Irene [1] for further details.
However,  especially  when  dealing  with  unknown materials  or  absorbing  films,  the  reliability  of  the  ellipsometric 
measurement depends on the accurate determination of the refractive index of the material under test. In the case of 
spectroscopic  ellipsometry,  the  complex  refractive  index  needs  to  be known on the full  wavelength  range.  This  is 
generally  done using various dispersion functions (Cauchy,  oscillators,  ...)  that  describe the variation of  the optical 
constants of a material versus wavelength. This brings the user to a severe issue which is the choice of the dispersion 
curve to be used for his material. This has to be done a priori and very often these dispersion functions rely on strong 
hypothesis  on  the  physics  of  the  material.  In  order  to  overcome that  issue,  we  tried  to  develop  strategies  for  the 
determination of the refractive index that does not rely on any a priori hypothesis, except regularity. The present paper 
aims at describing several of these strategies, most of them being original, and compare their output when applied to the 
same polymer material.
In the study of the inverse ellipsometric problem for thin film characterization, the associated numerical problem is ill-
conditioned. The three conditions given by Hadamard (existence, uniqueness and stability of the solutions) are not met. 
Different solutions can give the same resulting curves and due to noisy measurements,  the solutions are not always 
stable. To solve it, we use several methods found in the inverse problem literature. Before describing the problem in 
detail, we give a brief description of the ellipsometry and an overview of the inverse ellipsometric problem literature.



Our aim is to determine the thickness (e), the refractive index (ni) and the coefficient of extinction (ki) of homogeneous 
films deposited on a Silicon substrate. In this problem, ni and ki are both dependent on the wavelength (or energy-eV). 
When N different wavelengths are used, there are thus 2N+1 unknowns. The data available to make this characterization 
are 2N measured values provided by the spectroscopic ellipsometer, denoted by Isi

m and Ici
m , for 1<  i <  N. The 

physical  meanings  of  Is and  Ic vectors  are  explained  in  the next  section.  We will  see  in  Section 3 that  it  is  also 
theoretically possible to compute these 2N values of Is and Ic using the unknown parameters (e, ni, ki). One should thus 
estimate the values of these parameters in order to fit best the measured data. The best parameters are those matching the 
best the measured data  Ism and  Icm. In order to determine these 2N+1 unknowns, we use three different methods and 
compare the results obtained by each one.

In  the literature,  one can find many papers  studying inverse problems. Without being very exhaustive,  we give an 
overview of the papers which are the most related with our study. There are many studies on the methods used to solve 
the  ill-conditioned  inverse  problems.  For  a  very  detailed  reference  on  inverse  problems,  reader  can  be  refered  to 
Tarantola [2], where the author presents discrete and general inverse problem theory. Haber [3] deals with the numerical 
solutions of linear and nonlinear inverse problems and develops new techniques for solving such problems. Generalized 
Cross Validation and Krylov space methods are used respectively for noise estimation and large system inversion for 
linear systems. A new algorithm is developed for the non-linear case, based on the differentiation between the correlated 
errors coming from linearization and non-correlated noise coming from measurements. Another interesting study on ill-
posed problems is from Hansen [4]. The author gives numerical methods for solving rank-deficient problems and linear 
discrete ill-posed problems. New and existing numerical algorithms are studied. Regularization methods and parameter 
choice  methods  are  detailed.  Busby and Trujillo  [5] study two methods  in  order  to  choose  the best  regularization 
parameter for the Tikhonov regularization method: L-curve and generalized cross validation (GCV). They indicate that 
the two methods give for  most  cases the same parameter.  L-curve needs less computing, but works well  for linear 
systems only. On the contrary, GCV takes additional computation resources but it can be applied to non-linear systems. 
Krawczyk-Stando and Rudnicki [6] compare also two methods to choose the best regularization parameter, issued from 
the standard Tikhonov regularization method: the well-known L-curve and the U-curve method which is a new criterion 
that authors propose. These two methods can be used for linear systems, which is not the case for our problem. On the 
examples they test, the U-Curve is found to have a smaller error than L-curve.
We give  some  papers  dealing  with  inverse  problems  in  ellipsometry.  Bobro  et  al.  [7] study  an  ill-posed  inverse 
ellipsometric problem and try to obtain more stable solutions than given in the literature. They use some new criteria to 
choose  the  optimal  parameters  for  ultra  thin  films.  They  solve  a  multidimensional  problem  where  multi-angle 
measurements are used as data. They run many numerical simulations and use optimization methods from the literature 
(i.e. Box's complex method). However, with this method they are limited to only 10 decision variables, which are the 
thickness and the refractive index dependent on the angle of measurement. Nevertheless they announce that they can 
successfully study surface films with thickness ranged from 2 to 10 nm.  Rosa  [8] studies also the inverse problem of 
ellipsometry for thin films in order to determine the thickness, the refractive index and the coefficient of extinction. The 
author  uses  a  statistical  method,  called  Bootstrap,  in  order  to  determine  the  solution  and  also  the  standard  errors 
associated to it with an error propagation. Two versions of the Bootstrap method are used: using an initial data set or 
generating them artificially by the Monte Carlo method. An advantage  of this method is  indicated as  the accuracy 
assigned  to  the final  results.  The author emphasizes the efficiency  and the ease of  use of this  method not only in 
ellipsometric problems but also in the general field of inverse problems. Tonova and Konova [9] propose an algorithm to 
obtain the refractive index and the thickness of inhomogeneous films. They use multiple angle of incidence data. In their 
previous works, the same authors developed algorithms to find the refractive index with a known thickness. In this paper 
they extend this study and give a so-called Newton-Kantorovitch algorithm to determine both parameters. This method is 
said to be analogous to the discrete Newton method for solving non-linear equations. They test it using simulated data 
for different inhomogeneous transparent films and show its efficiency. Prior to our study in this paper, Kone [10] studied 
the same problem with Tikhonov regularization approach, but using the L-curve method to find the best regularization 
parameter.  As the problem is non-linear, the L-curve did not give the desired results. We extend the same problem 
proposing different optimization techniques for the non-linear case.

