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Abstract. This paper proposes a control-oriented approach to thertakalasma current
profile dynamics. It is established based on a consistentfsgitnplified relationships, in
particular for the microwave current drive sources, rattieen exact physical modelling.
Assuming that a proper model for advanced control schenrebea@stablished using the so-
calledcylindrical approximatiorand neglecting the diamagnetiftexts, we propose a model
that focuses on the flux filusion (from which the current profile is inferred). Its inputre
some real-time measurements available on modern tokanmakthe éfects of some major
actuators, such as the magnetic coils, Lower Hybrid (LHGBgctron and lon Cyclotron
Frequency (ECCD and ICRH) systems, are particularly takémaccount. More precisely,
the non-inductive current profile sources are modelled parameters functions of the control
inputs derived either from approximate theoretical foraeuior the ECCD and bootstrap terms
or from experimental scaling laws specifically developedrfiHard X-ray Tore Supra data for
the LHCD influence. The use of scaling laws in this model réfl¢ne fact that the operation
of future reactors will certainly depend upon a great numifescaling laws and specific
engineering parameters. The discretisation issues avespifically addressed, to ensure
the robustness with respect to discretisation errors andficiency (in terms of computation
time) of the associated algorithm. This model is comparedt experimental results and the
CRONOS solver for Tore Supra Tokamak.
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1. Introduction

In the coming years the main challenge in the fusion commjumill be the development of
experimental scenarios for ITER, the International TokaBgberimental Reactor. Amongst
them, the so-called advanced tokamak steady-state onkeplayila significant role, since
they will allow to reproduce and study (on a smaller scaleg, donditions that are expected
to be obtained in a fusion plant of reduced size and costdijlthese scenarios a particular
emphasis is given to the current density profile and to theaf@yoducing the plasma current
Ip: due to the intrinsic limited availability of magnetic flur the fusion devices, needed
to sustain a purely inductive curren will have to be mainly generated by non-inductive
sources. In particular, the importance of the real-timetyafctor profile ¢-profile) control

is emphasized in [2], where an interesting overview on reeewances and key issues in
real-time tokamak plasma control is provided. A Propowiemtegral (P1) feedback control
strategy, based on a simple linear model, is also proposgdsdticiency is illustrated by
experimental results, which motivate further researcleigments in this direction.

The control of so-called “advanced” plasma regimes [1, 3fo#]steady state high
performance tokamak operation is a challenge, in partitildeause of the non-linear coupling
between the current density and the pressure profiles. Imnéniguplasma, the alpha-particle
power will also be a strong function of these profiles, andhulgh its €fect on the bootstrap
current, will be at the origin of a large (though ultra-slawdlistribution of the current density.
The possible destabilization of adverse Toroidal AivEigenmodes (TAE) - such as the drift
kinetic modes that are anticipated to appear at high valt#seocentral safety factor [5] -
as well as potential thermal instabilities due to the ITBayics will further complicate the
issue. This motivates the need for further investigatioplatma profiles shaping to guarantee
and control steady-state operation of the plasmas.

As far as experiments are concerned, real-time control efithernal inductance
parameter (a measure of the current profile shape) has beeved with LHCD on Tore
Supra [6]. Improvement of plasma performance through acatiodification of the current
density and pressure profiles in advanced plasma regimés IWR's, through heating
and current drive, or by inducing sheared plasma rotatias &lso been the goal of
intense research for example on TFTR [7], JT-60U [8, 9, 10ll-D [11], Alcator C-Mod
[12] and JET [13, 14, 15]. Regarding the real-time (closedp)ocontrol issues, some
experimental investigations were carried on JET, espgcal the regulation of lumped
parameters characterizing the pressure profile in ITB diggs [16], for fixed magnetic
flux configuration, of the full safety factor profile duringethiTB preforming phase [17, 18]
for non-inductive steady-state regime (using a linearti@ahip between thg-profile and
the actuators), and, more recently, of the fujprofile during the main heating phase of the
discharges.

The former control approaches have shown the interest abpppte control methods to
improve the plasma performances. Nevertheless, they aesllmn identified linear models of
the plasma andr semi-empirical tuning of the gains of a proportionakmgnator controller,
rendering the real-time control particularly sensitivetiie operating conditions. The aim
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of our work is then to propose a new, control-oriented moddahe tokamak plasma that
best reproduces the main influence of power and voltage ratidn$ on the dynamics of the
plasma profiles. This model does not pretend to have the @acgof complex solvers (such
as CRONOS, EFIT or EQUINOX), but has to represent the mairrabinfputs influences on
the plasma dynamics and to provide for some outputs of majerast for real-time control.
It is then a first step towards model-based control of thenpéagrofile.

We focus on the flux diusion dynamics and include some key physical knowledge on
the tokamak plasma as well as the use of experimental resutish allows to represent
the plasma behaviour for a large range of operating comditaond provides for a simplified
and computationally féicient estimation of the main dynamics. Indeed, some apprata
formulas are used to compute the resistivity and bootstmagot while the temperature and
density profiles are estimated thanks to dedicated scadwwg.| The non-inductive current
profile sources are modelled as Gaussian distributionsdigpg on the control inputs derived
either from approximate theoretical formulas for ECCD or frerperimental scaling laws
specifically developed from Hard X-ray Tore Supra data fer itk term. The input-output
relationships are detailed and special care is given toidweatisation issues. Such a model,
essential for the phase of controller design (similarlyn® mumerous works done on plasma
shape control), can then be used to quickly test some colatnd for various operating
conditions, to investigate the influence of specific paramnseand to provide for a real time
indication of not directly measurable quantities (suchhasdurrents and-factor profiles).

In order to keep the proposed plasma description as geneqabssible and to allow
for advanced control methods, the model is presented as-finear system. Indeed, non-
linear control and stability analysis is a field on intensgeggch that can be drawn back
to the end of the 19 century, with Lyapunov stability theory [19]. Numerous ukts have
been obtained during the 2@entury, on stability analysis (i.e. absolute stabilitgsgivity
and small-gains theorems, or input-output stability) al ageconstructive control approaches
(i.e. backstepping, non-linear adaptive control, feagéoding or non-linear model-predictive
control). An interesting historical survey of these topgpgresented in [20] and in [21], which
proposes an overview of non-linear model-predictive ainione of the most widely used
control method in industry). Nowadays, numerous textbaoksavailable, presenting non-
linear control from a global point of view [22, 23, 24] or fa®d on implementation issues
[25, 26], diferential geometric analysis [27, 28] or specific controlmoets [29, 30, 31], to
cite some of the main references in this field. Our aim is tleepropose a general input-
output simplified description that allows forftérent control strategies (including the non-
linear approaches) rather than focusing on a specific method

This paper is organized as follows. First, the magnetic fidbugion equation, with its
initial and boundary conditions, is presented in Sectiomti estimation of the temperature
and density profiles using some scaling laws based on exeetainresults is proposed in
Section 3. Section 4 details the influence of the previouslpsmn the flux difusion, through
the resistivity and the bootstrap current. The discratsadf the poloidal flux dynamics
is investigated in Section 5, where an implicit-explicisdietisation scheme in time with a
variable step in space is proposed. The inductive (magnetig) and non-inductive (ECCD
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Figure 1. Plasma coordinates and sign convention.

and LHCD systems) inputs are described in Section 6. Sectidetdils the computation
of some model outputs of main interest. Finally, the nunariesults obtained with the
simulator associated with this model are compared with sexperimental data from Tore
Supra facility and with CRONOS code outputs in Section 8.

