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Abstract: This paper presents an implementation of an extension of the ACSL
specification language in the Frama-C tool in order to prove the correctness of
floating-point C programs. This implementation is essentially based on the two
Why models of floating-point arithmetic of [5]: the first model supposes that
there is no overflow during the program execution and is called the Real model,
i.e., the floating-point numbers are supposed to be reals and the floating-point
operations are done with infinite precision. The second model checks that there
is no overflow, i.e., proof obligations are generated by the Why tool to prove
that the result of a floating-point operation is not greater than the maximal
float allowed in the given type, this model is called the Strict model. In this
paper, we describe a third model, called the Full model, which extends the Strict
model. The Full model allows overflows and deals with special values: signed
infinities, NaNs (Not-a-Number) and signed zeros as in the IEEE-754 Standard
(see [2, 9]). The verification conditions generated by Why are (partially) proved
by automatic theorem provers: Alt-Ergo, Simplify, Yices, Z3, CVC3 and Gappa
or discharged in the interactive proof assistant Coq [20] using two existing Coq
formalization of floating-point arithmetic: the first one from [12] and the second
is the Gappa library [16]. When the Why proof obligations are written in the
syntax of the Gappa library, we can use the gappa [3] and interval [15] tactics to
achieve the proof. Several examples of floating-point C programs are presented
in the paper to prove the efficiently of this implementation.

Key-words: static analysis of programs, formal methods, deductive verifi-
cation, automatic theorem provers, interactive proof assistants, floating-point
arithmetic, IEEE-754 standard
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Sur les méthodes formelles de certification de

programmes C flottants

Résumé : Ce papier présente une implémentation d’une extension du langage
de spécification ACSL dans l’outil Frama-C dans le but de prouver la certitude
de programmes C flottants. Cette implémentation est essentiellement basée
sur les deux modèles Why de l’arithmétique flottante de [5]: le premier modèle
suppose qu’il n’y a pas de dépassement de mémoire (overflow) durant l’exécution
du programme et est appelé le modèle Real, i.e., les nombres flottants sont
supposés de réels et les opérations flottantes sont faites avec une précision infinie.
Le deuxième modèle vérifie qu’il n’y a pas d’overflows, i.e., des obligations de
preuve sont générées par l’outil Why pour prouver que le résultat de l’opération
flottante n’est pas plus grand que le flottant maximal du format de destination,
ce modèle est appelé le modèle Strict. Dans ce papier, on décrit un troisième
modèle, appelé le modèle Full, qui étend le modèle Strict. Le modèle Full
permet d’avoir d’overflows et traite de valeurs spéciales: infinis signés, NaNs
(Not-a-Number) et zéros signés comme dans la norme IEEE-754 (voir [2, 9]).
Les conditions de vérification générées par Why sont (partiellement) prouvées
par de prouveurs automatiques: Alt-Ergo, Simplify, Yices, Z3, CVC3 et Gappa
ou par l’assistant de preuve Coq [20] en utilisant deux formalisations existantes
de l’arithmétique flottante dans Coq: la première vient de l’article [12] et la
deuxième est la bibliothèque Gappa [16]. Quand les obligations de preuve de
Why sont écrites dans les syntaxes de la bibliothèque Gappa, on pourrait utiliser
les deux tactiques Coq gappa [3] et interval [15] pour finir la preuve. Plusieurs
exemples de programmes C flottants sont présentés dans ce papier pour prouver
l’efficacité de cette implémentation.

Mots-clés : analyse statique de programmes, méthodes formelles, vérification
déductive, prouveurs automatiques de théorèmes, assistants de preuve interac-
tifs, arithmétique flottante, norme IEEE-754
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1 Introduction

Many critical problems such as numerical analysis, physics, aeronautics (soft-
ware embedded in satellites, robots), energy (nuclear centers), automotive, etc.
deal with floating-point computations. As we rely more and more on softwares,
the consequences of a bug are more and more dramatic, causing great finan-
cial and even human losses. We cite two historical accidents caused by bugs in
softwares, the first one is the overflow bug that caused the failure of the Ariane
5 launcher in 1996: a double precision number which represents the horizontal
speed of the launcher was converted into a 16 precision format, this speed was
greater than the largest integer representable in 16 bits, the conversion failed
without triggering an exception. The second one is the cumulated imprecision
errors in a Patriot missile defense that caused it to miss its Scud missile target,
resulting in 28 people being killed and around 100 injured in 1992 : the error
was an inaccuracy in computing the date of the Patriot anti-missile. Thus for
these reasons, one needs good tools to ensure the proper functioning of critical
softwares.

There are many techniques to ensure that a program runs well every time we
give it new input values and does not create errors at run-time such as division
by zero and out-of-bound memory access. One can try to test all possible values
of the input variables and verify that they have the correct outputs by the pro-
gram. This can be done if the number of these tests is small and their running
time is reasonable. Dynamic analysis performs tests to study important be-
haviors of the program. Dynamic analysers try to automatically generate path
tests for programs and to extract properties that are true over all executions of
the program. However, static analyse performs verification of programs without
executing them by applying mathematical techniques such as first order logic
and abstract interpretation.

The aim of this paper is to apply mathematical formal methods and theo-
rem provers to static analysis of programs that handle floating-point arithmetic.

We are interested in certifying imperative programs, especially C programs.
We will be able to prove the correctness of such a program, i.e., to ensure
that the program is free of threats (null pointer dereferencing or out-of-bounds
array access, etc ...) and to check that there is no overflow, never NaNs (Not-a-
Number) when dealing with floating-point programs. Additionaly, one can prove
some functional properties introduced manually as annotations in the source
code. The general strategy is based on a classical Hoare logic framework [10]
and follows the following steps:

Formal specification We annotate the program according to the properties
we would to preserve after execution, i.e., preconditions, postconditions, (global,
loop) invariants, termination, etc ... that determine the memory state of the
imput and the output variables of the program. These annotations are generaly
written in a programming language inspired from ML language. In this paper we
use the ACSL language (ANSI C Specification Language [4]) which is partially
implemented in the Frama-C verification tool [1].

