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Abstract. A scheme for an X-ray free electron laser is proposed, based on a Raman process occurring during

the interaction between a moderately relativistic bunch of free electrons, and twin intense short pulse lasers

interfering to form a transverse standing wave along the electron trajectories. In the high intensity regime

of the Kapitza-Dirac effect, the laser ponderomotive potential forces the electrons into a lateral oscillatory

motion, resulting in a Raman scattering process. I show how a parametric process is triggered, resulting

in the amplification of the Stokes component of the Raman-scattered photons. Experimental operating

parameters and implementations, based both on LINAC and Laser Wakefield Acceleration techniques, are

discussed.

PACS. 42.55.Vc X- and gamma-ray laser – 41.60.Cr Free-electron lasers – 42.65.Dr Stimulated Raman

Scattering

1 Introduction

Obtaining a laser effect in the extreme Ultraviolet and

X-ray ranges has long been a major objective in laser sci-

ence. The first proposals and attempts started in the late

sixties and early seventies with the first contributions of

Duguay and Rentzepis [1], and of Jaeglé [2]. After almost

thirty years of research coupling the physics of lasers and

of plasmas used as active media, numerous lasing lines

have been demonstrated and brought to saturation in the

extreme ultraviolet and very soft X-ray ranges. In par-

allel, the progress of ultrashort pulse intense lasers have

led to other scenarios : high harmonic generation is now a

well established method to use extreme non-linear optics

in order to create laser-like radiation in the XUV spec-

tral range. Both high harmonic and soft X-ray lasers from

laser/plasma interactions are reviewed in a recent text-

book [3].
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However, these processes are usually limited to photon

energies of few hundreds of eV; the conversion efficiency

from laser to XUV pulses drops at higher photon energies,

which limits severely the applicability of laser-plasma X-

ray lasers and high harmonic generation, in the soft to

hard X-ray ranges.

Two main paths have been followed in recent years to

obtain intense X-ray pulses : X-ray free electron lasers, and

incoherent X-ray emission during the interactions between

intense lasers, and matter under various phases : solids,

clusters, relativistic free electrons.

After the pioneering proposals and first developments

of Free Electron Lasers [4,5], it was proposed to extend the

concept to the extreme ultraviolet and soft X-ray ranges

[6,7]. This resulted in large scale X-ray free electron projects

in the US (LCLS), Japan (SCSS) and Europe (FLASH and

TESLA X-FEL) [8]. A huge potential of new applications

is expected in many sciences, from physics to biology; the

cost and size of these projects are obvious limiting factors

to a widespread use of X-ray free electron lasers.

A contrario, facilities to generate X-ray pulses during

the interaction of intense lasers and matter are compact,

less costly, but yield mostly incoherent light, with bright-

nesses smaller by several decades. Of particular interest

here is the process of Thomson (or inverse Compton) scat-

tering of laser light, in which photons from a high power

laser impinge on a bunch of moderately relativistic elec-

trons , and scatter with an important Doppler shift of 4γ2,

γ denoting the Lorentz factor, thus appearing in the labo-

ratory frame as X-ray photons, collimated in a small angle

[9]. The main advantage of this laser/free electron inter-

action process is the compacity of the setup : scattering

real laser photons, whose wavelength is in the microme-

ter range, allows to reach X-ray wavelengths with Lorentz

factors of typically 102, whereas a Lorentz factor of 104 or

more is required to scatter virtual photons of an undula-

tor, with a period of a few centimeters. Electron energies

up to 50 MeV only are therefore required with laser scat-

tering, which can be obtained with a small linac of only

few meters, instead of few kilometers necessary to reach

multi-GeV energies.

Being able to combine both schemes in order to blend

their attractive features: compacity of laser scattering,

and coherent amplification of a X-ray free-electron laser,

would be extremely appealing. As an attempt in this di-

rection, many authors have emphasized that the action

of a laser field, propagating in the opposite direction to

the relativistic electrons, is extremely similar to that of

the magnetic field within an undulator. A laser-undulator

free electron laser has therefore been repeatedly proposed

[10,11,12,13]. However, the strength parameter K of the

laser undulator remains usually very small with most con-

ceivable laser parameters. The gain per oscillation period

is then severely reduced with respect to normal undula-

tors, which implies to force the electrons to wiggle a very

large number of times N during the amplification. Since

the level of mono-energeticity of the electron bunch has

to be smaller than 1/2N for the Compton free electron

laser effect to be effective [14], this scheme would require

a quality of mono-energeticity beyond the present state
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of the art, as well as a remarkably flat intensity profile of

the laser pulse, both temporally and spatially. Numerical

studies were performed by Bacci et al. [15], that predict a

coherent enhancement of extreme UV radiation, consider-

ing however a remarkable mono-energeticity of 10−4, and

extremely ambitious laser parameters.

In a variant of this scheme, several contributions pre-

dict novel phenomena at the onset of quantum effects,

expected again only for outstanding qualities of mono-

energeticity [19,20,21]. Finally, laser wakefield accelera-

tion of electrons is increasingly considered as a potential

compact substitute of conventional accelerator technol-

ogy, at least for extreme UV free electron lasers [17,18].

A scheme coupling laser acceleration of electrons , and a

laser undulator, can open the way to an all-optical Xray

free electron laser [16]. However, all these schemes require

very stringent parameters of mono-energeticity and emit-

tance of electron bunches, and seem extremely challenging

in view of present day electron and laser technologies.

We explore here an alternative opportunity to create a

compact X-ray FEL, by coupling the physics of free elec-

tron lasers, of laser-plasma XUV lasers, and of extreme

non-linear optics. By creating artificially a quasi-internal

degree of freedom to relativistic free electrons dressed by

intense optical lasers, a non-linear Raman scattering pro-

cess might be switched, leading to exponential amplifica-

tion of X-ray light. A laser-like beam could then be en-

visioned, starting either through a SASE process (Self-

Amplified Spontaneous Emission), or through the injec-

tion of a low intensity, soft X-rays beam from high har-

monic generation [22,23].

The setup considered is first depicted, and the electron

dynamics described; this allows to unravel the character-

istic emission frequencies of the Raman lines. In sec. 4,

the amplification process is modeled analytically, result-

ing in the calculation of the gain coefficient. Finally, the

prospects for an experimental test are discussed, in view of

the present state of the art in laser and electron accelera-

tor technologies. A survey of the main relevant parameters

with conventional or laser wakefield acceleration systems

is presented, along with order-of-magnitude estimates of

the laser specifications required to achieve lasing in the

X-ray range.