2. Magnetic flux diffusion

The notations and units of the main physical variables arensarized in Table 1. The
physical variable considered here is the flufR, Z) of the magnetic fieldB(R, Z) passing
through a disc centred on the toroidal axis at heifyand with a surfac& = 7R?, whereR is
the large plasma radius, as depicted in Figure 1. It is defmédx per radian as

1
2)=— | BRZ)-
WRD)= 5 [BR2)-ds
The dynamics of the poloidal flux is set by dfdsion equation, obtained from [32, 33] as
oy Py oy
- =D ik - 1
5 @0 = D075 + G075+ S0, Y (1)
whereD(p, t) andG(p, t) are transport cd&cients,S(p, t) is a source term analis the toroidal
flux codficient indexing the magnetic surfaces, defineg as (2¢/B,,)*?, whereg(p, t) is

the toroidal flux per radian an,,(t) is the central magnetic field. The transport mgéents
and the source term are giveniby

1yCa2 np 0 (CoCs V. 1yV'By, .
D(p,t) = . G(p,t) = — and 1) = i-B) = i
(0= oy =200 0 = 1 By = 1,
wherer (o, t) is the resistivityuo = 47 x 10~ H/mis the permeability of free spacgi(p, t)
is the non-inductive current source, including both thetbimap éfect and the microwave
current drive,F is the diamagnetic function/(p, t) is the plasma volume and’ = dV/dp.

1 In order to simplify the equations, the space and time degetids are specified in the definitions of the
variables and omitted otherwise.
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Furthermore,

, [lel? g\ <in-B> if
C, V<R2>’ Cs V<R2>’ Ini(o, t) = B, and (A) = W, AdV

0

where(A) denotes the average Afon the flux surface which contaivs

We suppose that the diamagnetiteet (due to the poloidal currents) can be neglected,
which implies thajp can be considered as a geometricfiornt. We also assume that the
so-calledcylindrical approximatiorof the plasma geometry (large aspect ration) can be used
as a basis to establish some control schemes using this m@tel former approximation
implies thatp << Ry, V = 21%0?Ry andV’ = 47%pR,. Using both hypotheses, the transport
codficients can be computed with

Holt P

F= 2ﬂ°r ~RoB,, and G=Cz= 47r2RO

werel, is the toroidal coils current. Note that the cylindrical egppmation could be relieved

using some approximate expressionsdgrCs andV thanks to analytical formulas for shifted
circles or numerical computations based on the 2D equilibridescription.

Remark 1 A detailed analysis of this model, and more particularly eeming the choice
of the coordinates, is presented in [34]. Simulations of difusion equation expressed in
cylindrical and toroidal coordinates (taking into accouthie Shafranov shift) are compared
with some experimental results. This comparison is perfdrtheough the value of(@,t)
and shows that the proposed model fits well with the experimesgalts (the cylindrical
approximation leads to a steady-state errorldf% and the toroidal model has an error of
2%). Other results show that the geometrical gimgents G and G are identical for both
approximations up to a normalized radius @B and djfers when approaching the plasma
edge to reach a gierence ofl5%

With the previous approximations, the dynamics (Ly@implifies to

ny 0%y L o

oy
—(p,t
at(p) o 2 pop dp

+17/Rojni

wherey, n, and j, are both space (through) and time dependent. The spatial index
p € [0, a], wherea is the minor plasma radius corresponding to the Last Closeginkti
Surface (LCMS, constant if the diamagnetiteet is neglected) depicted in Figure 1, can be
replaced by the normalized variable= p/a. The dtfusion equation considered finally writes
as

oy ny(x ) (P 1oy
E X 1) = 11032 (BXZ + X@X) + 77//(X tRojni(X, 1). (2)

The initial and boundary conditions of this equation arexded in the next subsections.
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Tth

radius of the LCMS

toroidal magnetic field

poloidal magnetic field

toroidal magnetic field (at the centre of the plasma)
conductivity reduction due to electron-electron collisg
speed of light in free space 310
electron charge,.6022x 10°%°

fraction of trapped particles in the banana regime
diamagnetic function

plasma current at

total plasma current

toroidal coils current

non inductive &ective current density
Coulomb logarithm

average ion mass

electron mass,.2096x 103!

electron density profile

electron line average density

parallel refraction index

loss power

ECCD power

ICRH power

LH power

total input power

major plasma radius

magnetic centre location

temperature profile

normalized radius

effective value of the plasma charge
electron thermal speed

ratio of ion versus electron temperature
inverse aspect rati@(Ry)

permittivity of free space,.854x 10712
plasma resistivity

exponential peaking céécient of the variable
elongation

permeability of free spacesm4< 1077
electron collisionality parameter
magnetic flux of the toroidal field
magnetic flux of the poloidal field
electron collision time

thermal energy confinement time

- -4 - 3

F/m
Qxm
H/m

T/m?
T/m?

Table 1. Most relevant physical variables and units
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2.1. Initial value

The initial value of the poloidal flux(x, to) is determined from the initial safety factor profile
q(x, to) as follows. Defining the toroidal flug(x,t) as the magnetic flux per radians (to be
consistent with the definition @f) passing through a poloidal surface centereldyand with
radiusp, we have that

(xt)*lf B.dSy, = —— B, - dSpol ~ B
¢ > L) — o Soo pol — o S (3 pol ~ > .
The safety factor is consequently defined as

dp  9¢p/0x By, %X

qx ) = o0 = 20 -

dy  oy/ox oW | OX

and, integratin@y/dp in space at timé,, we have that
1
r
lﬂ(x, to) = a28¢0£ m dr + lﬂ(l, to) (3)

The choice of the constant term is motivated by the fact#f{att) can be measured on the
LCMS and can also constitute a boundary condition. The Irgaéety factor profile is given
by

a(X, to) = (a(0,t0) — a(1, 1)) (1 — X) + (1, to)
whereq(1, t) is computed as follows. First, Ampere’s law is introduceddmpute the plasma
currentl (x, t) andg-profile as

27X O 2ra®x?By,
[(x,t) = ToR OX = qxt) = Rl 4)
The safety factor on the LCMS is thefil, t) = (2na28¢0)/(/10R0Ip) wherely(t) = 1(1,t) is
the total plasma current.

For simulation purposes, an arbitrary initial safety fagioofile can be chosen and the
poloidal flux will converge to its actual value modulo a camtbias. The convergence
property is inherited from the stability property of thefdsion equation and the bias is of
minor importance since the variables of main intergsarfd current profiles) depend on the
flux gradientdy /ox. Further developments of this model for estimation purpasay use the
real-time measurements ¢{1, t) to minimize the error between the modelled flux value on
the LCMS and the real one (this is equivalent to design an gbséor the flux profile that
uses the measurements on the LCMS).

2.2. Boundary conditions

Specific boundary conditions have to be considered botheapklisma centre and on the
LCMS. At the centre of the plasma, the spatial variation offtheis zero:

‘;—ﬁ(o, t) = 0. ()

On the LCMS two exclusive conditions can be considered:
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¢ on the flux variation, from (4),
O, . Rouolp(t)
&(1’ t) - T T A

2r
e on the flux rate

% 1.9 = Vioold. ©

The last two boundary conditions are set by the tension egpb the coils, since a local
control loop on the poloidal coil allows to set this tensiatarding to the desired plasma
currentl, or the desired loop voltagd,.,. This will be detailed in subsection 6.1.

To summarize the main results of this section, under the thgses that

(6)

H1) the diamagneticfiect is neglected,
H2) the plasma is described in cylindrical coordinates @aagpect ratio approximation),

the dynamics of the poloidal flux is described by (2) with thigial condition (3), the central
boundary condition (5) and the edge boundary condition (&}

3. Temperature and density profiles

A first, classical approach to compute the temperature pradilbased on the filusion
equation (i.e. for the electron temperatii€o, t) expressed in cylindrical coordinates [35])

S T = 2 ool ) - e 160

whereng(p, t) is the electron density,(p, t) is the electron thermal flusivity, 74 is a constant
damping time modelling the losses a8d(p, t) is the source term. Denoting the electron
pressure profile age(x, t), a simplified model can be set thanks to the relationship [36

Te aVv avpe

Xe= a5 —
© B¢o Pe

with ag = 2.5 x 104, The source term has an amplitude such that

1
f Ste(X t)dx = Pg
0

where thes subscript refers to the heating system considered (LHCD or GRidPg is the
associated power input.