In  the  current  paper,  we  present  different  techniques  to  solve  the  non-linear,  ill-posed  inverse  problem  for  the 
ellipsometry. We begin by presenting the problem and its theoretical formulation in Section 2. We detail the physical 
equations which allow to compute the Is and Ic curves theoretically, explaining the unknowns of the problem. In Section 
3, we describe the methods we used, namely local optimization, Tikhonov regularization and library search. We provide 
computational results in Section 4 and finally some concluding remarks are presented in Section 5.



2. PROBLEM DESCRIPTION

The ellipsometer provides us with the measured data Isi
m and Ici

m , for the interval [1, ...,  N] of wavelength (or 
energy-eV), where  i represents the wavelength ( i∈ℕ ) and  m indicates that these are measured values. These two 
curves Is and Ic can also be computed theoretically, that will be denoted by Isi

t and Ici
t . 

I s
t
=sin 2 sin , I c

t
=sin 2cos , for a 0 angle between the polarizer and the modulator (1)

I s
t
=sin 2 sin , I c

t
=cos 2 , for an angle π/4 between the polarizer and the modulator. (2)

In these two equations, ψ  and ∆ are computed as follows:

=
r p

r s

=tane j  (3)

 Equation (3) represents the formalism which allows to compute ρ, the ratio of complex reflectivities. rp and rs are the 
Fresnel reflection coefficients for the p and s polarization respectively. They are a function of incidence angle, refractive 
angle,  the  refractive  index  (ni),  the  coefficient  of  extinction  of  the  sample  (ki),  the  thickness  of  the sample  e,  the 
wavelength λi, etc. tan ψ is the attenuation ratio and ∆ the phase shift between the parallel and perpendicular components 
of the polarized light. Once ψ and ∆ are known, one can theoretically compute Isi

t and Ici
t using Equations (1) and 

(2), depending on the configuration of the ellipsometer.
One can easily see that, in order to compute  ρ,  the unknowns are the thickness  e,  the refractive index (ni) and the 
coefficient of extinction of the sample (ki). The other parameters are all known during the experience. We also know 
that we have only 2N given data versus 2N+1 unknown parameters. To avoid this difficulty, there exist different ways to 
increase the number of independent measurements. One can use multiple angle of incidence with the same sample, many 
measurements can be made for different thicknesses, etc. We used these two ways in this paper for the benchmark with 
the other methods. In the next section we detail the methods used.

3. DESCRIPTION OF THE METHODS

Before giving a brief description of each method, let us present several notations used in the following.