RR n➦ 6927



4 Ali Ayad

Generation of verification conditions (i.e., logical formulas of first order
that we should prove their validity). Different verification tools are intended to
generate verification conditions from annotated C programs, e.g., the Why plat-
form [6, 8] and its verification tool Caduceus [7] for C programs. In this paper,
we will apply the Frama-C tool to an annotated C program which transforms
it to an annotated program written in the Jessie language (an intermediate
language for the verification of Java and C programs [13]). The Jessie plugin
(see e.g., [18, 17] produces then the associated annotated Why file (with the
syntaxes of the Why language). Finally, the Why platform generates the ver-
ification conditions that reflect the behavior of the C program specified by its
annotations. All these transformations preserve the semantics of the annotated
program. Note that Why does not interprete the annotations: they are built
from functions and predicates axiomatization or defined in models that can be
specific to each prover.

Formal verification These verification conditions are sent to a proof assis-
tant in order to prove them. There are two kind of proof assistants: automated
theorem provers such as Simplify, Alt-Ergo, haRVey, Yices, Gappa, etc ... and
interactive proof assistants such as Coq, PVS, Isabelle/HOL, etc ...

This paper is organized as follows. Section 2 gives an overview of the floating-
point arithmetic in the IEEE-754 standard [2]. In section 3, we describe the
Frama-C compilation chain, i.e., the ACSL, Jessie and Why languages. Sec-
tion 4 presents an improved version of the Strict model of [5] and a complete
description of the Full Why model. A Coq formalization of these two models
with an illustration of their efficiency on some examples are described also in
Section 4. We terminate the paper by a conclusion with some perspectives
in Section 5. Different tools and libraries are necessary to run correctly our
examples, they are cited in a technical appendix.

INRIA
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2 Binary floating-point arithmetic

2.1 Binary floating-point representation

A binary floating-point number is a real number x represented by

x = (−1)s × m × 2e

where s = 0 or s = 1 (to determine the sign of x), m ∈ N is the significand and
e ∈ Z is the exponent of x.

Definition 1 A binary format f is a tuple (p, emin, emax) where p is a positive
integer called the precision of f and emin and emax are two integers which define
a range of exponents for f .

Definition 2 A binary floating-point number x = (−1)s × m × 2e is repre-
sentable in a binary format f = (p, emin, emax) if m and e verify the following
inequalities :

0 ≤ m < 2p and emin ≤ e ≤ emax.

Of course, there is a finite number of binary floating-points representable in a
given binary format f , i.e., f defines a finite subset of R. The representation of
a binary floating number x in f is not unique. For example, for f = (3,−5, 6),
x = 6 × 20 = 3 × 2 has two different binary representations in f . In gen-
eral, real numbers with denominator not a power of 2 are not representable in
any binary formats, they are approximated by a representable binary floating-
point number w.r.t. a certain rounding direction (see below). For example, for
f = (24,−149,+104), 0.1 is approximated by the binary floating-point number
13421773 × 2−27 which is representable in the format f .

2.2 The IEEE-754 standard

The standard IEEE-754-2008 [2] defines methods to perform binary and decimal
floating-point arithmetic. It facilitates the portability of programs between com-
puters which support the standard i.e., programs will product the same results of
numerical computations on different architectures that implement the standard.
The standard specifies binary and decimal formats to represent floating-point
numbers with the operations of conversion between these formats. It speci-
fies the elementary operations (addition, subtraction, multiplication, division,
square root, Fused-Multiply-Add, remainder, etc ...) and the comparison op-
erators on floating-point numbers. It specifies conversion operators between
different formats and between integers and floating-point numbers. It handles
floating-point exceptions, including data that are not numbers (NaNs).

2.2.1 Formats

The standard has introduced three basic binary formats: binary32 (Single),
binary64 (Double) and binary128 (Quad) which are defined with the above
notations by:

❼ binary32 = (24, -149, +104)

❼ binary64 = (53, -1074, +971)

RR n➦ 6927
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❼ binary128 = (113, -16494, +16271)

For example, a real number representable in binary32 is encoded by a string
of bits of length 32 (1 bit for the sign, 23 bits to represent the significand and
8 bits for the exponent).
The standard defines also two decimal formats decimal64 and decimal128,
extended and extendable binary and decimal formats.

2.2.2 Normal and denormal binary floating-point numbers

Let f = (p, emin, emax) be a binary format and x = (−1)s ×m× 2e be a binary
floating-point number which is representable in f . In this subsection, we define
normal, denormal and canonic binary floating-point numbers as follows:

Definition 3 The binary floating number x is said to be normalized in the
format f if 2 × m ≥ 2p, this is equivalent to that the leading bit in the binary
representation of the significand m is nonzero, i.e., m is represented by exactly
p bits.

Definition 4 The binary floating number x is said to be denormalized in the
format f if the exponent e of x is minimal and 2×m < 2p, this is equivalent to
that e = emin and the leading bit in the binary representation of the significand
m is zero, i.e, m is represented by fewer than p bits.

Definition 5 The binary floating number x is said to be canonic in the format
f if it is normal or denormal in f .

The smallest positive normalized floating-point number in the format f is 2emin+p−1

and the largest is 2emax(2p − 1). The smallest positive denormalized floating
number in the format f is 2emin . In the standard, zero is neither normalized
nor denormalized and there are distinct representations for +0 and −0 for all
formats but +0 = −0.

2.2.3 Rounding direction and basic operations

The standard requires that every floating-point operation shall be performed as
if it first produced an intermediate result correct to infinite precision and with
unbounded range of exponent, and then rounded that result according to the
correspond rounding direction. Rounding a real number x (i.e., a result of an
operation with infinite precision) modifies it to fit in the destination’s format f
of the operation. The standard has defined five rounding directions as follows:
one can always find two representable floating-point numbers x1 and x2 in the
format f such that x1 ≤ x ≤ x2 (if x is representable in f then x1 = x2 = x).

1. roundTiesToEven (nearest_to_even): the rounding of x w.r.t. this
direction is the nearest floating-point number to x among x1 and x2. If x
is in the middle of the interval [x1, x2] then one chooses whose significand
is even.

2. roundTowardPositive (up): the rounding of x is x2.

3. roundTowardNegative (down): it is the opposite of roundToward-

Positive, i.e., the rounding of x is x1.

INRIA
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4. roundTowardZero (to_zero): the rounding of x w.r.t. this direction is
x1 if x > 0 and x2 if x < 0.

5. roundTiesToAway (nearest_away): the rounding of x is the closest to
x among x1 and x2. If x is exactly the middle of the interval [x1, x2] then
the rounding is x2 if x > 0 and x1 if x < 0.

If the infinitely precise sum (or minus) of two floating-point numbers is zero, then
the result is −0 if the rounding direction is roundTowardNegative and +0
otherwise. The standard classified floating-point operations in two categories:

❼ Homogeneous operation: the operands and the result have the same
format in the same base.