Considering the high level of uncertainty induced bffuidiion models, such as the one
presented above, to compute the temperature profile, wesehtoocuse the empirical model
proposed in [37], based on some experimental measuremBEmsmodel is established for
Tore Supraoperating inL-Modebut could easily be extended to other tokamaks or operating
conditions by following the guidelines of the identificatialgorithm with appropriate
experimental data. The main idea is to first estimate the alized (with respect td¢(0, t))
temperature profile shape with a set of sigmoid functionssgfunctions are close to 1 when
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x = 0 and close to 0 whew = 1), which shape parameters are related to the tokamak
global parameters with scaling laws. The thermal energyimement is then introduced
to compute the confinement timg, with a scaling law similar to ITERL-96P(th) [38]. The
main advantage of this approach is to consider specifidadiyrtfluence of LHCD and ICRH
systems on the profile shape, as well as to provide for a dieghland fast computation
method to estimate the global temperature behaviour. Thetieg accuracy is gticient for
the proposed control-oriented model. Indeed, from a playpigint of view, the dynamics af
(on which this paper is focused) has a time constant thataatter of magnitude larger than
the temperature one. Thisfiirence of time scales motivates the fact that the globabgner
and steady-state variations are more important than thedeature transient behaviour in the
time-variation ofy.. ForTore Supraokamak operating ih-mode the temperature estimation
is described as follows.

The electron temperature profile is estimated with a sigriwmdtion as

a(t)

eV ~ T o sm05m

AT e(t)

where the normalized shape of the profil€x, t)/ Te(0, t) is estimated with a sigmoid function
defined by its amplitudex(t), dilatation8(t) and translation (inflection pointy(t). The
amplitude of the profile ig\r¢(t) and computed from the plasma thermal energy, as detailed
below. The extra degree of freedom introduced in the tinteatian of o (which would ideally
be 1) is motivated by the fact that, for the computation ofrdsestive properties of the plasma,
the minimization of the estimation error over the compleat&fife is more important than an
accurate estimation of the central temperature.

The shape parameters are set with the switched model

{ain, Bin, Yin} if Pn#0
{@ws Bo» Vool else.

{a, B, 7}={

This model then distinguishes the LHCD heatirfieet from the ohmic and ICRH ones.
Selecting the most significant terms, the shape parametersekated to the global and
engineering parameters with

Qalh

p 015
870.87|70.4SBO.63N0.25 1+ icrh
p do

Ptot

_ _p38810.31p-0.867—0.39\|-1.15
Bin = —e*FIPIB N OBN,

7711.40Rp-1.76\|—0.45
Yih el |p B¢o N// (1+—

a, =

ﬁw — _e1.92| 2.38ﬁg0.33

—0.37] -0.46 R0.2370.22
e By e

— —0.15] 1.03Rp-0.51
Yo = €°11103B (1+
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where N, (t) is the parallel refraction indexPi(t) is the ICRH power,Pj(t) is the
LHCD power, P (t) is the total input power ande(t) is the electron line average density.
The units of the parameters used in the scaling laws|ar®lA, T, 101m 2, MW| for
[time current density powel. Note thatN, andPi,, have more fect on the profile shape
associated with LHCD thaRy,, which still appears implicitly ifPy;. Indeed, identifying the
exponent parameters with either €1Pi¢;n/Piot) OF (1 + Pp/Piot) in the scaling law leads to
the conclusion that the first term gives the minimum cost fionc This can be physically
explained by the fact that the presence (or absence) of ICRHnlbas dgfect on the shape
than some modulations iRy,. A more accurate model could be obtained by distinguishing
the case when LHCD is operated alone from the case when both L&#h@dDCRH are used.
To determine the central temperature, the plasma therneadygWi,(t) can be written as

Wol) = W) + W = 5 [T+ nT)av =2 [ L+ anamineTeav
\% \%

wheren;(x, t) = an(t)ne(X, t) is the ions densityl; (X, t) =~ a1i(t) Te(X, t) is the ions temperature,
and Win(t) andW,,(t) are the electrons and ions energies, respectively. Thsitgentio is
givenani(t) ~ (7 — Z(t))/6, whereZ(t) is the @fective plasma charge, averaged on the small
plasma radius. The ratio of ion to electron temperature tabéished from measurements
taken at the centre of the plasma and obtained from the gdaln

I —0.38_ P. N -1.62 Plh 1.36
ari(t) ~1- 0.31(B—p) ng°-9°(1 + &) (1+ —) .

b0 tot

The electrons density.(X, t) is approximated with

Yn+1l

n

Ne(X, t) = (A — xX™)ng(t)

where vy, is the density peaking. From the previous approximatiors e cylindrical
coordinates hypothesis, the temperature profile amplitadelated toW, thanks to the
relationshipAr(t) = A(t)Win(t) with

a(V dx]_1

1
A(t) = |6r°a’Roe(1 + atiarni) f Ne(X, t)X
0

andW,, is estimated with

P 0.13
) = 01355 0NRT(1e J) P
(0}
dW 1
T = P = Wa We(0) = Pua(0)r©)
t

wherety(t) is the thermal energy confinement time with the scaling lataldished in [37].
The scaling law ITERL-96P(th) is more general (based on nreasents from dferent
tokamaks) and can also be used in this scheme. In thatgagegiven by

0.960.0370.40p-0.73
Ttyter = 0.141 7B, g™ Py .
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Remark 2 For a real-time use of this model, the temperature profile aso be accurately
measured directly from the Electron Cyclotron Emission (E@gdostic) for x= 0 — 0.8
and the density profile can be obtained from combined im@mieters (these measurements
were used to set the proposed scaling laws). In this case, tdelrnan be used to provide, in
real-time, for physical quantities that can not be measw®ectly, such as the safety factor,
currents and current densities (associated with thgedent sources), and induced voltage
profiles. The normalized inductance, confinemgftiency and Grad-Shafranov shift would
also be available, as detailed in Section 7.

4. Resistivity and bootstrap current

The dttusion term in (2) is provided by, and the bootstrap currenfs(x,t) is an
autogenerated source that introduces a non-linearityardifusion equation. Both of them
introduce a coupling, which is varying in time and spaceweeh the magnetic flux fiusion
presented in Section 2 and the temperature and densitygsrofilSection 3.

4.1. Resistivity model

This parameter is computed using the results on neocldssinductivity proposed in [39],
where an approximate analytic approach is presented.dfialit the electron thermal velocity
and Braginskii time are computed from the temperature anditygprofiles as [40]

T 12732 1/2 2 -|-3/2
we(xt) = /8 and Te(xt) = e % e
Me €5/24/2 nNelnA

wheree = 1.6022x 1071°C is the electron charge; = 8.854x 1071?F/mis the permittivity of
free spacem, = 9.1096x 10-3kgis the electron mass andA{(x, t) is the Coulomb logarithm,
obtained from I\ (x,t) = 31318+ In (Te/ \/”_e) The parallel conductivity is then given by

0 oo 2

oo 1+ Evie 1+ EVie
with
Ne€? —  340(113+Z Roq
= A Z = — |\ * 9 = Y EEE)

qoe) = rTe Ael2)= 7 (2.67+ z)’ e = BZare
fi(x) = 1- (1 - xe)*(1- (xe)>) 2(1+ 1.46Vxe) ™, &(Z) =058+ 0.20Z

—  056(30-Z
and Z) = — )

*(2) Z (3.0 + Z)

wherev.¢(x t) is the electron collisionality parametdi(x) is the fraction of trapped particles
in banana regime an@g(Z) is the conductivity reduction due to electron-electrofiisions.
The resistivity is finally inferred fronar, asn,(x,t) = 1/0.

Remark 3 The validity of this approach is investigated in [41], whem@rious models of
conductivity (Hirsmann analytic formula, Hirshman forratibn and Shaing formulation) are
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compared with experimental results. The model presentesl(kershman analytic formula)
is valid for low density, for arbitrary aspect ratio and bamaregime (the collisionality goes
to zero), or for finite collisionality and << 1.