• x*
=e , ni , k i : optimal vector to be determined, of dimension 2N+1

• F(x): function which computes theoretically Ist and Ict for a given x (from Fresnel equations)

• b: measured values (Ism and Icm measured by the ellipsometer)

• β: coefficient of regularization

• L: regularization matrix (second derivative in the current case)

The spectroscopic ellipsometry problem of deducing the unknown parameters from a best match between the theoretical 
and measured response can be stated in the following way

x*
=argminx {∥F  x−b∥2

2


2
∥L x∥2

2}

First, a simplification a priori can be done on the number of unknowns. For large wavelengths (small energy ranges) 
most of the thin films such as photo-resists or dielectrics that we are dealing with are known to be transparent. They are 
assumed to have a zero coefficient of extinction. For example photo-resists are dielectric materials that begin to absorb 
typically in the UV range. Hence in the infrared-visible range, no absorption is expected and ki is assumed to be 0. An 
initial estimation of the thickness can thus be done with only a subset of the 2N measurements. Secondly, the optical 
index of the film is assumed to follow a Cauchy model: 
n = A + 104 B/λ2+ 109C/λ4. 

Hence inside the range of low energy (1.5eV, 4eV) an estimation of the thickness and of n can be made with only 3+1 
unknowns.  Once  the  thickness  is  known,  different  methods  presented  in  this  section  allow us  determining  the  N 
unknowns ni and the N unknowns ki that fit the best the experimental curves. 



3.1 Optimization without regularization

The first method (sometimes denoted LO in the following) used in this paper consists in using an algorithm that will 
determine the N ni and the N ki that fit the best the experimental data wavelength by wavelength. It simply considers the 
spectroscopic ellipsometer as an addition of single wavelength ellipsometers coupled only via the film thickness. All 
minimization steps of the program use the lsqcurvefit routine implemented in Matlab. It minimizes in the least square 
sense, the errors between the measured  Ism and Icm and the Ist and Ict theoretically computed. In our case, this routine 
uses a large scale algorithm based on the interior-reflective Newton method [11-12]. The solution is approximated using 
the method of preconditioned conjugate gradients. 
The difficulty of this method is its dependence on the quality of the initial values of the parameters. It requires a good 
guess of the initial vector for the unknowns as a bad choice of this vector can result in an unacceptable physical solution 
due to local minima. This is a common difficulty for any non-linear minimization problem solved with local optimizers 
and is not easy to avoid. Thus, the user should pay attention to generate a correct initial vector. In order to solve this 
issue, a specific initial condition optimizer was computed.
Another disadvantage of this method is that the measurement noise, inherent to any experimental setup can significantly 
alter  the  stability  of  the  solution  and  pass  on  the  optimized  parameters.  We  thus  use  another  technique,  called 
regularization, in order to smooth out the noisy parameters (see Section 3.2). 

3.2 Tikhonov regularization

The second method is an improvement of the first one, using a technique called Tikhonov regularization. A second 
component weighted by a so called regularization coefficient β is added in the objective function. It aims at providing a 
smoother solution. For more details on this technique see Tikhonov and Arsenine [13]. For instance, a very large β may 
give a very smoothed curve since the weight of the regularization term is increased, however a very small β can leave a 
noisy curve. β=0 means no regularity constraints, in this case the objective function is simply the sum of squared errors 
(i.e. the method of section 3.1). The important step is the determination of the best  β which provides the best balance 
between proximity to data and regularity of the solution. For that purpose, we use a cross-validation technique which is a 
measurement of the robustness of the computed model. At each step, one measured data is deleted from the data set and 
the optimization is done with the remaining data. The missing point is computed theoretically with an interpolation (or 
extrapolation). The error between the deleted measured value and the theoretically computed value is found and a sum is 
done for all missing points. The best β is the one that minimizes the sum of errors in the least square sense.

*=argmin{∑
i=1

N

 Isi
t− Isi

m2 Ici
t− Ici

m2}

To be more robust, we also use multi-angle and multi-thickness measurements together with Tikhonov regularization. 
Having more independent measurements, the resulting curves are found to be much closer to the physical values. Reader 
can find test results in Section 4.
A disadvantage of the cross-validation technique is the time needed for the computation of the best β. For instance, in 
our  experiments,  we use  101 wavelengths,  resulting in  203 unknowns.  For  each  β value  tested  (dependent  on the 
problem studied the total number of β to test can reach 100), 101 measured values have to be deleted one by one to be 
able to compute the sum of errors. Thus, in total there are 10000 computations. Each one being an optimization problem 
with 100 unknown parameters.

3.3 Library Search

The third method consists of a library search. This is an application to thin film ellipsometry of a method developed in 
our  group  for  dynamic  scatterometry  [14].  A  highly  dense  library  of  Ist and  Ict values  is  generated  for  different 
combinations  of  n and  k.  For  a  measured  couple  (Ism,,Icm),  the  aim is  to  choose  the  element  in  the library  which 
minimizes a weighted sum of
- the proximity with the measured values of (Ism,,Icm)
- the regularity of the (n,k) variation through the wavelengths
As in the other methods, the thickness is assumed to be known for this technique. See Soulan [15] for more details on 
this library search method. One advantage of this technique is its speed to find the best parameter values. The generation 
of the library can be very time consuming, but once this is done, the optimization problem reduces to a database search.