2 Principles of a Raman X-ray FEL

2.1 Interaction geometry

As schematized in Fig. 1, let us consider the interaction

between :

i) a bunch of free electrons, as issued either from a lin-

ear accelerator or a small storage ring, with a kinetic en-

ergy in the range from 10 to 50 MeV, and hence a Lorentz

factor from 20 to 100; the propagation axis of the electrons

is taken as the conventional z-axis. This element is typical

of Thomson (inverse Compton) scattering experiments, or

of free electron laser, except for the use of smaller electron

kinetic energies;

ii) a femtosecond or picosecond intense laser system,

whose beam is split into two strictly identical parts. The
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Fig. 1. Proposed configuration for a Raman X-ray laser. The

color code from yellow to red indicates the height of the pon-

deromotive potential due to the laser standing wave.

twin beams are made to counter-propagate with respect

to one another, along the x-axis perpendicular to the elec-

tron direction. The polarization vector of the twin beams

will be chosen as linear along the y axis (vertical linear

polarization, if xz is considered as an horizontal plane).

In this configuration, the magnetic field of the twin lasers

is along the z axis.

Both beams are focused along a line, in order to overlap

in space and time over the electron path. This superpo-

sition of the laser beams along the z axis results in the

formation of a standing wave along x. The beam inten-

sity along the focal line will have to be controlled to be

as constant as possible, after a beam ramp-up segment,

and will be given a spatial profile as flat as possible. Such

constraints are similar to those encountered for optical

parametric chirped pulse amplification systems, and can

be fulfilled by means of high quality optical elements and

spatial phase control devices, available with present day

technologies. This may also ensure that the positions along

x of the nodes of the standing wave are constant along the

propagation direction z.

An important point is to synchronize the advance of

the electrons, and the illumination by the twin transverse

laser beams. Indeed, most studies of laser-plasma soft X-

ray lasers [24] display a similar configuration, in which

a transverse high intensity laser impinges at 90◦ onto a

solid surface, thus creating an optically active plasma. In

most cases, the duration of the population inversion at

each point within the plasma is well below the traversal

time of the photons in the amplification region; as a result,

the transverse illumination by the laser has to be made to

follow the displacement of the X-ray photons along the

target. This is achieved thanks to a special optical geom-

etry, in which the energy front of the illuminating laser is

decoupled from its phase fronts, by means of diffractive

elements [25,26]. In this ”inhomogeneous wave” geometry

(also sometimes referred to as ”traveling wave” geometry),

the transverse laser should ideally have an energy front

oriented at 45◦ from the phase fronts, yielding a displace-

ment of the illumination area at exactly the speed of light.

Various variants of the optical implementation of the trav-

eling wave are being considered, with an accuracy at the

femtosecond level, in order to explore X-ray laser schemes

based on innershell pumping [27]. We propose to use such

an inhomogeneous wave geometry, in which the inhomo-

geneous traveling wave is split into two beams, somehow

alike the configuration proposed by Pretzler et al. [28] for
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Fig. 2. Configuration of the two counter-propagating laser

inhomogeneous waves. The energy front is oriented at 45◦ from

the phase fronts, resulting in the advance of the interference

region at velocity c along the z axis.

an inverted field auto-correlator. The twin beams are sub-

sequently focused along a line in a counter-propagating

configuration, as shown in Fig. 2. The optical implemen-

tation may require to control precisely the angle between

the phase and energy front, resulting in a fine tuning of

the advance velocity of the superposition region of the

twin beams.

At moderately high laser intensities, the electrons in

the bunch will then interact with the standing wave in a

non-linear way, as explained now.

2.2 High intensity relativistic Kapitza-Dirac effect :

numerical simulation

Kapitza and Dirac [29] have shown that electrons inter-

acting with a light standing wave can diffract from this

light lattice – thus undergoing the reverse process of light

diffraction on a matter density grating. In the low intensity

limit, the interaction with the light is a small perturba-

tion to the electron free motion, that induces a momentum

transfer of ±2h̄k, where k is the wavevector of either beam

forming the standing wave [30]. Conversely, at high inten-

sities of the order of 1013 W/cm2 or more for near infra-red

lasers, the electron dynamics is modified considerably by

the action of the light lattice. Free electrons interacting

with a spatially non uniform laser field are indeed submit-

ted to a significant ponderomotive force, ie, a drift force

tending to expel the electrons from the regions of highest

intensity [31]. The general expression of the ponderomo-

tive force Fp is :

Fp = −∇
e2E2

4mω2
0

, (1)

where −e is the electron charge, E the local electric field,

m the electron rest mass, and ω0 the laser angular fre-

quency. In this case, non-relativistic electrons injected into

the standing wave will feel a ponderomotive force deriving

from a spatially oscillating potential :

Vp =
e2E2

0

mω2
0

sin2(k0x), (2)

with k0 = ω0/c. If the electron transverse kinetic energy

is smaller than the maximum of Vp, it will be trapped

within the ponderomotive potential well. In the opposite

case, the electron will succeed in going through the light

lattice, with a momentum transfer up to several thousands

h̄k or more.

Bucksbaum, Schumacher, and Bashkansky have stud-

ied experimentally the Kapitza-Dirac effect in the high

intensity regime, using Above-Threshold Ionization as the
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source of electrons within the standing wave [32]. Giant

momentum transfers were indeed observed; importantly,

this study concluded on the validity of a classical descrip-

tion of the electron motion in the high intensity regime.

The major difference between the experiment of Bucks-

baum et al., and our proposed X-ray laser scheme, is re-

lated to the relativistic velocity of the injected electrons –

a situation not considered so far. As a first step to explore

the electron dynamics, we first present the results of a full

numerical integration of the electron trajectory.

As a model case, let us consider a 10 MeV electron

(γ = 20), with a small initial transverse velocity, and em-

bedded in the standing wave. We calculate the electron

motion using the exact equations of special relativity, and

considering both the electric and magnetic fields of the

incident laser waves [33] :

d

dt

[

γmc2
]

= v.E

dv

dt
=

q

γm

[

E− v

c2
(v.E) + v × B

]

where all dynamical variables are considered in the lab-

oratory frame. The laser parameters considered are those

of a Titanium-Sapphire laser, with a wavelength of 800

nm, and an intensity per beam of 1018 W/cm2. The elec-

tron initial transverse velocity along x is 6. 105m.s−1. In

Fig. 3(a), the electron is seen to wiggle along x around

the minimum line of the ponderomotive potential, with

a period of 55 fs in this specific case. This period is not

only longer than the laser period T0 = 2.5fs, and also

much longer than the oscillation period of 2.7 fs expected

from the non-relativistic potential function (2) (see Eq. 9

Fig. 3. (a) Transverse motion of a relativistic electron trapped

laterally in a laser standing wave. (b) Corresponding laser-

induced oscillation. (c) Emission spectrum for an electron in a

standing wave (solid line) and in a normal single side illumi-

nation (90◦ Thomson scattering), blue dashed line).

below). One should also notice that the electron motion

along x is perfectly smooth, even within the time span of

the laser cycle T0 – the ponderomotive potential can there-

fore be considered as a tool to model the electron dynam-

ics, even on a time scale smaller than T0. Fig. 3(b) shows

how the slow wiggling along x modifies the laser-induced

oscillation, which appears now modulated at twice the

wiggling frequency. Finally, Fig. 3(c) displays the spec-

trum of the light scattered in the +z direction (solid line),
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calculated as the squared modulus of the Fourier trans-

form of the acceleration along y, and taking into account

the Doppler shift. The dashed line shows for comparison

the light spectrum calculated for the same electron ini-

tial conditions, but assuming one of the twin beams to be

suppressed. The Doppler-shifted emission line, character-

istic of 90◦ Thomson scattering, is seen to be split into

two Raman components, with an important drop in emis-

sion intensity because of the electron trapping close to the

potential minimum.