4.2. Bootstrap current source

This current is generated by trapped particles and may bm#ie source of non inductive
current in specific scenarios (high bootstrap experimekite)present here the model derived
by Hirshman [42] and presented in a comparative perspentiyé3]. It is a single ion,
collisionless regime model, which writes in our framewosk a
<i-B>s _ P {A[ldpe+p.(1dp 1dT.)
<B-Vo> <1/R2> Pe Ay pe\pi dy Tdap
wherepi(x, t) is the pressure due to ions and

Ag(x.t) = % [0.754+ 2217 + Z° + x, (0.348+ 1.24%Z + Z°)| /D,

1172

1.0 + 0.462x;

De(x.t) = 14147 + 7% + X (0.754+ 2.657Z + 27°) + x? (0.348+ 1.24%Z + 7%)
wherex(X) is the ratio of trapped to circulating particlgg(1- f;). Considering the cylindrical
coordinates approximation and defining the bootstrap nta®

1dTe
Te dy

Po(x.1) = % (0.884+2.074Z) /De,  ai(X) =

<] B>ps 1 <]-B>ps

Jos = B;, Ro<B-V¢>
we have
. _ PR 10p. pi(lop  10Ti)| , 10Te
osdX ) = 5o {A [pe ax pe(pi ox T, ox )] fer, 3X}

The relationshipge = enTe andp; = enT; are introduced to express the bootstrap current in
terms of temperature and density profiles as

: 0Te dNe OT; on

Jps(X, 1) = 0lﬁ/a {( 1= Ao)n e + A Te— 9x +A(1- a’l)nl + AT, GX}
Another possibility is to estimate the fractlon of the tatalrent due to the bootstrajfect

with the fitting law proposed in [44].

5. Discretisation of the poloidal flux dynamics
Considering the dynamics obtained in (2) we wish to disseeti

¢(x,t)—’”( )(w”( 04w t))+n//(x ORojm (1) @)

wherey = dy /ot andy’ = dy/Ox. Applying the spatial and temporal discretisation methods
(A.1)-(A.3) described in Appendix A, the previous equatiantes as (i.e. in the explicit case)

U(X, ex =

d177// i (

Yisj — lﬂi—l,j) +1yi.iRojnii,j

drii (d2¢ﬁ+11 dayi j + d4l//i_1,j) + —==

=i (el¢i+1,j — i+ i)+ RO]nii,j)
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with
da(i)xi + du(i) o da(i) oy _ a(i)xi — da(i)
— o 1) = and )= —-—"——7
HodX; &) Hod? &) HoB2X;
where the subscript= 1... N denotes the spatial discretisation points gnefers to the time

samples. Similarly, for the implicit case we have that

eu(i) =

W (%, Oim = 111 (ellﬂi+1,j+1 — €Y1+ 6 1ji1 + ROjnii,j)~

Note that we usedl;; ; instead ofj,i j.1 in the previous computation. This is motivated by
the fact thatj,; j is a non-linear function ofy, n; (bootstrap &ect and LH source when
the boundary condition is set Ofiyop). A formulation with jyi; j.1 would then prevent the
use of a linear computation method that takes the sourc@satjtas an input. Taking the
time step sfficiently small compared to the system dynamics, this appration introduces
a negligible error that is worth the computation simplifioatand is compensated by the fact
that the dynamics considered is stable.
Substituting the previous equalities into

(%) = N (X, Dex + (L~ h) 4%, i

whereh € [0, 1] is the ratio of explicit to implicit time discretisatiomd ét is the sampling
time, a discretised version of (8) finally writes as
Aivrj i + A i+ Alicsj Vi, 9)
= Biitvj¥isnjsr — Biij¥iji — Biicnj¥icnjsi1 +Sij =0
whereA; andB; are time-varying\ x N matrices. The notation& ; andB; ; are introduced
to denote the values of the matrix elemenjk)(at the time sampl¢, and
Ai_1j =nyijeshdt, Ajj = 1-nyi; ehdt
Aiij = nyijehdt, Bii_1j = —1nyij13(1 - h)ot
Biij = 1+myij+1€(1—h)dt, Biii1j = —nyij1 (1l - h)ot
Sij = Rodt |y + (L= Wi joa | it
fori =2,...,N -1 (the values at 1 and are given by the boundary conditions) and where
ot is the sampling time. Writing the poloidal flux and the sourteem in the vector form
Ui =[yej Yaj ... ¥ngl" and S =[Syj Sz ... Snyl'
(9) can be expressed, equivalently, in the matrix form
Ajl,[/j—leﬁjJrl-FSj:O = l//j+1:BIlAjlﬁj+BIlSj.

Note that the matrixB; is tridiagonal, by construction. An appropriate inversimethod
such as the one proposed in [45] is therefore recommendednhtpmﬁeBj‘l with reduced
computational cost.

The boundary conditions presented in subsection 2.2 maycendome numerical
instability due to the discretisation scheme. Some apm@tgspecific discretisation methods
are described bellow.
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At the centre: the proposed discretisation method leads to an ill definatta@evalue of the
flux dynamics wherx; = 0 since
' (X, t)
X1 6
Consequently, we use the fact that thfudion term close to the origin can be approximated

by

NP (5X2/2)x'//1/2 4
xax 8x 6x2/4 0Xo/2

with 6%, = X — X;_; to set the central dynamics as

lﬁl/z X% (Y2 —y1)

26 2
The central terms of (9) are then computed with

U(Xa ) ~ mya(t) [ (Y2 = Y1) + Rojni 1('[)]

Azj = &ohnyrj,  Avtj=1-&whn) 1), Bizj=—€w(l- N/,
Biij=1+@&w(l-hng . and §;= 5tRo(h77// vinin + (1= h)yy 1,j+1jni1,j+l)

wheree,y = 46;/ (yoaz(ng).

At the edge, witly’(1,t): the constraint on the flux variatioff (1, t) = u(t) implies that

UNj+1 — UN-1,j+1 Unjr1 UN-1j+1
) oy o - ™ tup.=0.
OXN OXN OXN

The corresponding matrix cieeients are then
1
Ann-1j = AN =0, Bunosj = —Banj = ~ e and  Syj = Uj1.
XN
The computation ofi(t) is directly obtained from (6) as(t) = —Rouol p/(27).

At the edge, withy(1,t) a last possibility to set the edge boundary condition is ¢e u
¥(L,t) = Vieop(t). In this case we have

‘/’N,j+1 - ‘/’N,j - 5tVIoop,j =0

and the matrix coficients are

An-inj = Bnoin = Ann-1j = Bun-1j =0, Aunj=Bunj=1 and S = 0tVigop-

6. Model inputs

The model inputs considered in this work are the boundarylitions at the plasma edge
(v’ (1,1) or y(1, t), see subsection 2.2) and the non inductive currents geeiog the LHCD
and ECCD systems. Both systems current deposits can be roughlglled with Gaussian
curves, described in Appendix B, whose shape depends ondhal gllasma parameters and
power inputs.
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6.1. Inductive current input

The magnetic flux at the boundapy(1, t) is set by the coils surrounding the plasma and
constitutes the inductive current input. This can be dbsdriby the classical transformer

model where the coils generate the primary circuit whilglasma is the secondary, modelled
as a single filament. The dynamics of the coils curig(t} is then set by [46]

Lele+ Mip +Rele = Ve =0

Mlc+ Lol + Ry (Ip = Ini) = 0
whereR. and L. are the coils resistance and internal inductafeandL, are the plasma
resistance and inductanckl is the matrix of mutual inductancey¥, is the input voltage
applied to the coils antl, is the current generated by the non inductive sources. Nate t
the values oR; andL. are given from the coil properties whil is obtained thanks to an
equilibrium code (i.e. CEDRES on Tore Supra). The magneticdluke plasma boundary
close to the coilg is then obtained withy,c = M. Considering the féects of the plasma
current and inductance variations, the loop volts(gs, is obtained from [47]

16 [Lel2] .
ﬂl*"ﬁac

Wm®=¢@o:_r_

o] 2

whereL, = uoRoli/2 andl; is the normalized internal inductance. In practice, a |lacaitrol
law is set on the poloidal coils to adjust the valuevgfaccording to a desired value G,
which can be measured with a Rogowski coil. If the referensei®n the plasma currehy
instead, theV, is such that the coils provide for the current necessaryngpéement the non
inductive sources.