In the next section, we give some results to compare all these methods. 



4. EXPERIMENTAL RESULTS

The samples under test are two thin layers of the same resist. All data are measured on an UVISEL FUV AGAS from 
Horiba Jobin Yvon, spectroscopic ellipsometer equipped with rotating arms. The energy range used is 1.5eV to 6.5eV. 
Using the Cauchy approach described in Section 3, the thickness of each layer is deduced from the low energy part of the 
spectrum where  the resist  material  is  known to be transparent.  The extracted  thicknesses  are  77.3nm and 103.1nm 
respectively. In this thickness range, no significant interface effect or difference in the deposition process is expected to 
induce variation of the complex refractive index which is therefore supposed to be identical  for the two films. We 
performed multi- angle measurements : 3 different angles at 65°, 70° and 75° were used. This is aimed at improving the 
accuracy of the extracted optical parameters by mean of the use of a larger number of input data while keeping the same 
number of output parameters being optimized. First method, Tikhonov single angle method and library research method 
were run with experimental data collected with one incident angle of 70°. 
The results of the three different approaches are summarized in Figure 1 and 2 for the thick and thin film respectively.

(a) (b)

Figure 1: (a) n vs. photon energy and (b) k vs. photon energy (b) for the 103.1 nm thick material

(a) (b)

Figure 2: (a) n vs. photon energy and (b) k vs. photon energy (b) for the 77.3 nm thick material



The first method (local optimization method, LO) gives noisy curves, particularly at the boundary of the energy domain. 
This is easily explained as no regularization is applied to the simulation results and hence any noise in the measurements 
will give noise in n and k. For the 77.3 nm thickness, the jumps in the curve are numerous (see Figure 2). On the other 
hand, few jumps in the curve are reported for the 103.1nm thick film. This shows that the presence of local minima is 
specific to the combination of the film thickness and the incident angle.  For instance at 77.3nm with an incident angle of 
70°, the deepest local minimum for n is located at 4.2 eV. In order to try to improve the accuracy of the process, we used 
Tikhonov  regularization  at  single  angle  and  single  thickness.  Results  show  good  correspondence  with  the  no 
regularization case but this time n and k are smoother. Nevertheless local minima are not avoided but smoothed out (see 
Figure 2). For the Tikhonov multi-angle optimization we use three different angles, thus we have 6N measurement data. 
For the Tikhonov multi-thickness optimization we have used 4N data, such as Ism and Icm for both 103.1 nm and 77.3 nm. 
Those two curves (multi-angle and multi-thickness) are quite close to each other.  No local  minima on n and k are 
detected compared to the single angle regularization (Tikhonov or Library search). The over determination strategy of 
using additional input appears to be more robust (see Figures  1 and 2).  The library search is quite close to the multi-
angle and multi-thickness Tikhonov regularization but does not always give smooth parameter variation  (see Figure 2). 
For the 103.1 nm thick film, the library search is quite close to multi-angle and multi-thickness regularization. This is not 
exactly the case for 77.3 nm where the regularization does not fully prevent from being attracted by the local minima at 
4.2eV. Tikhonov regularization for single-angle and single-thickness behaves in a very similar way than the library 
search but the main difference is that the final results of the Tikhonov regularization will be dependent of the initial 
conditions and this issue has to be handled with great care. One advantage and not the least of the library research is that 
no initial conditions are needed. But it is clearly not as robust as multi-angle and multi-thickness regularization (see 
Figure  2b). To conclude, the best values of the optical index of thin resist films are obtained with the multi-angle or 
multi-thickness Tikhonov regularization.