An important issue is how relativistic electrons may

be injected into the standing wave. Fig. 4 shows few test

cases of electrons, chosen at random in an electron bunch,

whose normalized emittance is 1 mm.mrad, focused onto

a spot of 50 µm radius rms. The standing wave is assumed

to start with a 3 mm long ramp, corresponding to 10 ps,

with sinus-square intensity profile, followed by a plateau

of constant intensity. In a first step, the electron motions

are hardly affected by the standing wave; as the latter

increases further, the electrons are seen to get trapped

in one of the potential wells, with a gradually decreasing

excursion from the minimum until the end of the ramp.

The light lattice then acts as a duct, able to confine and

guide the electrons up to the end of the illuminated area.

In this simple calculation, we do not taken into account

any back action of the light field emitted by the wiggling

electrons on their trajectories; their oscillations along x

remain therefore purely randomly phased up to the end

of the interaction region.

Fig. 4. Test cases of electron injection into the light lattice.

Bunch parameters : ǫN = 1mm.mrad, γ = 20, spot size rms

σx = 50µm. The standing wave is gradually switched on with

a 10ps ramp. The data for figure 3 are taken from one of these

trajectories, between 10 and 12 ps.

2.3 Collective electron motion under X-ray irradiation

We now examine how electrons injected into the light lat-

tice, may be coupled to an external X-ray field, whose

frequency corresponds to one of the Raman modes dis-

played in Fig. 3(c). We therefore add the possibility to take

into account an additional electromagnetic field E1(z, t) =

E0
1 cos(ω1(t − z/c)), where ω1 corresponds to the Stokes

mode. The X-ray electric and magnetic fields are simply

added to the laser fields in the computation of electron

motions. We wish to investigate how this X-ray field may

modify the distribution in space of the electrons close to

the bottom of the potential wells, at a given time.

We consider an initial ensemble of macro-particles, first

injected into the light lattice with the same parameters as

in Fig. 4, and follow the electrons in time throughout the
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ramp and the interaction regions. For the sake of simplic-

ity, we will switch on the X-ray field at the end of the

ramp region, and keep it constant up to the end of the

interaction region. In the current example, we restrict the

calculation to a slice of phase-space for the initial injec-

tion, ie, we consider only electrons initially close to the axis

of the potential well, to within λ0/15. Taking all electrons

at that stage, including the eccentric ones with large am-

plitude and reduced frequency oscillations, would indeed

blur the final figure.

Fig. 5(a) displays the final space distribution (z,x) of

an ensemble of 1000 such electrons, with a X-ray field

amplitude E0
1 = 1010V/m, and an interaction region of

75µm. The region of interest is taken here to have a width

of half a laser wavelength, which is the period of the light

lattice, and a length of two X-ray wavelengths 2.(2πc/ω1).

Fig. 5(b) shows the distribution of electrons with identical

initial conditions following the ramp, but subjected to a X-

ray field amplitude E0
1 = 1010V/m within the interaction

region.

While each electron oscillates in the light potential

well, the random character of the injection into the light

lattice results in an evenly distributed electron distribu-

tion in Fig. 5(a). On the contrary, one notes easily an

overall oscillation of the centroid of electron lateral posi-

tions in Fig. 5(b), with the period of the X-ray wavelength

along z. The red line is a least-square fit a a sine function

to the electron distribution; this gives an intuitive notion

of a collective transverse displacement function. While the

detailed process will be unraveled below, it is clear at this
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Fig. 5. (a) : space distribution of electrons injected into the

light lattice in the conditions of Fig. 4, with no X-ray field.

(b) : space distribution after the interaction with a y-polarized

X-ray field along z, at the Stokes frequency. Red lines show

least-square fits to sine functions.

stage that the beating between the Doppler-shifted laser

frequency, and the Stokes X-ray frequency, is bound to

induce a resonant excitation at the Raman frequency, re-

sulting in this collective behaviour. The same calculation

at the anti-Stokes frequency gives absolutely similar dis-

tributions.

These numerical results will now allow us to propose an

analytical modeling of the electron dynamics, based on a

ponderomotive potential approach, and that will consider
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that electrons remain confined close to the bottom of the

potential wells.

3 Analytical description of single electron

dynamics

3.1 Analytical description of the single electron

dynamics in the light lattice

We model the motion of electrons, moving along the +z

direction, and injected into the superposition of two trans-

verse counter-propagating lasers : one beam in the +x

direction, E+
0 (x, t) = E0 sin(k0x − ω0t)ey, and an iden-

tical beam propagating in the −x direction, E−

0 (x, t) =

E0 sin(k0x+ ω0t)ey. E0 is the real-valued electric field as-

sociated to each of the twin beams, k0 and ω0 the laser

wavevector and angular frequency respectively, and ey

(resp. ex, ez) will denote the unit polarization vector in

the y (resp. x,z) direction. These twin laser beams inter-

fere to form a standing wave, described as :

E0(x, t) = 2E0 sin(k0x) cos(ω0t)ey (3)

B0(x, t) = −2E0

c cos(k0x) sin(ω0t)ez, (4)

We assume that the standing wave is switched on adi-

abatically along z (gradual build-up of the laser intensity

along the electron trajectory), and that the transverse ki-

netic energy of the electron is small with respect of the

maximum of the ponderomotive potential Vp. Then each

electron undergoes an harmonic oscillatory motion close

to the bottom lines of Vp, with an effective potential given

to first order by :

V 0
p =

e2E2
0

mc2
x2 (5)

where for simplicity we have considered small displace-

ments around the minimum potential line x = 0. In this

harmonic potential well, a non-relativistic electron oscil-

lates with a frequency Ω′:

Ω′ =

√
2eE0

mc
(6)

Surprisingly, this oscillation frequency is independent from

the laser frequency, but varies as the square root of laser

intensity.

