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CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France

E-mail: bertrand.fourcade@ujf-grenoble.fr

PACS numbers: 87.17.Jj,87.16.Qp,87.15La

Abstract. In this paper, we study a new physical mechanism to generate an activator

field which signals the extreme margin of the contact area between an adherent cell and

the substrate. This mechanism is based on the coupling between the adhesive bridges

connecting the substrate to the cytoskeleton and a cytosolic activator. Once activated

by adhesion on the adhesive bridges, this activator is free to diffuse on the membrane.

We propose that this activator is part of the mecano-transduction pathway which links

adhesion to actin polymerization and, thus, to cellular motility. Consequences of our

model are as follows : (a) The activator is localised at the rim of the contact area; (b)

The adhesion is reinforced at the margin of the contact area between the cell and the

substrate ; (c) Excitable waves of activator can propagate along the adhesion rim.
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1. Introduction

Cells must sense not only biochemical but also physical aspects of their environment[35,

16, 29, 50, 39] to perform complex functions such as migration, differenciation or

apoptosis[18, 42]. The biochemical reactions involved in the continuous remodelling of

the actin cytoskeleton are triggered by cell-substrate or cell-cell contacts[28]. The signals

are usually mediated by transmembrane protein receptors at the cell surface that activate

in a conformation dependent manner phosphorylation cascades[12] with or without

activation of regulatory GTPases[49]. In all these functions, the dynamic rearrangement

of the actin cytoskeleton is induced by local recruitment of activator proteins[38] where

rapid signaling by diffusible factors are mechanical forces dependent[51, 48, 40]. In this

paper, we introduce a physical model to describe the initial stages of cell spreading by

recruiting a cytosolic molecule which reinforces adhesion.

Recent works have concentrated on receptor regulation and their link with actin

dynamics during early and late events triggered by cell substratum contacts[15, 19, 20,

14, 21, 34, 37, 48, 11]. Biological and biophysical studies showed that cell adhesion,

spreading and migration crucially depends on receptors of the integrin family[20]

which performs bi-directional inside-out and outside-in signalization through the plasma

membrane[25]. Upon binding to an extra cellular or intracellular ligand, integrins can

undergo a conformational change and participate to the actin network reorganization

that underlies cell spreading and migration. The transduction centers of these signaling

pathways are associated with the integrin adhesion receptor family whose affinity

towards their external ligand is regulated. A key observation is that change in their

affinity is often preceded by changes of intracellular proteins which modulates their

affinity[21]. All these findings have motivated theoretical physical works which have

mainly focused on the dynamic reinforcement of the adhesion scaffold in connection

with the acto-myosin driven protrusion machinery[4, 34, 33, 36]. Recent studies have

however shown that the initial adhesion does not depend on myosines II which mediate

adhesion maturation and it has been proposed that the initial cell spreading is separable

from the focal contact maturation[9, 54].

More specifically, dynamic actin-based protusions such as ruffles, lamellopodia or

filopodia [8] are observed at the the border of the cell-substrate contact area. Since actin

polymerization is triggered by nucleating factors such as the Arp2/3 complex which are

constitutively inactive, there is a need for activation factors such as the proteins from

the WASP/wave family to promote[24, 8] or impair[17] actin polymerization with a

possible regulation by membrane curvature or tension[45, 26, 7, 6]. Indeed experiments

performed as earlier as in  have shown that local recruitment of activated WASP’s

induces the formation of actin-based membrane protusions[5]. Motivated by this

findings, we introduce a physical model that relies on the generation of a diffusible

regulatory molecule that is activated by the integrin substratum interaction. As

described in the discussion section, the introduction of this activator field fits with

experimental data where integrin occupency allows the activation of actin polymerizing
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Figure 1. Artist’s representation of the two geometries studied in the text. Bound

integrins with their actin cortex deformations are represented as red springs. Unbound

integrins are green. Activator proteins are represented as blue points. Case (a) is the

flat geometry where a wave of activation can propagate in the x-direction. Case (b) is

the curved geometry corresponding to the adhesive belt where the activation wave is

pinned in the adhesive belt. The dashed line corresponds to the height field h(x).

factors.