5. CONCLUSION

The problem we have studied in this paper is well known in the literature of non-linear inverse problems. Different 
techniques have been proposed and tested by different authors. Due to the nature of ill-posed problems, many difficulties 
arise during the optimization stage. Moreover, the problem we tackle with concerns thin film characterization, which 
means that the measurements are nanometric and can be very noisy. We thus propose different methods to solve this 
issue, where the unknowns are the thickness, the refractive index and the coefficient of extinction of thin films deposited 
on a Silicon substrate. 
The first method we use is a classical local optimization routine which aims at minimizing the errors between measured 
data and theoretically computed values. Due to the lack of a regularization component, the parameter values obtained can 
be noisy with this technique. As a second method, we use in addition to the first one a smoothing technique: Tikhonov 
regularization. Cross validation is used to choose the best value of the regularization coefficient, which role is to smooth 
out the parameter curves. To be more accurate, we also increased the number of independent measurements using multi-
angle and multi-thickness measurements. We tested this strategy using also Tikhonov regularization. As a third method 
the library search is used, which consists in choosing the parameters which fit the best to the measured data. The search 
is made in a dense library of theoretically pre-computed Is and Ic curves.
We tested all these methods for different materials of different thicknesses. We found out that the multi-angle and multi-
thickness Tikhonov regularization seem more realistic, more robust, include less noise and both are very close to each 
other  for  the  same  material.  The  first  method  of  local  optimization  can  give  noisy  curves  due  to  the  lack  of  a 
regularization  component.  The  library  search  can  be  quite  close  to  the  multi-angle  and  multi-thickness  Tikhonov 
regularization for some tests but some unsmoothed parts remain in the curves. This method is still under development. 
One of its major advantages is to provide a "visual" access to the cost function therefore being able to spot the potential 
local minima. Increasing the number of input data is a very efficient way to improve the robustness of the optimization. 
We can conclude that the use of multi-angle and multi-thickness Tikhonov regularization results in more accurate and 
robust results. However for the large data sets, the cross-validation used to find the best regularization level for the 
Tikhonov approach can be very time consuming. In this case the library search seems to be quite efficient for its speed 
and its quality of resulting curves. However, like in every optimization process, the "correct" result is not known and 
only a careful analysis of the results and robustness tests can provide a better confidence in the output results.



REFERENCES

[1] Tompkins, H. and Irene, E. (Ed.), [Handbook of ellipsometry], William Andrew Publisher, (2005).
[2] Tarantola, A., [Inverse problem theory and methods for model parameter estimation], SIAM Publisher, (2005).
[3] Haber, E., "Numerical strategies for the solution of inverse problems", Ph.D. dissertation The University of British 
Columbia, (1997).
[4] Hansen, C., [Rank-Deficient and Discrete Ill-Posed Problems], SIAM Publisher, (1998).
[5] Busby, H. and Trujillo, D., "Optimal regularization of an inverse dynamics problem", Computers & Structures 63(2), 
243-248 (1997).
[6] Krawczyk-Stando, D. and Rudnicki, M., "Regularization parameter selection in discrete ill-posed problems -- The 
use of the U-Curve", International Journal of Applied Mathematics and Computer Science 17(2), 157-164 (2007).
[7] Bobro, V., Mardezhov, A. and Semenenko, A., "On the solution of incorrect inverse ellipsometric problem", Proc. 
SPIE 3485, 354-358 (1998).
[8] Rosa, R., "The inverse problem of ellipsometry: a bootstrap approach", Inverse Problems 4, 887-900 (1988).
[9] Tonova, D. and Konova, A., "Characterization of inhomogeneous dielectric coatings with arbitrary refractive index 
profiles by multiple angle of incidence ellipsometry", Thin Solid Films 397, 17-23 (2001).
[10] Kone, I., "Caractérisation optique de matériaux et métrologie optique d'objets nanométriques par la résolution d'un 
problème inverse", Master Dissertation Université Joseph Fourier, Grenoble, (2006).
[11] Coleman, T. F. and Li, Y., "On the convergence of interior-reflective Newton methods for nonlinear minimization 
subject to bounds", Mathematical Programming 67(1), 189-224 (1994).
[12] Coleman, T. F. and Li, Y., "An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds", 
SIAM Journal on Optimization 6(2), 418-445 (1996).
[13] Tikhonov, A. and Arsenine, V., [Solution of Ill-posed Problems], Winston and Sons Publisher, (1977).
[14] Soulan, S., Besacier, M., Leveder, T. and Schiavone, P., "Real-time profile shape reconstruction using dynamic 
scatterometry", Proc. SPIE 6518(1), 65180W (2007).
[15] Soulan, S., "Développement des techniques de scatterométrie pour le suivi de procédés de gravure plasma", Ph.D. 
Dissertation Université Joseph Fourier, Grenoble, (2008).


	1. INTRODUCTION
	2. PROBLEM DESCRIPTION
	3. DESCRIPTION OF THE METHODS
	3.1 Optimization without regularization
	3.2 Tikhonov regularization
	3.3 Library Search

	4. EXPERIMENTAL RESULTS
	5. CONCLUSION