Let us consider now a relativistic electron, of velocity

v (Lorentz factor γ = (1 − v/c)−1/2 ≫ 1), as issued from

a linear accelerator. Due to the relativistic mass increase

in the laboratory frame, the ponderomotive potential be-

comes :

Vp =
e2E2

0

γmω2
0

sin2(k0x), (7)

and the transverse equation of motion close to the bottom

of the potential well is :

γmx.. +
2e2E2

0

γmc2
x = 0 (8)

, which yields an oscillation frequency :

Ω =

√
2eE0

γmc
, (9)

in excellent agreement with the numerical values obtained

from the exact numerical calculation of section 2.2. One

alternative way to obtain the same expression is to trans-

form the standing wave to the electron rest frame, evaluate

the oscillation frequency (6) in the ponderomotive poten-

tial, and transform the frequency back to the laboratory

frame, thus yielding the same expression (9).
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The position of an arbitrary electron i can hence be

described in the laboratory frame as :

z0
i (t) = z0

i (0) + vt

x0
i (t) = ∆Xi cos(Ωt − Ψi) (10)

y0
i (t) = yD

i (t) +
eE0k0∆Xi

γm

∑

ǫ=±1

cos((ω0 + ǫΩ)t − ǫΨi)

(ω0 + ǫΩ)2

where the initial position z0
i (t), the vertical drift yD

i (t),

the excursion ∆Xi and phase Ψi of the free oscillation

along x, all result from the initial injection conditions of

the electron in the standing wave. We recover in this sim-

ple model that the wiggling in the y direction is split into

two Raman shifted lines, of frequencies ω0 ± Ω. The elec-

tron oscillation induces light scattering, which, along the

electron direction, occurs at frequencies :

ω1 =
ω0 + ǫΩ

1 − v/c
, (11)

where ǫ = +1 corresponds to the anti-Stokes Raman com-

ponent, and ǫ = −1 to the Stokes component. The 1−v/c

factor results from the Doppler shift, and corresponds to

a frequency up-shift of 2γ2 in the highly relativistic limit.

These analytical values agree again with those displayed

on Fig. 3(c).

3.2 Single electron coupling to a Raman scattered

wave

Let us now consider the coupling between the single elec-

tron dynamics in the standing wave, and a Raman scat-

tered X-ray wave E1 propagating along z:

E1(z, t) = E1 cos(ω1t − k1z)ey (12)

where k1 is the wave-vector along +z corresponding to

the angular frequency ω1 given by Eq. 11. This field is

assumed to be polarized along y, since it results from the

scattering of the y-polarized laser beams. The magnetic

field B1 of this X-ray wave is therefore directed along x.

Each electron will see its motion modified by the coupling

of the laser standing wave, and of the X-ray wave, via

Lorentz forces. Two terms can be distinguished : E1 in-

duces a small amplitude wiggling around y that couples

to the large magnetic field of the standing wave along z,

resulting in a Lorentz force along x; and E0 induces a

large wiggling along y, that couples to the initially small

magnetic field of the X-ray wave, resulting in a second

Lorentz force, directed along z. It can easily be shown

that these two terms have exactly the same magnitude;

however, the latter is obviously non resonant, whereas we

will show hereunder that the former induces a resonant

oscillation of the electron captured within the pondero-

motive potential wells. The electric force experienced by

electron i due to the X-ray field E1 is :

F1(t) = −eE1 cos
(

ω1t − k1(z
0
i + vt)

)

ey

= −eE1 cos ((ω0 + ǫΩ)t − Φi)) ey, (13)

where Φi = k1z
0
i . The resulting wiggling velocity

v1(t) =
−eE1

γm(ω0 + ǫΩ)
sin ((ω0 + ǫΩ)t − Φi)) ey (14)

couples to the laser magnetic field to yield a transverse

Lorentz force :

FL(t) =
−eE1E0

γmc(ω0 + ǫΩ)
cos(ǫΩt − Φi)ex (15)
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where we have neglected a rapidly oscillating term at an-

gular frequency 2ω0. The x-motion follows therefore the

following equation :

ẍ + Ω2x =
−e2E1E0

γ2m2c(ω0 + ǫΩ)
cos(ǫΩt − Φi) (16)

The solution is the sum of a freely oscillating motion x0(t)

resulting from the injection conditions of the free electron

into the standing wave, as given by (10), and of a forced

term δx :

δx(t) =
−eǫE1t

23/2γm(ω0 + ǫΩ)
sin(ǫΩt − Φi) (17)

It is worth to note that its amplitude almost does not

depend on the laser field E0.

We now aim to infer from the electron forced oscillation

the work induced by the X-ray field E1 onto the electron

velocity along y induced by the laser field. Let us start by

the anti-Stokes case ǫ = +1.

The y-motion of the forced electron can be deduced

from its x-motion as :

δÿ =
−2eE0

γm
sin(k0x(t))cos(ω0t) (18)

We assume again that the electron remains close to the

bottom of the potential well, so that sin(k0x(t)) = k0x
0(t)+

k0δx(t); the y velocity can therefore be approximated by

the sum of the velocity of the free y motion of Eq. (10),

and a forced velocity δẏ:

δẏ =
−e2E0E1k0t

23/2γ2m2c(ω0 + Ω)2
cos[(ω0 + Ω)t − Φi]. (19)

The average value of the work of the force −eE1 per unit

time is therefore :

PAS =< δẏF1 >=
e3E0E

2
1t

25/2γ2m2c(ω0 + Ω)2
(20)

This power is positive, meaning that the electron gains en-

ergy, and conversely that the X-ray wave loses energy. This

corresponds necessarily to a damped propagation mode for

E1.

If we now turn to the Stokes (ǫ = −1) case, the forced

y-velocity is :

δẏ =
e2E0E1k0t

23/2γ2m2c(ω0 − Ω)2
cos[(ω0 − Ω)t − Φi]. (21)

resulting in a negative power transfer :

PS =< δẏF1 >=
−e3E0E

2
1t

25/2γ2m2c(ω0 − Ω)2
(22)

The Stokes scattered X-ray wave will therefore gain en-

ergy from the interaction with the forced part of the elec-

tron motion. The increase of E1 will result in an enhanced

forced motion δx and δy, which will increase in turn the

power transfer to E1. We can therefore expect an expo-

nential amplification of the Stokes wave, that is, to start

a stimulated Raman scattering process in the forward di-

rection with respect to the electron beam.

4 Analysis of the amplification process

The analysis of the previous section was purely based

on a kinetic, single electron description. We now turn

to a macroscopic description, and aim to set the evolu-

tion equation along z of an X-ray field E1, coupled to the

current density J1 induced by the electron oscillations in

the laser field, in conditions where the electrons exhibit

bunching in the transverse direction x. We will therefore

introduce a mean electron displacement function δx(z, t)

(illustrated as a red line in Fig. 5(b) ), that will play in the
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derivation a role very similar to that of the longitudinal

bunching factor of Compton Free Electron Laser theory.

From now on, we will focus on the Stokes case.