This paper is organized as follows. The first section is concerned with the physical

model for the activator field and gives emphasis on the role of the stretching energy

which builds up at the margin of the contact area. This section is divided into two

parts. The first deals with a characteristic biochemical cycle for the activator, which

upon chemisorption followed by activation, modulates the affinity constant of adhesive

bridges for the substrate. The second is concerned with the reaction-diffusion equation

for the activator field which can diffuse on the membrane. The next section reports

the main properties of the model in the case where the diffusion length of the activator

field is small with respect to the width of the adhesive belt. Finally, in the discussion,

we put our work in perspective with the biological context. Three appendices follows

the conclusion. The first details the chemical reaction pathway experienced by the

activator in the adhesive belt. The second and the third give additional numerical

results concerning this non-linear problem.
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2. The model

2.1. The affinity of adhesive bridges depends on a diffusing field

We consider a biochemical cycle where an unactivated regulatory protein with

concentration ϕc gets activated by contact with the adhesion receptor where they

are chemisorbed (concentration ϕi). Once activated with concentration ϕ⋆
i , they are

desorbed on the membrane with concentration ϕm where they diffuse with a finite

life time 1/b after which they desorbed back to the cytosol (see Appendix A). The

discussion at the end of the paper gives examples of such activator fields. Here, we will

only summarized this scheme as follows :

ϕcA ϕ⋆
i

k+
GGGGGGBF GGGGGG

k−

ϕmA ϕc (1)

Note that the initial and the final states of this biochemical cycle are the same. Thus,

for an isolated system, the cycle would run clock wise and anti-clock wise with the same

probability. In this work, however, we assume that the system is open to an energy flux,

and that the reaction ϕA ϕ⋆ is non-specifically driven by, e.g., phosphate hydrolysis.

The system being open to an energy flux, the cycle runs only one way.

We assume that the membrane and the cytoskeleton form a complex with the

adhesive bridges which can be described using the continuum elasticity valid for elastic

shells[27]. The connectors comprise both the integrin receptors and their adaptor

proteins[33]. In this framework, the complex formed by the membrane and the

cytoskeleton is described by a height variable h(x) which depends on the position x.

As for elastic shells[27], the elasticity entails a stretching and a curvature term. In our

model, the streching energy term accounts for the connections between the cytoskeleton

and the substrate. Let nb(ϕ
⋆
i , h) the number of connected links per unit line with length

h(x) and ϕ⋆
i (x, t) be the activator concentation field bound to the adhesive bridges. We

assume local equilibrium between the molecules engaged to their ligands nb(ϕ
⋆
i , h) and

the unbound ones nu(ϕ
⋆
i , h) with nu = n0 − nb(ϕ

⋆
i , h)

nu(ϕ
⋆
i , h) GGGBF GGG nb(ϕ

⋆
i , h) (2)

so that nb(ϕ
⋆
i , h) is given by the usual Bell’s law (β is a short hand notation for 1/kBT

where T is the temperature and kB the Bolzmann constant) :

nb(ϕ
⋆
i , h) =

n0

1 + K0
e
−1 exp [−β (Bϕ⋆

i − Ah(x)2)]
(3)

where n0 is the total number of adhesive bridges. First, the B > 0 term describes the

increase with ϕ⋆
i in the number of connected adhesive bridges, so that the activator

field favors adhesion. Second, the A > 0 factor mimics the penalty due to the stretching

elasticity when the bridges have length h(x) . This length is equivalent to a displacement

in elasticity theory and correspond to the distance between the cell and the substrate.
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When h(x) increases as at the border of the adhesion zone, since the cell leaves the

substrate, nb(ϕ
⋆
i , h) tends rapidly to zero. Thus, the affinity constant K−1

e is both

modulated by the action of the field ϕ(x, t) which favors adhesion and a penalty term

due to stretching.