6.2. ECCD deposit

The total EC current is the sum of several deposits due to@ldv€ beams, which parameters
are denoted by the subscript Each current deposit is determined by the position of the
steering mirror Ranym, Zanym), its orientation in the poloidal and toroidal plangdm, ¢orm).

and the emission powdt.q,, as presented in Figure 2. The results presented in thi®sect
are derived from [48] and [49]. The assumption is that theaeniavabsorbed by the plasma
(and generates current) for

R.>R> R,

where
1/2

€uoNp; ling Rantm 4Rz
M, 1 T G singend [1 - S'”z"’m”“}
with n, = 1, 2 the harmonic consideren, the number of toroidal coilsy the number of wire
loops per coil,f the antenna frequency ((BHz) andl,q the coil induction current. For high
magnetic field (O-mode) the first harmonic is absorbgd= 1) while for low magnetic field
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(Rabs Zab

(Rant: Zant)
e e R

Figure 2. Poloidal deposit of the ECCD antenna (one mirror).

(X-mode) the deposit is generated by the second harmonie.nfdximum is considered to
happen aR,sm = (R: + R)/2 and theZ coordinate of each point is computed from

Zn(R) = Zangm + (Rangm — R) tangpoim
The flux coordinates of the deposit are then obtained from

R-Ro
Zaan + (Rant,m - R) tan¢pol,m

The global diciency factory.qm(t) is computed as

Pm(R) =

Yedm(t) = [1Te(Xabsm) 1-1» [pm(RﬁbSm) + Rapsm — RO]rg
e Te(Xapsm) + 10° Rabsm
where
Xoberm = Rabsm - 6 _4(2+Z_) _ 5+7Z
=AM 1T sy 7 2T 3142 *T21+2)
and the amplitude of the current depdsitn(t) is obtained from
| _ P 1
Yedm = % RoNe X 10 & leam = Rz/;—ljz—]%_n;() = 27TaZL Xch,m(X, t)dx

wherejqqm(X, t) is the current density induced by ECCD.
The next step is to express the fio@ents of the Gaussian fitting curve

. _ N2
ch’m — ﬁcd,me (cdm—X)*/20°cdm

in terms of the engineering parameters derived previouBhe mean and the variance are

obtained as
(.Ucd,m - Pm(l:\)c)/a)2
2Ing

HMcedm =

pm(#;bsm) and Ocdm = —
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whereg is chosen such thatym(x.) = 9.4mB8 = 0 (i.e. B = 1/10, which is equivalent to

set the Gaussian curve close to zerdrgt The maximum value of the current deposit is

consequently computed as

-1

YedmPedm
Rone

Finally, the ECCD source is positive if the antenna is direetgainst the plasma current
I, (which means that it emits in the same direction as the plasieeirons) and the total
current density profile induced by ECCD is

1
_ _v\2
ﬂcd,m = 27Ta2f NG (cam—X) /ZO-Cd’de
0

6
jed(6t) = > Jeam(X,t) X SigNrorm).
m=1

Example 1 Tore Supra tokamak ECCD system is currently working with two bearhe
current deposit is set with

maxPeqg) = [250 300]x 10°, R =[3.53 353] and Zn = [0 0.2].
Furthermore, }q = 137% By,Ro, Nng = 18and n = 2028

6.3. LHCD deposit

The current profile generated by this system cannot be atidguaescribed with an analytical
formula as it is the case for ECCD. Indeed, it strongly depemdthe operating conditions
and current density profile [50]. A more realistic way to estie this profile is to use the
emission of suprathermal electrons provided by the Hard }X{REXR) measurements [51]
to build up a scaling law from engineering control parangetérclassical guess is to suppose
that the LH power deposit corresponds to the emission otreles with an energy ranging
from 60 to 80keV, which is measured with the HXR diagnostic. It is motivateutie fact
that LHCD system specifically generates a population of madn this range of energies.
Neglecting the thermalffect, we then consider that the radial Hard X-Ray emission|profi
corresponds to the current density profil€x, t) [50].

The first step is to determine the shape of the current depgomih the HXR
measurements. This can be done empirically from the glodarpeters thanks to the curve
fitting approach described in Appendix C, where the width(t) and centre of the deposit
Unxr(t) are estimated as

~ —-0.24y 0.57,7-0.08 5 0.13p 0.39

ﬁhxr(t) = O.ZOB(/,)_OO'Sgl 8-71ﬁ—0~02p3—]|.3 N/}'ZO

where N, is the parallel refractive index that can be computed fromaseghdiference
measurements. Note that a direct measurement of the paametolved in the scaling
law is available in real-time for advanced control schemes.

The total current depodif, (t) is computed from the plasma and LHCD parameters thanks
to the current drive ficiencyn (t) with the fitting laws proposed in [52] (for Tore Supra and
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25
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m
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Figure 3. Measured LH deposit vs. its Gaussian approximation.
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7n(t) = 3.39D0%724Z 01 or gy (t) = 1.18D 0% 0432024

whereDy(t) ~ 2.03 - 0.63N/ is the normalized directivity. The total current is thenaibed
asln(t) = mnPin/ (NeRo). The LHCD profile jin(x.t) is finally described by the Gaussian
approximation

Jn(x,t) = ﬁlhe_(ﬂhxr—x)z/Zam
with

-1
(IJhxr - thr)2

1
27Ta2 Xe_(llhxr_X)Z/zo'lth
2In2 j;
Note that the integral term can be computed using numemcadjration techniques or with
the relationship

1
(hxr—X)?/ 2071 _ ~(1-)?/20 _ p?/20 E (l__’u) _ (__)]
X€e dx=-o (e e + ,/ erf erf
f(; ( ) K 2 V2o V2o

A comparison between the measured and estimated HXR emigsidile is presented
on Figure 3, wherdg,x is the maximum emission value, for a typical LHCD pulse. The
uncertainty on the measured values close to the origin is, Mdnich further supports the
choice of a Gaussian curve to fit the measurements.

on(t) = and  In(t) = I

6.4. Resulting model properties

To summarize the results obtained in the previous sectibiesproposed model is mainly
based on a physical analysis of the plasma fluffudion and current sources. This
analysis is completed with some scaling laws to compute tHEL current deposit, and

possibly the temperature profiles. The shape of LHCD depsditased on experimental
measurements carried on Tore Supra while its amplituddabkshed from both Tore Supra
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and JET measurements. For control design purposes, thetatare profiles can be roughly
approximated thanks to the proposed scaling laws or antcalynodel. Another possibility,
which should be preferred for advanced control design sihdelly uses the available
diagnostics, is to consider the temperature profiles as sealdime inputs to the model,
provided by ECE.

The use of scaling laws, even if they imply that the model is fatly predictive, is
motivated by the fact that a large amount of experimentah éatavailable for the actual
tokamaks and their use in the design of future facilitiesjllastrated in [38]. The large
amount of physical properties included in the model allogducing the error and operation
dependency induced by such laws to a level that is acceplabtontrol design purposes,
where global dependencies are more important then detaibek|s.

Such an approach is also motivated by the results obtaingBjnand similar works,
where encouraging closed-loop performances forcgpeofile control were obtained using
a simple linearised model identified from experimental dataven if linear approaches
structurally imply a strong dependency on the operatinglitmms, the previous results have
shown the interest of model-based control design to regitet plasma profiles. Our aim is
then to contribute to further progresses in this directippioviding for a model with strong
physical dependencies and not restricted to the lineardnanrk, that still allows for real-time
implementation and can be used in non-linear control sckeme

7. Model outputs

Several outputs of major interest for control applicati@ame presented in this section, as
well as a practical method to compensate for the cylindapgiroximation and estimate the
security factor and current densities profiles in toroidairdinates.