❼ Non-homogeneous operation: the operands and the result have dif-
ferent formats in the same base.

2.2.4 Special values and exceptions

The standard defined three special values: −∞,+∞ and NaN (Not-a-Number).
These numbers should be treated both in the input and the output of the arith-
metic operations as usually. For example, (+∞) + (+∞) = (+∞), 1/(+∞) =
+0, 1/(−0) = −∞, (+0)/(+0) = NaN , (−0)×(+∞) = NaN and

√
−1 = NaN

but
√
−0 = −0. Operations propagate NaN operands to their results, then NaNs

are not rounded. In addition, the standard handles five exceptions:

Invalid operation exception It holds when the operation is not defined on
the operands. For example, the square root of negative numbers and the division
of two zeros. The result of an invalid operation is NaN.

Inexact operation exception It holds when the result of the operation is
not representable in the destination’s format. This result must be rounded.

Division by zero exception It happens in the case of division of a nonzero
and non NaN number by zero. The result of this division is infinity with sign
the product of the signs of the operands.

Overflow Overflow is said to occur when the exact result (i.e., when the ex-
ponent range unbounded) of a floating-point operation is finite but with an ab-
solute value that is larger than the maximal floating-point number represented
in the destination’s format. As with division by zero, in the days before IEEE
arithmetic was available the usual treatment of overflow was to set the result to
(±) the largest floating-point number in the destination’s format or to interrupt
or terminate the program. The IEEE-754 standard response to overflow is to de-
liver the correctly rounded result, either (±) the maximal floating-point number
or ±∞. The result of an overflow operation depends on the rounding direction
and the sign of the intermediate result as follows: in the case of roundTiesTo-

Even and roundTiesToAway, this is the same as saying that overflow occurs
when an exact finite result is rounded to ±∞ according to the sign of the result,
but it is not the same for the other rounding modes. If the rounding direction
is roundTowardPositive, the result is +∞ (if it is positive) or the opposite

RR n➦ 6927
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of the largest normalized floating-point number of the destination’s format (if it
is negative). For roundTowardNegative, the result is the largest normalized
floating-point number of the destination’s format (if it is positive) or −∞ (if
it is negative). roundTowardZero is analogue to roundTowardNegative if
the result is positive and to roundTowardPositive if the result is negative.

Underflow Underflow is said to occur when the exact result of an operation
is nonzero but with an absolute value that is smaller than the smallest nor-
malized floating-point number represented in the destination’s format. In the
days before IEEE arithmetic, the response to underflow was typically, though
not always, flush to zero, i.e., return the result 0. The IEEE-754 standard
response to underflow is to return the correctly rounded value, which may be a
denormal number, ±0 or (±) the minimal denormal number. This is known as
gradual underflow.

2.3 Rounding errors

One of the major problems encountered in floating-point computations is the
propagation of rounding errors. Because of the fact that not all floating-point
operations are exacts, the final result of a chain of floating-point instructions
can be very far from the exact result (i.e., the expected result if the computation
is done on real numbers). There are three concepts of measurement to bound
the errors in operations: the absolute error, the relative error and the
ulp error (unit in the last place). If x = (−1)s×m×2e is the result of a floating-
point operation rounded in the destination’s binary format f = (p, emin, emax)
of the operation w.r.t. a certain rounding direction.

❼ The absolute error of x is the distance between x and the exact result
of the operation (i.e., without rounding).

❼ The relative error ǫ of x is the division of the absolute error by the
exact result y of the operation, i.e., x = (1 + ǫ)y. One can bound this
error by |ǫ| ≤ 2−p if the rounding direction is roundTiesToEven and by
|ǫ| ≤ 21−p otherwise.

❼ ulp(x) is the weight of the last bit in the significand m of x, i.e., ulp(x) =
2p. For a real r, ulp(r) = 2⌊log2|r|⌋+1−p.

INRIA
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3 The intermediate languages in the Frama-C

chain

3.1 The ACSL language

ACSL is a specification language of C programs. It is inspired from the specifi-
cation language of the Caduceus tool and the Java Modeling Language (JML).
A part of ACSL is implemented in the Frama-C framework, another part is un-
der experimentation. In this paper, we extend the syntaxes of ACSL to handle
floating-point computations. Annotations in C programs are written in com-
ments that start by /*@ or //@ and end as in C comments. In the sequel, we
show only a brief overview of the ACSL language, people interested in details
can return to the tutorial [19] or the reference manual [4].

3.1.1 Types in ACSL

❼ The types integer, real and boolean represent respectively mathemat-
ical integers, real numbers and booleans (with just two values \true and
\false).

❼ Users can introduce new logic types in ACSL.

❼ C integral types char, short, int and long, signed or unsigned, are all
subtypes of the type integer which is itself a subtype of the real type.

3.1.2 Annotations of C functions

There are built-in constructs that evaluate the pre-state and the post-state of
a C function. The keywords \old(e) and \result are reserved in ACSL to
denote the value of the expression e before the execution of the function and
the value returned by the function respectively. Simple contracts are written
immediately before the function field.

❼ For a set P of predicates, the contract requires P; means that the pred-
icates of P are satisfied by the input variables of the function.

❼ For a set L of memory locations, the contract assigns L; enforces that
no memory locations outside L can be modified. It does not enforce mod-
ifications of locations in L.

❼ For a set Q of predicates, the contract ensures Q; asserts that the pred-
icates of Q hold on the output variables of the function.

3.1.3 Annotations of C loops

They are written immediately before the C loops for, while, etc ...

❼ For a set I of inductive predicates, the contract loop invariant I;

means that the predicates of I are satisfied at every loop iteration.

❼ For a set L of memory locations, the contract loop assigns L; has the
same meaning as assigns L; for every loop iteration.

RR n➦ 6927
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❼ For an integer expression e, the contract loop variant e; ensures that
the loop terminates after a finite number of steps if e decreases during the
loop iterations

3.1.4 Global properties

❼ Global invariants: for a set P of predicates, the contract global invariant P;

means that the predicates of P are always true on global variables of the
program.

❼ Type invariants: for a type τ and a set P of predicates defined over τ , the
contract type invariant P; means that the predicates of P are satisfied
by any variable of type τ .

❼ Logic specifications: users of ACSL are able to introduce new logic types,
logic definitions, functions, predicates and axioms.