Eq. (3) gives a streching energy 1/2nb(ϕ
⋆
i , h)kbh(x)2 per unit line for the one-

dimensionnal problem we study here. The total elastic free energy E is the sum of this

stretching component with the one which originates from curvature:

E =
1

2
κ

∫

dx (∆h)2 +
1

2

∫

dx nb(ϕ
⋆
i , h)kbh(x)2 (4)

In the case where nb(ϕ
⋆
i , h) is a step like function, Eq. (4) gives that the height

profile is exponential like and we will use henceforth h(x) ∼ h0 exp [x/λ] where

λ ≈ 0.1µm is the typical width of the adhesive belt. Finally, the order of magnitude for

h0 can be estimated from the maximal elongation length of an integrin like protein (≈ 25

nm[53]). In what follows, we will take this numerical value for the maximal height field

which comprises both the deformations of the integrin like proteins and of the elastic

medium which connects the integrins to the cytoskeleton.

2.2. Equation of motion for the field ϕ(x, t)

To get an equation of motion for ϕ⋆
i , we remark that the derivative of nb(ϕ

⋆
i , h) with

respect to ϕ⋆
i gives the elastic part of chemical potential of the protein ϕ⋆

i as :

µ(ϕ⋆
i ) = 1/2kbh(x)2∂nb/∂ϕ⋆

i (5)

This chemical potential influences the reaction between the two species ϕ⋆
i and ϕm.

We show in Appendix A that adding diffusion for ϕm and a lifetime 1/b leads to a

reaction-diffusion equation:

∂ϕm

∂t
= D∇2ϕm − bϕm +

1

2
Γkbh(x)2∂nb

∂ϕ

∣

∣

∣

ϕ⋆

i

(6)

where Γ is a kinetics coefficient (∝ b).

To make progress, we assume that the processes which govern the transformation

ϕm to ϕ⋆
i in the cytosol are sufficiently fast compared with the typical time scale set by

the equilibration time of a diffusing field on the membrane. This assumption is consistent

with the larger diffusion coefficient in the cytosol (Dc ≈ 10−5cm2s−1) compared with the

diffusion coefficient of a small protein on membrane (D ≈ 10−8,−10cm2s−1[52]). Thus,

we will assume henceforth that the kinetics between ϕm and ϕ⋆
i is at equilibrium and

we will take ϕm = ϕ⋆
i (see Appendix A). For convenience, we will write :

ϕm = ϕ⋆
i = ϕ (7)

Typical order of magnitude of the coefficients appearing in our model are as follows

: b ≈ a few tenth s−1 and
√

DΓn0kbλ2 which has the dimension of a speed is of the
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•

•

•

Figure 2. Plot of the source function g(ϕ, h) (see Eq. (10)) for different values of

the height variable h(x) = Cst.. The maximal excitation occurs at the most stressed

adhesive bridges (large value of h(x) on the right). The field ϕ has been renormalized

by ϕ0 so that the maximum of the last curve occurs at ϕ/ϕ0 = 1.

Figure 3. Stationary solution of the activator field starting from perturbing the

ϕ(x) = 0 state. This plot is obtained in the large affinity limit and it shows that the

maximum of ϕ(x) colocalizes with the border of the adhesive belt.

order of 10 nm.s−1. Thus, the diffusion length
√

D/b is typically smaller than the width

of the adhesive belt λ and will assume for mathematical convenience that
√

D/b ≪ λ.

When times are expressed in units of b−1, and lengths in unit of λ, we thus introduce

the dimensionless parameter:

ǫ =
1

λ

√

D

b
(8)

with ǫ < 1. This leads to the equation of motion:

∂ϕ

∂t
= ǫ2∇2ϕ + g(ϕ, h) (9)

where g(ϕ, h) is a source term which depends on the height h(x) at position x :

g(ϕ, h) = −ϕ +
1

2
ΓRh(x)2K0

e
−1 n0e

−β[Bϕ−Ah(x)2]

[

1 + K0
e
−1e−β[Bϕ−Ah(x)2]

]2 (10)

In this equation, Γ has been renormalized as ΓR and 1/β is an effective temperature.