4.1 Modal analysis

We start from the exact propagation equation of the X-ray

field E1, polarized along the y axis :

∂2E1

∂z2
+ ∆⊥E1 −

1

c2

∂2E1

∂t2
=

1

ǫ0c2

∂

∂t
J1 (23)

We split the calculation of Eq. (23) in three steps :

i/ write down the current density J1 as a function of the

mean displacement δx; ii/ compute the evolution of δx for

the electrons, subject to a Lorentz force along x induced

the laser B-field and the X-ray field E1 ; iii/ get back to

the propagation equation (23), with the newly obtained

expression for the current J1.

As the various fields are all slowing evolving in space

and time, we will systematically introduce envelope func-

tions, and make use of the slowly varying envelope ap-

proximation (SVEA) along the electron motion.

i/ The current density J1(x, z, t) can be obtained from

:

(

∂

∂t
+ v

∂

∂z

)

J1 =
2e2E0

γm

∑

i

δ(r − ri) sin(k0xi) cos(ω0t),

(24)

where the summation runs over all electrons i in the bunch,

and ri indicates the position of electron i. We know from

section (3.2) that the electron motion along x has a free

and a forced component, xi(t) = x0
i (t)+δxi(t). The forced

part δx is identical for all electrons in a same slice in the

electron bunch, assumed for the time being to be mono-

energetic, and in the same potential well. In contrast, sum-

mation over all particles contained in a slice along z brings

the total free motion x0
i contribution to average out to 0.

This allows us to define a transverse displacement function

δx(z, t) :

δx(z, t) =
1

N(z, z + dz)

∑

j

xj(t), (25)

where the summation runs over the all N(z, z + dz) elec-

trons contained in the slice between z and z+dz at time t,

and in the potential well centered at the origin x = 0. One

may note that the transverse displacement of the next po-

tential well, with respect to its center at x = λ0/2, has

the opposite value −δx; however the laser electric field is

also dephased by π, so that the resulting polarizations at

ω1 are in phase for all potential wells. Consideration of

δx around x = 0 is therefore well suited to the follow-

ing derivation. In the small angle approximation, we also

simplify sin(k0xi) to k0δx.

In parallel, we reduce the fields E1(x, z, t) and J1(x, z, t)

to their transverse average values E1(z, t) and J1(z, t), and

introduce the envelope functions Ẽ1, j̃1 and δx̃, such as

E1 = Ẽ1 exp i(k1z − ω1t)+c.c., J1 = j̃1 exp i(k1z − ω1t)+

c.c., and δx = δx̃ exp i(k1z−(ω1−ω0)t)+c.c.. To keep con-

sistent with this transverse field averaging, we neglect the

diffraction term of Eq. (23). The spatial average procedure

leads to introduce the electron average number density ρ.

With these definitions, the envelopes for current density

and transverse displacement are related by :

j̃1 =
ie2ρE0k0

γm(ω0 − Ω)
δx̃ (26)
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ii/ The transverse displacement function δx follows

the eulerian analog of Eq. (16) :

(

∂

∂t
+ v

∂

∂z

)2

δx + Ω2δx =
−e

γm
V1 × B0 (27)

where we have introduced the velocity field V1 following

from :

(

∂

∂t
+ v

∂

∂z

)

V1 =
−eẼ1

γm
exp i(k1z − ω1t) + c.c. (28)

so that, with V1 = Ṽ1 exp i(k1z − ω1t) + c.c. :

Ṽ1 =
−ieẼ1

γm(ω0 − Ω)
. (29)

The Lorentz force term is therefore

− eV1 ×B0 =
−e2E0Ẽ1

γmc(ω0 − Ω)
exp i(k1z − (ω1 − ω0)t)− c.c.

(30)

where we have dropped non resonant terms at frequency

ω1 + ω0 (that would correspond to an excitation at the

anti-Stokes frequency), and assumed the magnetic field

B0 to be constant in the vicinity of the bottom lines of

the potential. We now apply the SVEA to the first term

of equation (27), resulting in :

(

∂

∂t
+ v

∂

∂z

)2

δx =
[

− [ω0 − ω1(1 − v
c )]2

+2i[ω0 − ω1(1 − v

c
)]

(

∂
∂t + v ∂

∂z

) ]

δx̃ ei(k1z−(ω1−ω0)t)

+c.c.

If the frequencies fulfill the condition :

ω1 (1 − v/c) = ω0 − Ω, (31)

then the linear term in δx̃ cancels out the restoring force

of the harmonic potential in Eq. (27), so that :

2iΩ

(

∂

∂t
+ v

∂

∂z

)

δx̃ =
−e2E0Ẽ1

γ2m2c(ω0 − Ω)
. (32)

Note that, while Eq. (11) was the simple result of a Fourier

analysis, Eq. (31) should be interpreted as a resonance

condition.

Use of equations (26) and (32) allows one to evaluate

qualitatively the power gained at resonance by the X-ray

field, as −j1.E1 = −2Re(j̃1Ẽ
∗
1 ), where j1 is the current

induced by a mean displacement induced over an interval

δL :

− j1.E1 ≃ e4ρE2
0k0δL

γ3m3cvΩ(ω0 − Ω)2
.2Ẽ1.Ẽ

∗

1 > 0 (33)

We therefore recover the conclusion of the single electron

analysis, showing that the Stokes mode exhibits amplifi-

cation, while the anti-Stokes mode, described simply by

replacing Ω by −Ω, should be absorbed.

iii/ We eventually come back to the propagation equa-

tion (23), which, under the SVEA, and neglecting diffrac-

tion terms, reads :

2ik1

(

∂

∂z
+

∂

c∂t

)

Ẽ1 =
−iω1j̃1
ǫ0c2

(34)

Combining equations (26), (32), and (34), and con-

sidering the process to be stationary, result in a single

propagation equation for the X-ray envelope :

∂2Ẽ1

∂z2
=

e4ρk0E
2
0

4ǫ0γ3m3c2vΩ(ω0 − Ω)2
Ẽ1 (35)

that corresponds to an exponential amplification with a

gain of :

g =

√

e3ρk0E0

25/2ǫ0γ2m2cv(ω0 − Ω)2
, (36)

or, in an approximate simpler way :

g =

√

e3ρE0

23/2ǫ0m2c3ω1
. (37)
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4.2 Effect of electron velocity mismatch

The energy dispersion of the incident electron bunch is

a major concern for X-ray free electron lasers. In partic-

ular, all the simulations on the FEL effect with optical

undulators, in the Compton regime, demonstrate that a

remarkable value of mono-energeticity is required, typi-

cally of the order of 10−4 [15] to few 10−4 for electron

energies of few tens of MeV [16]. Indeed, in the Compton

regime, amplification occurs throughout the laser undu-

lator length only if δγ/γ < 1/2N , N being the number

of undulator periods over the whole amplification length

[33]. The Doppler frequency shift is therefore limited to

the emission linewidth due to the finite emission time.