3.2 The Jessie intermediate language

Jessie language is an intermediate language presented in [13]. It provides prim-
itive types such as integers, booleans, reals, etc ... and abstract datatypes.
Jessie has not a notion of arrays, structures, pointers and memory heap. Jessie
programs can be annotated using pre- and postconditions, loop invariants and
intermediate assertions. Logical formulas are written in a typed first-order logic
with built-in equality, booleans, infinite precision integers and real numbers with
usual operations. We have extended this language by intoducing two new types,
float and double as in C programs to deal with floating-point computations.
Ordinary operations and comparison over float and double variables are de-
fined. We have introduced rounding modes and casting operators to Jessie.
Special predicates are devoted to test if a float or double variable is finite,
NaN or infinity.

3.3 The Why language

The platform Why aims at being a verification conditions generator (VCG)
back-end for other verification tools. It provides a powerful input language
including higher-order functions, polymorphism, references, arrays and excep-
tions.

The Why language is inspired from the Ocaml [11] language for function-
nal programs. So there is no distinction between instructions and expressions.
Special keywords are reserved in Why, for example, result denotes the value
returned by a function and is used only in the postcondition. Programs in Why
language can be annotated by preconditions, assertions, postconditions, loop
invariant and loop variant to ensure the termination. The language contains
basic built-in types: bool, unit, int and real. The expressions in Why are
formed by:

❼ The integer, boolean constants.

❼ The variables and the function call f e_1 ... e_n.

INRIA
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❼ The basic unary and binary operations.

❼ The local definition let x = e_1 in e_2 and the sequence of instructions
let _ = e_1 in e_2.

❼ The local reference let x = ref e_1 in e_2.

❼ The dereferenciation !x, the assigment x := e.

❼ The conditionnal if e_1 then e_2 else e_3.

❼ The loop while e_1 do e_2 done.

❼ The function declaration fun (x_1 : t_1) ... (x_n : t_n) -> e.

❼ The recursive function let rec f (x_1 : t_1,...,x_n : t_n) in e.

The Why tool implements this programming language. It takes annotated
programs as input and generates proof obligations for a wide set of interactive
proof assistants (Coq, PVS, Isabelle/HOL, HOL 4, HOL-Light, Mizar) and de-
cision procedures (Simplify, Ergo, Yices, CVC Lite, CVC3, haRVey, Zenon). It
can verify algorithms rather than programs, since it implements a rather ab-
stract and idealistic programming language. Several non-trivial algorithms have
already been verified using the Why tool, such as the Knuth-Morris-Pratt string
searching algorithm for instance. It computes Dijkstra’s weakest preconditions
in the Floyd-Hoare logic. The Why tool can be used to write axiomatizations
and goals and to dispatch them to several existing provers. It is independent
of the back-end prover that will be used, it makes no assumption regarding the
logic used. It uses a syntax of polymorphic first-order predicate logic for anno-
tations with no particular interpretation. Function symbols and predicates can
be declared in order to be used in annotations, together with axioms, and they
may be given definitions on the prover side later, if needed.
For more details on the Why language and tool, you can refer to the reference
manual [6, 8]. The extension to handle floating-point programs is given in the
next section.
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4 Why models for floating-point C programs

In this section, we describe an improved version of the Strict Why model of [5]
where any operation on floating-point numbers produces a proof obligation to
ensure that there is no overflow. We introduce also the Full Why model, i.e.,
the complete model which implements the IEEE-754 standard, e.g., infinities,
signed zeros and NaNs are supposed to be special values in the program. We
give an implementation of these two models in the Coq proof assistant with the
syntax of the Gappa librabry. Some examples will be treated at the end of this
section.

4.1 The Strict model

This model is based on the Why theory and written in the syntaxe of the Why
language. In [5], a floating-point value is viewed as three parts:

1. the floating-point number of the given type, as computed by the program;

2. a real number, which would be the value if all previous computations were
performed on real numbers and thus exact;

3. another real number, which is the value which should be ideally computed.

We define new types, constants, functions and predicates to be able to write an-
notated floating-point Why programs. The complete description of this model
can be found in the next Why distribution in the file lib/why/floats_strict.why.

In the logic:

❼ An abstract type gen_float for generic floats.

❼ A type float_format with three elements: Single, Double and Quad.

❼ A type mode for the five rounding modes of the revision of the IEEE-
754 standard: nearest_even, to_zero, up, down, nearest_away as
described in Section 2.

❼ Functions float_value, exact_value, model_value to access respec-
tively to the floating-point, the exact and the model part of variables of
type gen_float.

❼ A rounding operator gen_float_of_real_logic which rounds a real to
a gen_float according to a certain float format and rounding direction.

❼ A function round_float which is the rounding operator of reals with
unbounded range of exponents.

❼ A function max_gen_float which is the maximal real representable num-
ber for each float_format. Its values are axiomatized by (constants are
written in hexadecimal format):
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axiom max single: max gen float(Single) = 0x1.FFFFFEp127

axiom max double: max gen float(Double) =

0x1.FFFFFFFFFFFFFp1023

axiom max quad: max gen float(Quad) =

0x1.FFFFFFFFFFFFFFFFFFFFFFFFFFFFp16383

❼ A predicate no_overflow which indicates that there is no overflow when
the result of an operation is computed with infinite precision and un-
bounded range of exponents. It is defined by

predicate no overflow(f:float format, m:mode, x:real) =

abs real(round float(f,m,x)) <= max gen float(f)

❼ Functions to handle rounding errors: gen_round_error for the absolute
error, gen_relative_error for the relative error and gen_total_error

for the total error. They are defined by

function gen round error(x:gen float) : real =

abs real(float value(x) − exact value(x))

function gen relative error(x:gen float) : real =

abs real(float value(x) − exact value(x))/exact value(x)

function gen total error(x:gen float) : real =

abs real(float value(x) − model value(x))

In the program:

❼ A rounding operator gen_float_of_real which rounds a real to a gen_float
according to a certain float format and rounding direction.

❼ Basic binary and unary operations: add_gen_float, sub_gen_float, mul_gen_float,
div_gen_float, sqrt_gen_float, neg_gen_float, abs_gen_float on
the gen_float type.

❼ Basic operators for comparison: lt_gen_float,gt_gen_float, etc ...

❼ A casting operator cast_gen_float between float formats according to
rounding directions.