In order to describe actin polymerization at the border of the cell, Eq. (6) can be

complemented by the kinetics of growth of actin cortex. In this work, we assume that
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Figure 4. Plot of nb(ϕ) according to Eq. (3) for different values of the affinity constant

in the low K0

e limit (K0

e = 5, 3, 1 from the top to the bottom curve). These curves

contrast with the case (c) of Fig. 3 and they show a marked reinforcement of the

adhesion at the rim of the contact area.

actin polymerization takes place on unactivated bonds by the ϕ field, e.g. talin free

bonds, of density n0 − nb(ϕ, h).

df

dt
= kon[ϕ]cg (n0 − nb(ϕ, h)) − koff (11)

where kon[ϕ] is a kinetic coefficient which increases with ϕ, kon[ϕ] ≈ k0
on exp [Cϕγ] and

cg the concentration of globular actin supposed to be constant. C is a constant and γ

is an exponent which lumps all non-linearities together. Eq. (11) gives that the rate of

actin polymerization depends on the concentration of activator field and that it takes

place at the interface between the precursor region and the adhesive belt.

Eqs.(9-10-11) give a physical model we analyse in the next section.

3. Results

For the sake of clarity, we will distinguish between the two geometries represented in

Fig. 1. The first is the flat geometry when the distance between the membrane and

the cytokeleton can be taken as constant and it corresponds, for example, to the basal

surface of the cell. The second is the curved one and it corresponds to the adhesive belt

where the cell leaves the substrate.

3.1. Flat geometry

To understand the properties of the solutions of Eq. (9), it is useful to consider the

source term g(ϕ, h) defined in (10) which depends on the normal height h(x). Fig. 2

gives a family of plots for g(ϕ, h) as a function of ϕ for h(x) = Cste. For sufficiently
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large values of the height h(x), each curve possesses three zeros ϕi(h), i = 1, 2, 3 where

ϕ1(h) ≈ 0.

Thus, for h(x) = Cste, we recover the classical picture of a non-linear reaction-

diffusion equation where the source term does not depend explicitly on x. In this case,

Eq. (9) possesses unique wavefront solutions ϕ(x, t) = f(ξ = x − ct) which interpolate

between the two stable fixed points ϕi(h), i = 1, 3. These wavefronts solutions propagate

at a velocity c determined by the condition ‡ :

c

∫ +∞

−∞

(

df

dξ

)2

=

∫ ϕ3(h)

ϕ1(h)

df g(f) (12)

where f(ξ) → ϕ3,1(h) as ξ → ±∞.

We conclude that the self enhancement mechanism for the activator field due to

adhesion leads to propagating waves for the activator field. This conclusion applies to

any dimension. In particular :

• For flat adherent parts of the cell where the receptors are not fully activated. The

model predicts basal propagation of receptors activation which, in turn, strengthens

adhesion. This phenomenon has been analysed in experiments using fluorescent

techniques[51, 48].

• For adherent cells. Lateral excitable waves of activator can propagate along the rim

of the adhesion zone. This a one-dimensional situation. The speed of these waves

depends on the curvature of the contact line between the cell and the substrate[1].

• For local mechanical excitation of the membrane-cytoskeleton adhesion. The model

predicts the existence of a radial waves which propagate away from the stimulation

point. Such an activation wave has been for instance observed for Src[54].

3.2. Curved geometry at the cell border

Stationary solutions of Eq. (9) can be numerically obtained by perturbing the ϕ = 0

state and by looking to the t → +∞ limit. Fig. 3 gives one example of these in the

case where the dimensionless diffusion length ǫ in (9) is small. Additional numerical

results concerning these solutions are provided in the appendices. We will assume in

this section that the position of the cell border is fixed by the adhesive properties of the

substrate.