7.1. Total current and gctive current density

For an arbitrary current denoted with the subscspd indicate the source (ohmic, LHCD,
ECCD or dfective), the total curreniy(x, t) is obtained, with the cylindrical approximation,
by integrating the current densify(x, t) on the surfacaa®x® as

X
ls(x, 1) = 27ra2f Xjs(X, t)dx
0

The dfective current density of the plasmg(x,t) is obtained from the spacial derivative of
the previous equality and Ampere’s law (4) as
1t a__1 9 _%X%]:_;i[x%
2ralxox  2ra?xox| uoRy 0X HoRoa2xdx | ox
Note that the toroidal current at the plasma edglg@, t) can be used to estimate the model

precision since it is usually measured using a continuousoRekj coil or a discrete set of
magnetic coils surrounding the plasma.

Jo(x 1) =
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7.2. Toroidal induced voltage

It is induced by changes in both the primary circuit currerd plasma current, and writes as
V(x, t) = dy/ot. Itis computed using the results of Section 5 as
Vi =ty (€wine — € + esiosj + Rojiii)
+ (A -y (ell/’i+1,j+1 — i j+1 + a1 je1 + ROjnii,j+1)
fori = 2...N - 1 and with the appropriate boundary conditionsVgr andVy ;. Note that

the voltage at the edge of the plasMgL, t) is the loop voltageViqep(t), Which is measured
with a toroidal loop of wire parallel to the plasma.

7.3. Ohmic current

This current is usefull to analyse the various componenth®fotal current profile and is
computed from
<j 'B>Q:O'// < E'B>:O'//E//B¢O

whereE(x, t) is the electric field. Introducing the voltage profile, weaih, equivalently,

<]-B>q

-9 ~ Tl
=R V(X 1) ROV(X’ t).

7.4. Normalized internal inductance

Defined as [40] B )

B(x.1) 2 J5 B2(x t)xdx

B2(1) B(1)

it is expressed is terms of the poloidal flux using Biot-SalawtBy(x, t) = ¢'/(aR) as

Ii(X,t) =

2 fol g Oxdx  ggz o
li(x,t) = VR :’ugR%I%fo Y'e(x, t)xdx

7.5. Confinementfgciency

This is a global parameter that evaluates the confinementeplasma pressure by the
magnetic field. It is defined as the ratio between the averageepdicular pressure and the
edge poloidal magnetic pressure [53, 40]

<p> 4 fpdV— 8Wi,
B2(L.t)/2u0  moRol3 Jv 3uoRol3

where the last equality is obtained from the cylindrical rapgmation.

Ba(t) =
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7.6. Grad-Shafranov (GS) shift and geometrical correction

An alternative to the computation of the GS equilibrium igpproximate the GS shiff(x, t)
from the global parameters defined above. This allows fomaparison between the profiles
obtained with the cylindrical approximation and those oi®d in toroidal coordinates. The
central value of the GS shiff(0, t) is approximated with

, .
Amiyzg%Q%+%ﬂ1-£).

Assigning a profile shape to the GS shift, it is computedast) ~ A(0, t)(1 — x?).
The GS shift can be used to estimate tiperofile in toroidal coordinatesye (X, t).
Indeed o IS given by [34]

QIor(,D, t) = -

ByoRo [A, L PR+ AN
Ofox| Ro+ A7 = p?

The toroidal approximation is then obtained thanks to thetimnship
Ry ax— (Ry + A)A
x| R+ Ay — (@x?
where q(x,t) is the safety factor profile considered previously and categ from the
dynamics ofy.

The dfective plasma current density is mordhdult to express in toroidal coordinates
with a GS shift. Indeed, this would require to compute

A+

qtor(xa t) = X q(x, t) (10)

< j¢ . B¢ > _FCZ,tor (821Z + aln(CZtor) a_‘ﬂ)
MoVior \9p dp  Ip
with
N P
Cotor = 4n? p - )
2o («&+mtm2—w—yzp%%+MN

andVy,, = 4n%0 (Ro+ A + pA’/2). A simpler way to take into account the geometry issues
is to use the definition of theffective currentl,(x,t) = V' < Bg > [2nuo and the
ratio lywor(1,t)/15ei(Lt) = 1 — Ag(t)/2 to set the boundary condition (6) as(1,t) =
—Rouol p(t)/2m X (1 - Ao(t)/2).

8. Simulations and comparisons with experimental results

The control-oriented model derived in this paper is now caraegd with some experimental
measurements and the results obtained with the CRONOS céfjafbintegrated modelling
tool that solves the transport equations along with the &aaffranov equilibrium in toroidal
coordinates. The complexity of this solver prevents ani+igge implementation but it is an
experimentally-based reference that we can use to valmateesults. We refer to our model
results withysim, as name and subscript for the associated simulator, angazenthem with
the experimentalgxp and CRONOS signals.
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This comparison does not intend to be exhaustive but foouisé®/o specific cases of
main interest. The first one is an ohmic shot with ICRH modulegtiand illustrates the
diffusive behaviour of the plasma model as well as some disatietisissues. The second
one is a LHCD shot, to illustrate the impact of the proposedirsgdaws related to this
system and of a non-inductive current source. In both cdsebdundary condition of the
diffusion equation is set with the plasma currgyft) and a test case witto,p(t) illustrates
the LHCD shot. The simulations are carried with 20 uniformistributed space steps and
with a sampling time of 1@ns

8.1. Ohmic and bootstrapfects

We analyse here the model results on Tore Supra shot 33683 ddesn't involve ECCD nor
LHCD. In this shot, the temperature and density profiles ardutaded with the ICRH power
and the plasma has the following steady-state charaatsrisf = 1.0 MA, B,, = 3.19T and
N = 4.5-3.0x10719m3,

I
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Figure 4. Comparison ofysim (—) with experimental measurements—) and CRONOS
signals ¢ - —) for shot TS-33632, based on the loop voltage (top), the oreagent of3 +1i/2
(middle) and the safety factor at the edge of the plasmadqibmtt

The first comparison is performed on the magnetic measureareh presented in
Figure 4, where the top part depicts the loop voltage, thadmaigart isg, + |;/2 and the
bottom part is the safety factor at the edge of the plaggid., t) (computed with the corrected
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formula (10)). ¥sim IS run both using the temperature and density profiles measents
(Figure 4(a)) and in a fully predictive way (Figure 4(b)). eltater case means thag, has
only the global parameters of the plasma &g, as inputs but doesn’t use the temperature
and density measurements. The proposed shape scaling ha3 BRL-96P(th) (for the
thermal confinement time) set the temperature and densifitgs. This test case is a worst-
case example since the central safety factor is less thammhehere is a high frequency
saw tooth &ect on the temperature profiles, which is not explicitly tak&o account in the
temperature model.

The results ofysim and CRONOS are equivalent fof,.,, €xcept during the current ramp up
and ramp down (not represented here) phases, which implg gamicular phenomena that
we didn’t consider. The magnetic measuremerngi,afl; /2 is best represented with;.,, even

in the predictive mode. The constant bias @{i, t) due to the cylindrical approximation
(reported in [34]) is successfully compensated by the géacaé correction proposed in
Subsection 7.6.
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Figure 5. Comparison ofygim (—) with CRONOS ¢ - -) for shot TS-33632 at = 7 s,
based on the safety factor profiles (top) and the currentitiengetective j, and bootstrap
jbs) profiles (bottom).