This very stringent condition on the electron energy dis-

persion is obviously one of the major reasons why this op-

tical undulator scheme has not been demonstrated up to

now. How the proposed Raman scheme for a X-ray FEL

copes with the electron energy dispersion is therefore a

major issue; however, a detailed study of Raman ampli-

fication with a spread of electron energies is beyond the

scope of the present study, leading us to restrict ourselves

to discuss the spectral broadening induced the electron

energy spread, and the amplification regime between a

monochromatic X-ray field, and an out-of-resonance elec-

tron population.

In general, one has to consider a electron bunch with

a distribution of Lorentz factors, with an interval 2∆γ

around a central value γ0, characterized by a density dis-

tribution ρ(γ). For each velocity component, the deviation

δγ = γ−γ0 from the central value results in a shifted X-ray

angular frequency δω1, with δω1/ω1 = 2δγ/γ. The spon-

taneous scattering spectrum is therefore bound to exhibit

a Doppler broadening of 4ω1(∆γ/γ). An outcome of this

broadening is the possibility to get spectral overlaps be-

tween a Doppler down-shifted emission on a anti-Stokes

mode, and a Doppler up-shifted emission on the Stokes

mode. Assigning the former to electrons of Lorentz factor

γ − ∆γ and the latter to those with γ + ∆γ, the overlap

condition reads :

ω0 − Ω

1 − v(+∆γ)/c
=

ω0 + Ω

1 − v(−∆γ)/c
(38)

Developing to first order results in a simple condition to

prevent Stokes / anti-Stokes overlaps :

∆γ/γ < Ω/2ω0. (39)

Another effect due the electron energy spread is that

essentially all electrons violate to some degree the reso-

nance condition (31) . We need therefore to evaluate the

spectral acceptance of (31). In this aim, we propose to in-

vestigate how a monochromatic X-ray field, at the central

frequency ω1, interacts with a population of electrons in

the bunch, with a Lorentz factor γ′ = γ + δγ, and density

ρ′. This simple approach is of course unable to describe

the full complexity of the problem, in which each field fre-

quency component is coupled to all electron populations

of different velocities, and conversely each electron is cou-

pled to all field frequency components. It may however

give interesting insights on electron - field couplings out

of the resonance condition.

Revisiting the three steps of the gain calculation of

section (4.1), one may notice that the major effect of the
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offset in electron kinetic energy, and hence in velocities,

is to modify the expression of the derivatives along the

movement by adding a term resulting from the velocity

change δv ∂
∂z . We will neglect an additional second order

effect, namely, the slight change of the resonant oscillation

frequency Ω in the light lattice.

The current density versus transverse displacement func-

tion becomes:

j̃1 =
ie2ρE0k0

γ′m(ω0 − Ω − ∆ω)
δx̃, (40)

where we have set ∆ω = k1.δv = ω1δγ/βγ3. The high

frequency velocity field is now:

Ṽ1 =
−ieẼ1

γ′m(ω0 − Ω − ∆ω)
, (41)

so that the new expression of the Lorentz force field is:

−eV1×B0 =
−e2E0Ẽ1

γ′mc(ω0 − Ω − ∆ω)
ei(k1z−(ω1−ω0)t)−c.c. .

(42)

The differential equation for transverse displacement func-

tion δx includes new terms :

− ∆ω(∆ω + 2Ω)δx̃+ 2i(Ω + ∆ω)
(

∂
∂t + v′ ∂

∂z

)

δx̃ =

−e2E0Ẽ1

γ′2m2c(ω0 − ∆Ω)
(43)

Assuming (39) to be valid, let us define g′ and gI as:

g′ =

[

e4ρ′k0E
2
0

4ǫ0γ′3m3c2v′(Ω + ∆Ω)(ω0 − Ω − ∆ω)2

]1/2

,

gI = −∆ω(∆ω + 2Ω)/[4(Ω + ∆ω)v′].

The differential equation for the field envelope Ẽ1 becomes

:

∂2Ẽ1

∂z2
− 2igI

∂Ẽ1

∂z
− g′2Ẽ1 = 0. (44)

For small values of δγ, g′ ≃ g, and the reduced discrimi-

nant D = g2−g2
I of this second order differential equation

is positive, which yields a complex gain coefficient with a

positive real value:

g(δγ) =
√

g2 − g2
I + igI , (45)

where the imaginary part gI has the dimension of a wave-

vector. In these conditions the field continues to exhibit

gain, but with reduced values, and the electron population

has a new dispersive effect. When δγ becomes such that

gI = g′, then the discriminant gets negative, and the gain

take purely imaginary values, corresponding to oscillating

solutions for Ẽ1 and δx̃, of wavevectors gI ±
√

g2
I − g2,

implying a regular exchange of energy between the field

generated at ω1 and the population of electrons at δγ,

and essentially no net transfer between the field and the

electrons at the exit of the interaction region.

To first order in δγ, the discriminant vanishes for δγ/γ =

g/k0. This defines what can be called an homogeneous

spread as the relative width 2δγ/γ for which electrons

contribute to a gain at ω1, and an homogeneous spec-

tral width ∆ωH
1 /ω1 = 4g/k0. In realistic conditions, the

gain length is bound to be much larger than the laser

wavelength, implying that the homogeneous width is likely

to be smaller than the inhomogeneous Doppler width. In

principle, this narrow homogeneous width should allow

stimulated Raman scattering even in conditions of large

electron energy spread. These elementary considerations

will have to be revisited however in more general studies

on the effects of electron energy spread.
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4.3 Effect of potential anharmonicity and bunch

emittance

We have so far assumed the electron wiggling to occur

very close to the bottom of the ponderomotive potential,

so that the harmonic potential approximation could hold.

The assumption is valid if the initial transverse trans-

verse velocity of the electrons at the start of the injec-

tion process is extremely small, as would result from a

very good beam emittance. However, injection calcula-

tions from section 2.2, performed in conditions of the cur-

rently best achieved values of beam normalized emittance

(ǫN = 1µm), show that a number of electrons may also

depart from this approximation, and therefore display re-

duced oscillation frequencies in the ponderomotive po-

tential. By analogy with usual lasers, we will consider

each electron as occupying a ”site” given by its position

in phase space, as resulting from the injection process,

and corresponding to a unique trajectory x0(t); the forced

transverse motion δx follows the equation, extended from

Eq. (16) :

mγ (ẍ0 + δẍ) +
e2E2

0

γmω2
0

sin [2k0(x0 + δx)] = FL, (46)

where FL denotes again the Lorentz force; developing to

second order with respect to δx, one obtains :

δẍ + J0(2k0x0)Ω
2δẍ = FL/γm (47)

where x0 is the maximum excursion of the electron in the

potential well, and J0 is the zeroth-order Bessel function

of the first kind. We have neglected here periodic poten-

tial terms for δx, resulting in a Matthieu-type equation,

but bound to average out to zero for many electrons. The

oscillation eigenfrequency is then reduced with respect to

the harmonic potential value, as :