In this model, pre- and postconditions are written for each basic operation of
the program. These conditions product proof obligations for testing that there
is no overflow at run-time. For example, multiplication is specialized by:

parameter mul gen float :

f:float format −> m:mode −> x:gen float −> y:gen float −>
{ no overflow(f,m,float value(x) * float value(y)) }
gen float

{ float value(result) =

round float(f,m,float value(x) * float value(y))

and

exact value(result) = exact value(x) * exact value(y)
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and

model value(result) = model value(x) * model value(y)

}

In some particular functions, like division and square root, this gives condi-
tions on their parameters. For example, div_gen_float is parametrized by:

parameter div gen float : f:float format −> m:mode −>
x:gen float −> y:gen float −>
{ float value(y) <> 0.0

and

no overflow(f,m,float value(x)/float value(y))

}
gen float

{ float value(result) =

round float(f,m,float value(x)/float value(y))

and

exact value(result) = exact value(x)/exact value(y)

and

model value(result) = model value(x)/model value(y)

}

Comparisons between two gen_float variables x and y is equivalent to the
comparison of their associated float values with the mathematical sense. For
example, lt_gen_float is specialized by:

parameter lt gen float: x:gen float −> y:gen float −>
{}
bool

{ if result then float value(x) < float value(y)

else float value(x) >= float value(y)

}

The rounding and the cast operators are specified by:

parameter gen float of real :

f:float format −> m:mode −> x:real −>
{ no overflow(f,m,x) }
gen float

{ float value(result) = round float(f,m,x)

and

exact value(result) = x

and

model value(result) = x

}

parameter cast gen float :

f:float format −> m:mode −> x:gen float −>
{ no overflow(f,m,float value(x)) }
gen float
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{ float value(result) = round float(f,m,float value(x))

and

exact value(result) = exact value(x)

and

model value(result) = model value(x)

}

4.1.1 Floating-point arithmetic in ACSL with the Strict model

All the above definitions are passed to the ACSL language to be able to write
annotated C programs. They are defined as follows:

❼ Constants: floating-point constants are interpreted as mathematical real
numbers in the specifications, they can be written in decimal or in hex-
adecimal format. Integers are also seen as mathematical real numbers
if necessary. Variables of type float or double in the C program are
implicitly converted to the real type when used in the annotations.

❼ Casts: a built-in logic type is defined by the five rounding_mode of the
IEEE-754 standard: \NearestEven, \ToZero, \Up, \Down, \NearestAway.
Casting from a C integer type or a float type to a float or a double

is as in C. Conversion of real numbers to float or double values is given
by the following two logic functions:

logic float \round float(rounding mode m, real x);

logic double \round double(rounding mode m, real x);

Cast operators (float) and (double) applied to a mathematical integer or
real number x are equivalent to apply the above rounding functions with
the \NearestEven rounding_mode (which is the default rounding mode
in C programs). Suffixes f and l are meaningful, because they implicitly
add a cast operator as above.

❼ Floating-point operations: in the Strict model, the sum (resp. minus,
product and division) of two C floating-point variables x and y is equiv-
alent to the sum (resp. minus, product and division) of their associated
real numbers with the mathematical sense.

❼ A special predicate to verify if there is an overflow in floating-point oper-
ations is declared by:

predicate \no overflow(f:float format,rounding mode m,real x);

where float_format is a built-in logic type with three elements: \Single,
\Double and \Quad.

❼ Rounding errors: according to the Strict model, a floating-point expression
e is represented by three parts: the floating-point part, i.e, the value
computed by the program, the exact part which is a real value accessed by
the construct \exact(e) and the model part, a real value accessed by the
constructs \model(e). The rounding errors are computed by the construct
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\round_error(e) which is the difference between the floating-point part
and the exact part of e, the construct \total_error(e) which is the
difference between the floating-point part and the model part of e and the
construct \relative_error(e) which is the quotient of \round_error(e)
by \exact(e).

4.1.2 A coq formalization of the Strict model

After the specification of the Strict model in the Why syntaxes, the Why tool can
now generate verification conditions for programs according to specific annota-
tions. The automatic and interactive provers supported by the Why platform
are not until now able to prove these properties. One has to translate our model
to them with their syntaxes. We have choose to formalize our models in the Coq
proof assistant by using an existing implementation of floating-point arithmetic,
the Gappa library [16]. Why translates automaticaly definitions and predicates
from its language to that of Coq.

The gen_float type is defined to be the type float2 of the Gappa library,
i.e., the set of couples of integers. The floating-point value is then given by

Definition float value x := float2R x.

The round_float operator for rounding reals to floating-point numbers is
defined using the functions gappa_rounding and rounding_float as follows:

Definition round float (f : float format) (m : mode) (x:R) :=

match f with

| Single =>

gappa rounding (rounding float (round mode m) 24 149) x

| Double =>

gappa rounding (rounding float (round mode m) 53 1074) x

end.

where R is the type of reals in Coq and round_mode is a kind of translate function
to the rounding modes of Gappa.

4.2 The Full model

The Full model allows overflows, NaNs, infinities and signed zeros. In this
model, a floating-point number is still viewed with three parts: the real, exact
and model parts. The complete description of this model can be found in the
next Why distribution in the file lib/why/floats_full.why.

In the logic: We keep the same types (gen_float, float_format, mode) and
functions (float_value, exact_value, mode_value) as in the Strict model.

In addition, we introduce two new types: the type Float_class with three
elements Finite, Infinite and NaN and the type sign with two elments Negative
and Positive. Two additional functions float_class and float_sign are nec-
essary to indicate respectively the class and the sign of a gen_float. Special
predicates are defined to test if a gen_float variable is finite, NaN, infinities
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or signed zero: is_finite, is_NaN, is_plus_infinity, is_minus_infinity,
is_gen_zero, is_gen_zero_plus and is_gen_zero_minus. They are naturally
defined by:

predicate is finite(x:gen float) =

float class(x) = Finite

predicate is infinite(x:gen float) =

float class(x) = Infinite

predicate is NaN(x:gen float) =

float class(x) = NaN

predicate is minus infinity(x:gen float) =

is infinite(x) and float sign(x) = Negative

predicate is plus infinity(x:gen float) =

is infinite(x) and float sign(x) = Positive

predicate is gen zero(x:gen float)=

is finite(x) and float value(x) = 0.0

predicate is gen zero plus(x:gen float) =

is gen zero(x) and float sign(x) = Positive

predicate is gen zero minus(x:gen float) =

is gen zero(x) and float sign(x) = Negative

Comparison between two gen_float numbers is given by the predicates
float_le_float, float_lt_float, float_eq_float and float_ne_float:

predicate float le float(x:gen float,y:gen float) =

(is finite(x) and is finite(y)

and float value(x) <= float value(y))

or (is minus infinity(x) and not is NaN(y))

or (not is NaN(x) and is plus infinity(y))

predicate float lt float(x:gen float,y:gen float) =

(is finite(x) and is finite(y)

and float value(x) < float value(y))

or (is minus infinity(x) and not is NaN(y)

and not is minus infinity(y))

or (not is NaN(x) and not is plus infinity(x)

and is plus infinity(y))

predicate float eq float(x:gen float,y:gen float) =

not is NaN(x) and not is NaN(y) and

((is finite(x) and is finite(y)

and float value(x) = float value(y))

or

(is infinite(x) and is infinite(y) and same sign(x,y)))

predicate float ne float(x:gen float,y:gen float) =

not float eq float(x,y)

where same_sign is defined by:

predicate same sign(x:gen float,y:gen float) =

float sign(x) = float sign(y)
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In the program: In the full model there are no preconditions on the unary
and binary operations. If the result of a floating-point operation is finite and
nonzero, the axiom finite_sign ensures that the sign of this result is the same
as that of its floating value (using a predicate same_sign_real):

axiom finite sign : forall x:gen float.

(is finite(x) and float value(x) <> 0.0) −>
same sign real(x,float value(x))

and if the result is zero and the operation is an addition or a subtraction, the
predicate sign_zero_resut indicates the sign of the result according to the
rounding direction as it is specified in the IEEE-745 standard:

predicate sign zero result(m:mode,x:gen float) =

float value(x) = 0.0 −>
((m = down −> float sign(x) = Negative)

and

(m <> down −> float sign(x) = Positive))

If the result is greater than the maximal floating-point number representable in
the destination’s format, its class depends on its sign and the current rounding
direction as described in Section 2 (paragraph on overflows). This is given by
the predicate overflow_value which is defined by:

predicate overflow value(f:float format,m:mode,x:gen float) =

(m = down −>
(float sign(x) = Negative −> is infinite(x)) and

(float sign(x) = Positive −> is finite(x) and

float value(x) = max gen float(f)))

and

(m = up −>
(float sign(x) = Negative −> is finite(x) and

float value(x) = − max gen float(f)) and

(float sign(x) = Positive −> is infinite(x)))

and

(m = to zero −> is finite(x) and

(float sign(x) = Negative −>
float value(x) = − max gen float(f)) and

(float sign(x) = Positive −>
float value(x) = max gen float(f)))

and

(m = nearest away or m = nearest even −> is infinite(x))

The rounding operator gen_float_of_real, the basic binary and unary opera-
tions, the basic operators for comparison and the casting operator cast_gen_float
between float formats are specialized according to the Full model. Here we show
the complete specification of some of them:

parameter gen float of real:

f:float format −> m:mode −> x:real −>
{ }
gen float
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{ no overflow(f,m,x) −> is finite(result) and

float value(result) = round float(f,m,x)

and

not no overflow(f,m,x) −> same sign real(result,x)

and overflow value(f,m,result)

and

exact value(result) = x

and

model value(result) = x

}

parameter add gen float :

f:float format −> m:mode −> x:gen float −> y:gen float −>
{ }
gen float

{ (is NaN(x) or is NaN(y) −> is NaN(result))

and

((is finite(x) and is infinite(y)) −> (is infinite(result)

and same sign(result,y)))

and

((is infinite(x) and is finite(y)) −> (is infinite(result)

and same sign(result,x)))

and

((is infinite(x) and is infinite(y) and same sign(x,y)) −>
(is infinite(result) and same sign(result,x)))

and

((is infinite(x) and is infinite(y) and diff sign(x,y)) −>
is NaN(result))

and

((is finite(x) and is finite(y) and

no overflow(f,m,float value(x)+float value(y))) −>
(is finite(result) and float value(result) =

round float(f,m,float value(x)+float value(y))

and sign zero result(m,result)))

and

((is finite(x) and is finite(y) and

not no overflow(f,m,float value(x)+float value(y))) −>
(same sign real(result,float value(x)+float value(y))

and overflow value(f,m,result)))

and

exact value(result) = exact value(x) + exact value(y)

and

model value(result) = model value(x) + model value(y)

}

where diff_sign is defined by:

predicate diff sign(x:gen float,y:gen float) =

float sign(x) <> float sign(y)

parameter mul gen float :
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f:float format −> m:mode −> x:gen float −> y:gen float −>
{ }
gen float

{ ((is NaN(x) or is NaN(y)) −> is NaN(result))

and

((is gen zero(x) and is infinite(y)) −> is NaN(result))

and

((is finite(x) and is infinite(y) and

float value(x) <> 0.0) −> is infinite(result))

and

((is infinite(x) and is gen zero(y)) −> is NaN(result))

and

((is infinite(x) and is finite(y) and

float value(y) <> 0.0) −> is infinite(result))

and

((is infinite(x) and is infinite(y)) −> is infinite(result))

and

((is finite(x) and is finite(y) and

no overflow(f,m,float value(x)*float value(y))) −>
(is finite(result) and

float value(result) =

round float(f,m,float value(x) * float value(y))))

and

((is finite(x) and is finite(y) and

not no overflow(f,m,float value(x)*float value(y))) −>
(overflow value(f,m,result)))

and

product sign(result,x,y)

and

exact value(result) = exact value(x) * exact value(y)

and

model value(result) = model value(x) * model value(y)

}

where product_sign is defined by:

predicate product sign(z:gen float,x:gen float,y:gen float) =

(same sign(x,y) −> float sign(z)= Positive) and

(diff sign(x,y) −> float sign(z)= Negative)

parameter div gen float :

f:float format −> m:mode −> x:gen float −> y:gen float −>
{ }
gen float

{ ((is NaN(x) or is NaN(y)) −> is NaN(result))

and

((is finite(x) and is infinite(y)) −> is gen zero(result))

and

((is infinite(x) and is finite(y)) −> is infinite(result))

and

((is infinite(x) and is infinite(y)) −> is NaN(result))
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and

((is finite(x) and is finite(y) and float value(y) <> 0.0

and no overflow(f,m,float value(x)/float value(y))) −>
(is finite(result) and float value(result) =

round float(f,m,float value(x)/float value(y))))

and

((is finite(x) and is finite(y) and float value(y) <> 0.0

and not no overflow(f,m,float value(x)/float value(y)))