The second comparison is focused on the safety factor amdntulensities profiles.
There is no experimental measurements available for theggqal variables so we compare
Ysim With CRONOS only. The dierence between the use of the temperature and density
profiles, and the use of their approximation is also illusileand is more significant than in
the first comparison. Thg-profile is presented on top of Figure 5: we have an almoseperf
matching between CRONOS arig,,, when the measured profiles are used (Figure 5(a)) and
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Mode Discretisation| N | ey, (%) | Simulation time (s)
Meas. prof.| Uniform 20 7.37 1.09
Predictive | Uniform 100 5.56 8.53
Predictive | Non-uniform | 100 5.46 8.81
Predictive | Uniform 20 5.84 177
Predictive | Non-uniform | 20 5.18 1.76
Predictive | Uniform 10 5.64 1.30
Predictive | Non-uniform | 10 4.66 1.27

Table 2. Effect of the spatial distribution

a small diference, located at the centre of the plasma, for the preelictode (Figure 5(b)).
The same conclusion is verified for thiéextive current density profile, with a more important
mismatching at the centre. This illustrates the influencehef temperature on the flux
diffusion, througty, (which is proportional thadd’?). Nevertheless, the accuracy of the
profile may be sfiicient for most control applications, especially considgthat this specific
case study includes saw teeth and that the model can be dpuiditereal-time measurements
from the Hard X-rays in advanced control setups.

The impact of the spatial discretisation strategy is preeskim Table 2. The non-uniform
distributionsx = 2/N + Vai, wherea is such thal 6% = 1, is compared with the uniform
distribution for diferent numbers of discretisation poiisthanks to the resulting error on
the loop voltage

2
Jtv(:f (Vloop_lpsim(t) - V|00p—exp(t)) dt
t
o VR op-exgDelt

and to the simulation time (obtained when the simulator i tuith Matlad® on an Inte®
2CPU - 2GHzPC operated with Windows I\@). In each case, the non-uniform distribution
is performing better than the uniform one in terms of the reorV,yp, and increasing the
number of points does not necessarily decrease the errgs.iS8ue would clearly deserve
further analysis, as the optimal discretisation would aepen the system properties and
dynamics, but will not be investigated in this work. Insteae proposed a discretisation
scheme that allows for various possibilities and refer &, [56], where the féects of PDE
models discretisation is thoroughly investigated.

a/Ioop =

8.2. Lower Hybrid gect

The LH system is now introduced ifs;, and compared with CRONOS and experimental
results. The simulator behaviour is tested for the opegatwnditions of Tore Supra shot
35109, which is characterized by some variation jna constant, (0.6 MA) and a constant
power input (1.8 MW).

The magnetic measurementg,qq(t), By + |;/2 andq(1,t) are presented in Figure 6,
where experimental measurements, CRONOS agg are compared. The cases with
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Figure 6. Comparison ofysim (—) with experimental measurements-) and CRONOS
signals ¢ - —) for shot TS-35109, based on the loop voltage (top), the oreazent of3g + i/ 2
(middle) and the safety factor at the edge of the plasmadqimtt

measured and estimated temperature profiles are both eoedjdn Figures 6(a) and 6(b),
respectively. In both cases there is no significarffedence onVyp(t) while g(1,t) is
slightly underestimated (the correction proposed in Sciiise 7.6 only partially compensate
the cylindrical approximationfect). The main dference appears @8y + li/2, which is
underestimated when the temperature profile is estimated.

The safety factor and current densities profilesfgy, (run with measured and estimated
temperature profiles) and CRONOS are presented in Figure @ g-pnofile provided by
Vsim has a small dierence with CRONOS close to the centre, especially on Figime The
peculiar behaviour of CRONOS current profiles ot 0.5 may be due to some computational
artefacts and should not be taken into account into this emisgn. The profile ofjy, is
reasonably well represented as well as the bootstrap prefiiech is particularly accurate
when the measured temperatures and densities are available

The last profiles, presented on Figure 8, are obtained U4ipgt) to set the boundary
condition. While these profiles are not as close to CRONOS teeaslthose obtained with
I,,(t), they are still consistent with the plasma behaviour. Tilfeence between the two cases
(I, andVieop) mainly comes from the fact that the scaling laws are set Withvhich means
that the computation error induced on the plasma currenhwthie considered as an output
is fed back into the model through the inputs and more sggdrathe predictive mode, as
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Figure 7. Comparison ofysjm (—) with CRONOS ¢ - -) for shot TS-35109 at= 7 s, based
on the safety factor profiles (top) and the current densésctive j,, LH jin, ohmic j,, and
bootstrapjys) profiles (bottom).

illustrated in Figure 8(b).

To conclude on this comparison betwegg, and experimental results or CRONOS,
the proposed model provide for some satisfactory resultsufate enough for control
applications), even with a long sampling time and a small lmemof discretisation points.
The dfects of the main control inputs are well represented anddhgatation time is small
(5 sfor shot TS-35109). Comparing the errors on the safety famtaiiles introduced by the
use of the temperature scaling laws show that the modelast ter theg-profile, is not too
much sensible to these laws, as long as the orders of magraredsuitably represented. For
the magnetic measuremeft+ |;/2, the scaling laws introduce a constant bias.

9. Conclusions

We proposed in this work a new, control-oriented, model of turrent difusion in
tokamak plasma. The current profile dynamics was modelledhbylD magnetic flux
diffusion equation, using approximate formulae of the neoidalssesistivity codicient
and the bootstrap current. The non-inductive current ssuveere considered as Gaussian
distributions depending on the control inputs, which areved either from approximate
theoretical formulae for the ECCD or from experimental sealaws specifically developed
from Hard X-ray Tore Supra data for the LHCD term (the propasethod is detailed and can
easily be applied to other tokamaks, provided that HardyXamaasurements are available).
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Figure 8. Comparison offsim UsingVieep as a boundary condition (—) with CRONOS {-)
for shot TS-35109 at = 282 s, based on the safety factor profiles (top) and the current
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The input-output relationships and the discretisatiomass(in time and space) were
detailed to provide for a model that is computationalfifogent and robust, and particularly
suited for advanced control of the plasma profiles. For exenipcan be used directly
to estimate the plasma evolution over a short time-ranga fi@al-time measurements and
included in model-based predictive control schemes. Thdeinstructure also suggests that
nonlinear analysis may be an interesting tool for furthevetlgpments in plasma profile
control and to estimate the associated performance linitat

A new simulation tool was developed according to this matbed)low for a comparison
with Tore Supra experimental data and CRONOS code outputedBastwo diferent shots,
this comparison was carried out on the magnetic measursmasnwell as the safety factor
and current densities profiles. The precision of the moddliencomputational ficiency
have shown to be particularly satisfying for future contaxpplications. Such a tool can also
estimate the safety factor, current densities, toroiddhge and confinementieciency in real
time from the global parameters and temperature profilesuanements.

Appendix A. Discretisation method

This section presents a discretisation method that hasablastep in the spatial domain and
is implicit-explicit in the temporal domain. The spatiatdietisation method is motivated by
the fact that an improved resolution may be desired in spe@fions (such as the plasma
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centre) with a limited number of discretisation points. Tdiwice of these points can be
determined by the actuatgsensors placement or by the control objectives. The terhpora
discretisation method allows for a tradé-between numerical stability and precision. We
consider the functiorf(x,t) and denote byf;; its value atx, i = 1,..., N, and at timejat,
whereét is the sampling time angle N* is the time index considered.