Ω′ =
√

J0(2k0x0)Ω, (48)

The transverse displacement function δx̃ can easily be

shown to follow :

[

∂2

∂z2
− i

∆Ω2

2Ωv
− e4ρk0E

2
0

4ǫ0γ3m3c2vΩ(ω0 − Ω)2

]

δx̃ = 0, (49)

resulting into a modified gain factor :

g′ =

√

g2 − Ω2

v2
(2k0x0)2 (50)

If the electron population is spread over a large distri-

bution in transverse phase space, then the amplification

spectrum is broadened following Eq. (48), with a reduced

gain function depending on the frequency Ω′, given by

Eq. (50). This situation is again typical of an inhomoge-

neously broadened laser line. The total spectral width of

the lasing depends therefore on a combination of Doppler

broadening, due to the finite δγ/γ of the electron bunch,

and of emittance broadening. The drawback of a reduced

small signal gain is counter-balanced by an important ad-

vantage, namely, one can expect the scheme to be robust

with respect to initial spreads in phase space, either lon-

gitudinally (energy spread) or transversally (emittance).

5 Experimental perspectives

Several important issues have to be worked out to consider

an experimental implementation of this Kapitza-Dirac-

Raman X-ray free electron laser. We will not attempt to
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address all issues, but only to give order-of-magnitude pa-

rameters, in order to assess the general experimental fea-

sibility of the proposed scheme.

5.1 Implementation possibilities for the laser and

electron acceleration systems

We consider laser intensities at focus in the range from

1015 to 1018W/cm2, and laser wavelengths of typically 800

nm or 1.05 µm. Longer wavelength lasers, such as mid-

infrared (resulting eg from an optical parametric chirped

pulse amplification process) or far-infrared (CO2 lasers)

may be advantageous, but are currently more difficult

to implement. The laser pulse duration should be long

enough for the pulse length to be larger that the active

region, which corresponds to typical values between few

femtoseconds and few hundreds of femtosecond.

Trapping of electrons in the y-direction in the active

area is an important issue. Several solutions can be consid-

ered; one may for instance adopt a 4-wave standing wave

geometry, thus providing the same trapping in the y di-

rection as in the x direction. It could offer the advantage

of adding a degree of liberty to control the polarization

of X-ray light, by controlling the polarization and dephas-

ing of the y lasers. A second possible solution would be

to purposefully shear one beam with respect to the other

in the y direction; the standing wave would then be sup-

pressed on both sides, thus creating lateral potential walls

of Vp/4 (Eq. 7). A third possibility could be to irradiate

a specially shaped a third beam along x, or to alter in a

controlled way one of the two twin beams. Several options

seem therefore possible, that have to be investigated.

As concerns the electron acceleration setup, one should

fully consider the opportunities of the two families of elec-

tron accelerators can be considered : conventional RF ac-

celeration, or laser wakefield acceleration.

The major advantage of laser acceleration is to provide

extremely short bunches of electrons, with a corresponding

very high current density. Moreover, synchronization be-

tween the laser-accelerated electron bunch, and the trans-

verse twin lasers, can easily be performed with few fem-

tosecond resolution, if the twin beams are derived from

the same laser system, or at least from the same laser

oscillator, as the intense laser inducing wakefield acceler-

ation. Typical values of electron beam currents can reach

10 kA or more, with good emittance values, and very small

bunch transverse sizes, of the order of one to few µm. This

scheme suffers from two potential drawbacks : the stabil-

ity of the electron bunch after the exit of the accelerating

plasma, which is the price to pay for such high current

densities; and an important value of δE/E , whose best

measured values are currently in the few percents range.

Drawback (i) can be compensated if one succeeds to get

hold of the electron beam in the laser standing wave al-

most immediately after the exit of the plasma; problem

(ii) could be strongly attenuated in the near future, as a

number of numerical simulations suggest the possibility to

improve mono-energeticity, through an enhanced control

of the injection of electrons in the plasma wake. Generally

speaking, laser-acceleration of electrons offers extremely
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promising prospects, especially if the energy dispersion

can be reduced experimentally in the per-cent range.

On the other hand, conventional RF acceleration in a

LINAC is a well-known and more mature technology, with

a number of existing systems proposing electron bunches

up to few tens of MeV, with energy spreads below 1%,

and a normalized emittances down to below 1 mm.mrad,

especially thanks to the introduction of emittance com-

pensation schemes. Typical peak current values are in the

range of 100 A; use of magnetic chicanes, such as those

set up for the Compton FEL laser projects LCLS and

TESLA-XFEL, allows one to reach peak currents up to 3

kA, at the cost of an increased normalized emittance. An

inherent difficulty of conventional RF acceleration is the

synchronization issue between the incident electron bunch,

and the interference region of the twin laser beams. How-

ever, the reliability, and control over conventional LINACs

are very good, with the possibility to tune the electron en-

ergy, and to control the electron focal position and spot

size. As a result of this alternative, we now present esti-

mates of experimental parameters in both schemes.

5.2 Prospective implementation parameters

Based on the various technological approaches mentioned,

we now suggest a few scaling laws and order-of-magnitude

parameters for an experimental implementation. We first

reformulate the gain formula, using standard experimen-

tal parameters. The beam density ρ is not usually used,

but should be deduced from the peak current I, and the

equivalent electron focal spot S:

I = eρSc, (51)

where S = σ2
x/2 is the equivalent spot size, if we assume

the electron focusing along x and y to be equivalent.

The homogeneous gain formula (37) becomes :

g =

√

e2IE0

25/2ǫ0γ2m2c4Sω0
. (52)

For the sake of simplicity, we will rely on this homo-

geneous gain formula to discuss prospective experimen-

tal parameters; such effects as inhomogeneous broadening

due to electron dispersion or finite beam emittance, or the

transverse bunching of electrons within the standing wave,

will be investigated in a full numerical study.

The electron kinetic energy is fixed in a straightforward

way by the ratio between the laser and the desired X-ray

photon energies, related to first order by h̄ω1 = 2γ2h̄ω0.

The electron technology used to accelerate the electrons

then provides fixed values for the emittance ǫN and mono-

energeticity δE/E, summarized in few cases in table 1.

Two main parameters have to be chosen at that stage :

the transverse size D of the active region, and the rms

radius σx of the electron spot size. At saturation, the X-

ray output will be optimized if D ≃ 2σx; however, it may

prove useful to concentrate on an active region smaller

that the electron beam, in order to enhance the gain by

concentrating the available laser power into a small vol-

ume.