−> overflow value(f,m,result))

and

((is finite(x) and is gen zero(y) and

float value(x) <> 0.0) −> is infinite(result))

and

((is gen zero(x) and is gen zero(y)) −> is NaN(result))

and

product sign(result,x,y)

and

exact value(result) = exact value(x)/exact value(y)

and

model value(result) = model value(x)/model value(y)

}

parameter cast gen float :

f:float format −> m:mode −> x:gen float −>
{ }
gen float

{ (is NaN(x) −> is NaN(result))

and

(is infinite(x) −> (is infinite(result) and

same sign(result,x)))

and

((is finite(x) and no overflow(f,m,float value(x))) −>
(float class(result) = Finite and

float value(result) = round float(f,m,float value(x))))

and

((is finite(x) and not no overflow(f,m,float value(x))) −>
same sign(result,x) and overflow value(f,m,result))

and

exact value(result) = exact value(x)

and

model value(result) = model value(x)

}

parameter lt gen float : x:gen float −> y:gen float −>
{ }
bool

{ ((is NaN(x) or is NaN(y)) −> result = false)

and

((is finite(x) and is infinite(y)) −>
if result then float sign(y) = Positive
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else float sign(y) = Negative)

and

((is infinite(x) and is finite(y)) −>
if result then float sign(x) = Negative

else float sign(x) = Positive)

and

((is infinite(x) and is infinite(y)) −>
if result then (float sign(x) = Negative

and float sign(y) = Positive)

else (float sign(x) = Positive

or float sign(y) = Negative))

and

((is finite(x) and is finite(y)) −>
if result then float value(x) < float value(y)

else float value(x) >= float value(y))

}

4.2.1 Floating-point arithmetic in ACSL with the Full model

In addition to the constructs defined in the Strict model, special predicates are
provided on float and double numbers, which check that their arguments are
finite numbers, NaNs or infinities respectively:

predicate \is NaN(float x);

predicate \is NaN(double x);

predicate \is finite(float x);

predicate \is finite(double x);

predicate \is infinite(float x);

predicate \is infinite(double x);

predicate \is minus infinity(float x);

predicate \is minus infinity(double x);

predicate \is plus infinity(float x);

predicate \is plus infinity(double x);

Useful predicates are also available to express the comparison operators of
float (resp. double) numbers as in C: \le_float, \lt_float, \ge_float,
\gt_float, \eq_float, \ne_float (resp. for float and double numbers).
They are translated to the operators float_le_float, etc ... defined in the
Why side.

The sign of a floating-point number is given by the built-in logic function:

logic sign \sign(float x);

logic sign \sign(double);

where sign is an ACSL built-in logic type with two elements \Positive and
\Negative.

Casting a too large real may result into one of the special values ±∞,
±max_float and ±max_double accroding to the current rounding_mode where
max_float and max_double are respectively the maximal floating-point num-
bers represented in the float and double formats.

INRIA



On formal methods for certifying floating-point C programs 23

4.2.2 A coq formalization of the Full model

With the Full model, the Coq implementation of the gen_float type is a seven
fields record composed of:

❼ the field genf of binary floating-points float2 of the Gappa library;

❼ the Float_class field;

❼ the sign field;

❼ a sign_invariant to satisfy the finite_sign axiom as above;

❼ the floating-point value defined by: float_value := float2R genf;

❼ an exact value of type R;

❼ a model value of type R.

4.3 Examples

In this subsection, we illustrate the efficiently of our models on several short
floating-point C programs. Pragmas allow the user to switch from one model
to another. There are three pragmas: the first one is the default model real, the
pragma JessieFloatModel(strict) for the Strict model and JessieFloatModel(full)

for the Full model. There are also five other pragmas for the five rounding direc-
tions of the IEEE standard: the default pragma is #pragma JessieFloatRoundingMode(nearest)

and the pragmas:

#pragma JessieFloatRoundingMode(downward)

#pragma JessieFloatRoundingMode(upward)

#pragma JessieFloatRoundingMode(towardzero)

#pragma JessieFloatRoundingMode(towardawayzero)

4.3.1 Polynomial approximation of transcendental functions

The cosine function:

The following annotated C program implements a Taylor polynomial ap-
proximation of order 2 of the cosine function in a neighborhood of zero.

#pragma JessieFloatModel(strict)

/*@ requires \abs(x) <= 0x1p−5;
@ ensures \abs(\result − \cos(x)) <= 0x1p−23;
@*/

float my cosine(float x) {
//@ assert \abs(1.0 − x*x*0.5 − \cos(x)) <= 0x1p−24;
return 1.0f − x * x * 0.5f;

}
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The exponential function:

The following annotated C program implements a polynomial approximation
of order 2 of the exponential function in a neighborhood of zero by Remez
algorithm (the minmax approximation).

#pragma JessieFloatModel(strict)

/*@ requires \abs(x) <= 1.0;

@ ensures \abs(\result − \exp(x)) <= 0x1p−4;
@*/

double my exp(double x) {
/*@ assert \abs(0.9890365552 + 1.130258690*x + 0.5540440796*x*x

@ − \exp(x)) <= 0x0.FFFFp−4;
@*/

return 0.9890365552 + 1.130258690 * x + 0.5540440796 * x * x;

}

When compiling these two annotated programs by Frama-C, the proof obli-
gations generated by Why are partially proven by automatic theorem provers
thanks to our axiomatization:

axiom bounded real no overflow :

forall f:float format. forall m:mode. forall x:real.

abs real(x) <= max gen float(f) −> no overflow(f,m,x)

Gappa tool proves all these proof obligations except the two assertions which
are proven by Coq using the tactic interval [15] from the Gappa library.

4.3.2 Interval arithmetic

The following annotated C program implements arithmetic floating-point oper-
ations on intervals with floating-point bounds. The current rounding mode in
this program is Down.