Appendix A.1. Variable-step spatiajféirentiation

The sampling interval is defined a8 = X — X_1, with 6X; = X; = 0. Using Taylor’s series,
we can write the general formula

2
f(x+ Ax,t) = f(x,t) + AxT'(x,t) + ATX f7(x,t) + O(3)
wheref’(:) = 9f(-)/0x and O(3) denotesBand higher order terms. At tim@t, we have that

’ 6Xi2+l ”
firy) = fij + oxua F/(X, 1) + Tf (%, 1) + O(3)

7’ 6)(12 144

fiij = fij —oxf'(x,1) + Tf (%, 1) + O(3).
The first order spatial derivative éf-) is then computed by subtractirg, j from fi_; ;, which
gives
fin — ficej
frfix. t) = ————
(%, 1) 5% .1+ X
Similarly, the second order derivative is obtained by addijm j and fi_y ;:

finj — 26 + fiigj — (X1 — %) T/ (X, 1)

+ O(2).

f7(x,t) =2 O(2).
(%, 1) 5xL, + 0% +0(1)
Neglecting O(1), we finally write
f'(%, 1) = di(firej— fiiey) (A1)
f7(X, 1) = dofisyj — dafij + dafiiq; (A.2)
with
. 1 . 46X
di(i) = —, dy(i) = ,
0= o 7 6 w000+ om)
. . 4'6Xi+1
() = ——— i) = .
() SX2, + OX2 () (632, + OX2)(6Xi+1 + OX)

Note that the same formulas hold if the discretisation ggitime-varying.

Appendix A.2. Variable-step spatial integration

The spatial integration off(x, t) is performed based on the principle of Simpson'’s rule, Whic
is to find a polynomial that fits the curve in three points. Sacpolynomial is taken in
Lagrange basis and writes as

X—Xit1 X— X2 X=X X=Xy X=X X=X

P(x) = fi | + fivej + fisa :
Xi — Xit1 Xi — X2 Xit1 — Xi Xiv1 — Xis2 Xit2 = Xi Xiv2 — X1
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The integral between two pointsandx;,, is then

Xi+2 Xi+2
f f(x,t)dXzf P(x) dx
Xi Xi

62 + 6Xis1 [ 2611 — 6%z (6Xi41 + 6Xis2)° 26Xi2 — 6Xiv1
~ fi,j + i+Lj T oo li+2j|-

6 6Xi+1 5Xi+15Xi+2 5Xi+2
For the general case where the integration is carried owdasst the two locationg,

andXp,
Xn @int—1 Xm2k+2 Ky Xn+1
Xn
f(x,t)dx = g f dex+i—f P(x) dx
fxm 9 i, Xt B+ 5% )

m+2k Xn-1

where
aint = (N-mM)/2 and Binx=0 if (n—m) is even,
{aim =(n-m-1)/2 and Bn=1 if (n — m) is odd.
This integration method is particularly computationallfi@ent and useful from a
control point of view since it allows to approximate the gn& operator with a linear operator

as
£

Xi
f f(x,t)dt~ Mine(i,1 : 1)
0
fIaJ
where My € RNN is the integration matrix, constructed with the previousiapns, and
Mint(i, 1 : 1) denotes the columns 1 t@f row i.

Appendix A.3. Temporal gierentiation

It is performed using amplicit-explicit scheme, as proposed in [33]. For the general case
where the function to be discretised writes |g%,t) = g(x,t), the time derivativef(-) is
obtained with

fijor = fi fijor — fi fijer—fij
e ”) = h(—" ———) (1~ h)(—" - (A.3)
ot Ot o ot )i

whereh € [0, 1] and
fi,j+l - fi,j fi,j+1 - fi,i
R e R

Note that for the special case of théfdsion equationg typically depends ori’, f”” and the
source terms. The temporal discretisation method desthbee corresponds to the Crank-
Nicholson scheme if = 0.5.

Appendix B. Gaussian distribution

The ECCD and LHCD systems generate distributed plasma curepasds, which are
represented as Gaussian distribution. The general equadiscribing such a distribution
is given by
p(t) — x

o (t)

Jni(% 1) = Jni(x. 1)
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where, in the classical probabilistic terminologyt) is the mean and-(t) is the variance of
the function considered. Integrating the previous eqoatie have

ini(%,1) = O(t)e “O-2?/200)

whered(t) sets the maximum value gfi(x,t) (atx = ). A discretised version is obtained
thanks to the central fierence method as

j i L._j -] ) ,Ll—x| . /,l—x| ) .

m(I;Xail n :SI;(. L= Jni,i,jjo_—j S Jniissj = (0% + 5Xi)10_—jjni,i,j + Jniji-1,

with the boundary conditions

i 15 /20] ; (i —3)2 /20
Jnigj = ﬂj e*’?i and hizj = ﬂj g Wj=x2)"/ 20}

for both CD systems.

Appendix C. Optimal fitting method

Given a set of experimental measurements and an approfitiatg function, this section
describes an optimal identification method to determindittieg function parameters. Some
proper references on numerical solutions by iterativeckeand gradient methods can be
found in [57]. More specifically, a similar design method weed in [58] for the optimal
control of systems with stochastic components in the dyosnWe consider here the steady
state (time-invariant) behaviour of a physical quantityadanction described by a set of,
measurements (i.e. the sampling times), which has to be lkamgugh to ensure that the
resulting fitting function represents the physical phenomd he set of measured inputs is

I = {|1, |2,.._,|ni} € RMmxn

where n; is the number of physical quantities that influence the ifiedt one, and the
measured outputs are denotedybry R™. The estimated output is then

Y@, 1) = 1(#(31),9), i=1...ny

wheref(-) is the fitting law,.# (i) corresponds to the input measurements ofthexperiment
andd is the vector of design parameters.

Appendix C.1. General formulation

A classical identification problem is to find that minimizes the dierence between the
measured and estimated data. This is done in this sectiorhdysing a cost functiod
which reflects the variance of the estimation error from &giset of measurements:

39) = = > IyG) - 960, P
i=1

m <
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The output error is then minimized for satisfying
9 = arg rr;inJ(ﬁ)

This optimization problem can be solved with a descent &lyor, using the sensitivity of(i)
with respect ta?, expressed aS(#, i) = ay(i)/d9. The gradient writes as

vI@) =~ 3 50 - 960, )S(. )
m =1

and the optimal paramet#* is obtained by moving along the steepest sle{¥&)(}) with

a stepa, which has to be small enough to ensure that —aVJ(?) converges ta?*. This
step is chosen according Mewton’s metho@nd writes asr = (¥J(9) + vl)™1, wherev is

a positive constant introduced to ensure strict positigsrad¥ J(¢) is the pseudo-Hessian,
derived using the Gauss-Newton approximation as

P = ni i S(@,1)S(.i)"
m =1

The optimal set of fitting parameters is finally obtained wiita variation law
D1 =0 — ayVIW) (C.1)
o =PI +vl)? (C.2)
for | suficiently large.

Remark 4 The convergence speed of the algorithm is inversely prapat to the design
parameterv but choosing this parameter too small may create some asoitls in the
algorithm.

Appendix C.2. Linear regression

The previous method is particularhyffieient when the output is estimated with a linear
regression technique. Indeed, in that case we can wWiita) = f(.#(i)) xd,i =1...ny, and
the sensitivity function is simplified as

S@®,i) = S(i) = f(#(1)) (C.3)
Consequently, the pseudo-Hessian func#@randa do not depend on the design parameters.
A commonly used fitting function is given by

O = aol IS 1"
The linear regression is then performed with the output
{ y =In(O)
Y() = In(ao) + @1 In(l1) + azIn(l2) + ... + an In(ly,)
whereO is the measured output, and the previous algorithm is applith

a =[In(ao) a1 @2 ... an]"

f(#) =[1,, In(l) In(ly) ... In(ly)] (C.4)
where 1, is a column vector ofi,, ones.
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Appendix C.3. LH deposit estimation

The proposed method is applied to the estimation of the |ldwbrid current deposit width
W, with the fitting function (with 6 parameters)

Iy — @1 | @2 /03 4 @5

The optimal parameter vector is computed from the variatem (C.1)-(C.2) with the
sensitivity function (C.3)-(C.4). A set of 111 averaged measwents, performed on Tore
Supra shots ranging between the shot numbers 34496 and,3&t6Emines the values of
andO. This optimal parameter determination method is also edd estimate the centre
of the deposit profile (radial position of the maximum valaayl provide for the cdagcients
ao, . - . , s Of the relationship

~ R %= 5% %5
Mhxr = aOB¢OIp n SPLHN// .
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