In laser wakefield acceleration, and direct injection into

a light standing wave, σX is unlikely to be a free parame-

ter; in RF acceleration, there is on the contrary a certain
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Table 1. Electron bunch, laser and interaction geometry parameters considered

Laser plasma accelerator Low energy LINAC Medium energy LINAC

Electron energy 60 MeV 10 MeV 155 MeV

X-ray photon energy 43 keV 1.2 keV 220 keV

Peak current 25 kA 2 kA 100 A

Norm. emittance 1 mm.mrad 2 mm.mrad 1 mm.mrad

Electron spot size σx 1 µm 30 µm 20 µm

Laser wavelength 800 nm 800 nm 1.05 µm

Laser pulse duration 30 fs 30 fs 400 fs

Laser vertical spot size D 3 µm 3 µm 5 µm

Laser intensity 1.4 1018 W.cm−2 2.5 1016 W.cm−2 1. 1016 W.cm−2

Homogeneous gain 240 cm−1 4 cm−1 0.08 cm−1

Amplification length 420 µm 2.5 cm 1.1 m

Total laser energy EL 1.8 J 1.1 J 360 J

Reference [35,36] [37] [38,39]

flexibility to choose σx by playing with the β parameter

of the focusing magnets. In all cases, we will assume for

simplicity that the characteristic sizes are the same in the

x and y directions.

From the beam charge, size and duration, one can eas-

ily infer the electron current or density, which, coupled

to realistic parameters for the dressing twin laser beams,

allows one to deduce an order of magnitude of the small

signal gain, in the homogeneous limit, and of the total

laser energy required to reach a gain.length product of 10

in the electric field, or equivalently of 20 in X-ray intensity.

Table 1 gives the result in the case (i), of an electron

bunch resulting from laser wakefield acceleration [36,35]

(60 MeV, column 1), (ii) of an electron bunch issued from

a state-of-the-art linear accelerator , with either a small

(10 MeV, column 2) or medium (155 MeV, column 3)

electron kinetic energy. In the first two cases, we make the

assumption that the dressing laser is a Titanium-Sapphire

system, with a pulse duration of 30 fs; in the last case, we

consider typical parameters of a Neodymium-glass laser,

with a pulse duration of 400 fs.

The laser intensity is chosen so that the maximum pon-

deromotive potential of the light lattice is higher that the

maximum transverse kinetic energy of the electrons in the

bunch, resulting from the normalized emittance ǫN and

the bunch size σx. The normalized emittance defines the

rms σv of the transverse velocity distribution :

σv = ǫN/βγcσx, (53)
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yielding an upper limit for the transverse kinetic energy

of :

K⊥ = 0.5γmσ2
v. (54)

We suggest a criterium of laser intensity to be defined by

a ratio between the maximum ponderomotive potential of

Eq. (7), expressed with the usual form 0.9Iλ2, and K⊥:

0.9.(4I)λ2/γ > 5K⊥, (55)

where the factor of 5 is here largely arbitrary. The factor

of 4 originates from the beating between the twin lasers

in the interaction region, as shown by Eq. (7).

In the first column, we consider conditions of a laser-

plasma accelerator predicted by Davoine et al. [36], with

an electron bunch accelerated to 60 MeV, a fairly conser-

vative value, and a laser intensity of 1.4 1018 W/cm2. The

corresponding X-ray energy is as high as 43 keV, beyond

the upper limit of X-ray photons expected with Compton

Free electron laser. One sees that the predicted small sig-

nal gain is extremely high, allowing the amplification pro-

cess to reach saturation over a very short length, which

limits the total energy used to values within the current

state of the art in laser technology (Joule class short pulse

lasers).

In the second column, we apply the same procedure

to the case of a photo-gun, yielding 10 MeV electrons,

assumed to undergo emittance compensation, and beam

compression devices, thereby reaching a high peak cur-

rent of 2 kA, similar to that achieved at higher energies

in the TESLA and LCLS projects. While these param-

eters are obviously very challenging, the corresponding

beam brightness of 5 1014 A/(m.rad)2 remains well below

the maximum value of 3.75 1015 A/(m.rad)2 predicted by

Rosenzweig et al. [37].

Finally, we take in the third column the characteristics

of the SPARC system in Frascati [38,39], with state-of-

the-art emittance control, but peak current of the order

of 100 A. The laser energy required to reach saturation

is much higher in this case, but remains in the typical

parameters for PetaWatt Nd:glass systems, like the VUL-

CAN laser [40]. It shows however that other options can be

considered than ultra-short pulse lasers, that may result

in X-ray photon energies reaching the hard X-ray range.

The values obtained in this table, especially for the

required laser energies, should be considered merely as or-

der of magnitudes; indeed, our scaling laws are based on

a simple theoretical model, that neglects inhomogeneous

broadening and diffraction effects, which will tend to lower

the small-signal gain, and on the other hand neglects the

increase in electron density in the bottom of the light po-

tential wells, which will have the opposite effect. While

more thorough studies are obviously required, these esti-

mates do raise hope that the Raman X-ray laser scheme

could be demonstrated with present day laser technology.

6 Perspectives and conclusion

We have explored the specificities of a novel interaction

geometry between a bunch of moderately relativistic elec-

trons, and a standing wave formed by twin high inten-

sity laser beams. We have shown numerically that, in the

high intensity regime of Kapitza-Dirac effect, relativistic
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electrons may get trapped into the minima of the pon-

deromotive potential, and be guided until the end of the

transverse standing wave.

The electrons tend to oscillate close to the bottom of

the potential wells, resulting into a Raman splitting of

the scattered radiation in the forward direction. We have

shown numerically and analytically that the Stokes com-

ponent may be coupled back to the transverse electron

motion, thereby triggering a stimulated Raman scatter-

ing. This can be considered as a new kind of free elec-

tron laser effect, in which the electron bunching is no

longer longitudinal but transverse. The scheme seems to

display the capability to accept less stringent parameters

of bunch mono-energeticity. This specific robustness may

be a key to develop X-ray free electron lasers in the inter-

action between high intensity lasers, and relativistic elec-

tron bunches.

Many aspects of the proposed scheme remain however

to be studied, both theoretically and experimentally, in

order to ascertain its feasibility and its real potential for

applications : electron injection regime, space charge ef-

fects, electron recoil effects, broadening mechanisms, effect

of y-trapping on the electron dynamics and X-ray wave

amplification, Stokes - anti-Stokes couplings, saturation,

coherence properties, possibility of X-ray injection, more

complex standing wave patterns... From an experimen-

tal point of view, several bottlenecks need to be solved,

especially concerning the implementation of the inhomo-

geneous wave, and the synchronization between the elec-

tron bunch and the laser standing wave. The possibility

to couple this scheme to setups of laser-plasma wakefield

acceleration should be especially considered.

If a number of positive answers for all these pending

physics issues are obtained, and robust implementation

schemes are designed, then this scheme may hold the po-

tential to provide compact sources of intense coherent X-

ray radiation, with a large number of potential applica-

tions in science, from physics to medicine, and technology.
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