#pragma JessieFloatModel(full)

#pragma JessieFloatRoundingMode(downward)

/*@ predicate dif sign(double x, double y) =

@ \sign(x) != \sign(y);

@ predicate sam sign(double x, double y) =

@ \sign(x) == \sign(y);

@ predicate double le real(double x,real y) =

@ (\is finite(x) && x <= y) || \is minus infinity(x);

@ predicate real le double(real x,double y) =

@ (\is finite(y) && x <= y) || \is plus infinity(y);

@ predicate in interval(real a,double l,double u) =

@ double le real(l,a) && real le double(a,u);

@ predicate is interval(double xl, double xu) =

@ (\is finite(xl) || \is minus infinity(xl))
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@ &&

@ (\is finite(xu) || \is plus infinity(xu));

@*/

double zl, zu;

/*@ requires is interval(xl,xu) && is interval(yl,yu);

@ ensures is interval(zl,zu);

@ ensures \forall real a,b;

@ in interval(a,xl,xu) && in interval(b,yl,yu) ==>

@ in interval(a+b,zl,zu);

@*/

void add(double xl, double xu, double yl, double yu)

{
zl = xl + yl;

zu = −(−xu − yu);

}

/*@ requires ! \is NaN(x) && ! \is NaN(y)

@ && (\is infinite(x) ==> y != 0.0 && dif sign(x,y))

@ && (\is infinite(y) ==> x != 0.0 && dif sign(x,y));

@ assigns \nothing;

@ ensures double le real(\result,x*y);

@*/

double mul dn(double x, double y)

{
return x * y;

}

/*@ requires !\is NaN(x) && !\is NaN(y) && sam sign(x,y) &&

@ (\is infinite(x) ==> y != 0.0 && \abs(y) >= 0x2.0p−1074 )

@ &&

@ (\is infinite(y) ==> x != 0.0 )

@ &&

@ (\is finite(y) && !\no overflow(\Double,\Down,−y) &&

@ \sign(y) == \Positive ==> x != 0.0 );

@ ensures real le double(x * y,\result);

@*/

double mul up(double x, double y)

{
return −(x * −y);

}

/*@ requires !\is NaN(x) && !\is NaN(y);

@ ensures \le float(\result,x) && \le float(\result,y);

@ ensures \eq float(\result,x) || \eq float(\result,y);

@*/

double min(double x, double y)

{
return x < y ? x : y;
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}

/*@ requires !\is NaN(x) && !\is NaN(y);

@ ensures \le float(x,\result) && \le float(y,\result);

@ ensures \eq float(\result,x) || \eq float(\result,y);

@*/

double max(double x, double y)

{
return x > y ? x : y;

}

When compiling this annotated program by Frama-C, the proof obligations
generated by Why are completely proven by automatic theorem provers thanks
to our axiomatization of the two Why models:

axiom round increasing: forall f:float format. forall m:mode.

forall x:real. forall y:real.

x <= y −> round float(f,m,x) <= round float(f,m,y)

axiom round down le: forall f:float format. forall x:real.

round float(f,down,x) <= x

axiom round up ge: forall f:float format. forall x:real.

round float(f,up,x) >= x

axiom round down neg: forall f:float format. forall x:real.

round float(f,down,−x) = −round float(f,up,x)

axiom round up neg: forall f:float format. forall x:real.

round float(f,up,−x) = −round float(f,down,x)

axiom round idempotent: forall f:float format. forall m1:mode.

forall m2:mode. forall x:real.

round float(f,m1,round float(f,m2,x)) = round float(f,m2,x)

INRIA



On formal methods for certifying floating-point C programs 27

5 Conclusions and perspectives

In this paper, we have presented two formal models to deal with floating-point
C programs: the Strict and the Full models. Also, an extention of ACSL and a
Coq formalization are given according to these two models.

We have seen in Section 4.3 that automatic theorem provers are able to prove
the correctness of some floating-point interval arithmetic by using a fruitful
axiomatization of the models. Proofs become very long and very complicated
when we try to use interactive proof assistants. For example, the proof of the add
function of intervals in Coq contains 16 cases to study separetely (for different
classes of arguments). Our next goal is to use automatic theorem provers as
tactics inside Coq to simplify the proof obligations. A more complicated function
is the following multiplication function of intervals (which calls the functions
mul_dn, mul_up, min and max from Section 4.3):

double zl,zu;

/*@ requires is interval(xl,xu) && is interval(yl,yu);

@ ensures is interval(zl,zu);

@ ensures \forall real a,b;

@ in interval(a,xl,xu) && in interval(b,yl,yu) ==>

@ in interval(a*b,zl,zu);

@*/

void mul(double xl, double xu, double yl, double yu)

{
if (xl < 0.0)

if (xu > 0.0)

if (yl < 0.0)

if (yu > 0.0) // M * M
{ zl = min(mul dn(xl, yu), mul dn(xu, yl));

zu = max(mul up(xl, yl), mul up(xu, yu)); }
else // M * N

{ zl = mul dn(xu, yl);

zu = mul up(xl, yl); }
else

if (yu > 0.0) // M * P
{ zl = mul dn(xl, yu);

zu = mul up(xu, yu); }
else // M * Z

{ zl = 0.0;

zu = 0.0; }
else

if (yl < 0.0)

if (yu > 0.0) // N * M
{ zl = mul dn(xl, yu);

zu = mul up(xl, yl); }
else // N * N

{ zl = mul dn(xu, yu);

zu = mul up(xl, yl); }
else

if (yu > 0.0) // N * P
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{ zl = mul dn(xl, yu);

zu = mul up(xu, yl); }
else // N * Z

{ zl = 0.0;

zu = 0.0; }
else

if (xu > 0.0)

if (yl < 0.0)

if (yu > 0.0) // P * M
{ zl = mul dn(xu, yl);

zu = mul up(xu, yu); }
else // P * N

{ zl = mul dn(xu, yl);

zu = mul up(xl, yu); }
else

if (yu > 0.0) // P * P
{ zl = mul dn(xl, yl);

zu = mul up(xu, yu); }
else // P * Z

{ zl = 0.0;

zu = 0.0; }
else // Z * ?

{ zl = 0.0;

zu = 0.0; }
}
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6 Technical appendix

In order to prove the above floating-point C programs, one needs to compile
and install the following tools and libraries:

❼ The SVN version of the Frama-C tool [1].

❼ The CVS version of the Why platform [6].

❼ The last version of Coq (Coq 8.2) available in the new official website
of the Coq proof assistant: http://logical.saclay.inria.fr/coq/?q=

node/60.

❼ The Gappa tool [14] with its libraries: gappalib-coq-0.9 (for the gappa
tactic) and interval-0.8 [15] (for the interval and interval_intro tactics).

❼ The Coq library on Floating-Point Arithmetic (PFF) which is avalaible on
the website: http://lipforge.ens-lyon.fr/www/pff/

❼ The Coq module JessieGappa.v to translate Jessie goals into Gappa goals.
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