As foreseen, Fig. 3 demonstrates that the solution is strongly peaked at the border

of the cell and that the variations of the activator field can be divided into two distinct

domains.

(i) A dorsal part where diffusion does not play any role and where the solution

of the differential equation is very well approximated by the largest solution of

the algebraic equation g (ϕ(x), h(x)) = 0. In the large β limit (small effective

‡ This property can be easily demonstrated by going to the reference frame ξ = x− ct in Eq. (9) with

dϕ/dt = −cdϕ/dξ. After multiplying by dϕ/dξ and integrating, Eq. (12)follows[41].
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temperature), this root can be reasonably approximated by h(x)2 + C/β where C

is a constant which depends on the affinity constant and on the kinetic coefficient

(see Appendix).

(ii) A precursor part where the diffusion length ǫ sets the relevant length scale. In

this domain, the solution is stiff and decreases abruptly from its maximum value

ϕmax at xmax to zero. The decay is exponential like ∼ exp [−(x − xmax)/(ǫλ)]. We

call this domain the precursor domain, since the activator field ϕ(x) begins to rise

before the density of connected bounds nb(ϕ, h) changes abruptly from zero to a

finite value set by the affinity constant K−1
e . Since this rise depends on the value

of the activator field in the precursor region where the actin polymerization takes

place, we can say that the precursor is a guide for the activation of the adhesive

bridges.

5.1 : D small (ǫ ≪ 1). 5.2 : median value of D (ǫ ≃ 1).

5.3 : D large (ǫ ≫ 1).

Figure 5. For all curves: (a) Plot of the density of bound connector molecules

nb(ϕ(x)) as a function of x; (b) Plot of ϕm(x) as a function of x. In (c), plot of

actin polymerisation rate as in Eq. (11) where ∂tf = ϕ (1 − nb(ϕ)) − 0.1. From cases

(1) to (3) the diffusion coefficient is increased by a factor 10. Note that by increasing

D, the maximum of the actin polymerization rate (curve (c)) reaches a maximum and

then decreases. For all curves, the affinity K0

e is set to 0.9.
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Figure 6. Plot of the maximum ϕmax of ϕ(ξ) as a function of the speed V of the

stationary solution of Eq. (13) shown in the inset (the solutions for V > 0 ar shown

in green and the ones for V < 0 shown in red). As V increases, the maximum ϕmax

decreases and so the actin polymerization rate.

3.3. Consequences

First, it is useful to consider the variations of nb(ϕ(x), h(x)) of bound adhesive bridges

for different values of the affinity constant K0
e . In the limit of small K0

e , almost no

adhesive bridges are bound to the cytoskeleton far from the adhesive belt where ϕ(x) is

almost zero. The self-enhancement mechanism of the activator reinforces markedly the

adhesion at the extreme border of the contact area. This is examplified in Fig. 4 where

we note that all curves have almost the same value at the border of the contact zone

independently of the affinity constant.

It is also interesting to plot the actin polymerization rate defined by Eq. (11),

see Fig. 5. The actin polymerization rate being the product of an increasing by

a decreasing function of ϕ(x), the self-enhancement of the activator field is shifted

outside the adhesive belt where the density of bound connector molecules is almost

zero. The height of the maximum of the actin polymerization rate is a non-monotonous

function of the diffusion constant for the activator field. The presence of an optimum is

understood by noting that the diffusion coefficient D is necessary to have a precursor

region, but increasing to much D enlarges the domain of variations of the activator at

total constant concentration. Thus, the activator field escapes from the adhesive belt

but its concentration is everywhere low in the precursor domain. Theses two antithetic

scenarios give an optimal value of D for the maximum of the actin polymerization

rate. Thus, taking the product as in Eq. (11) with the help of unbound integrins as

co-activators gives emphasis on the role of the precursor region.

To conclude this section, we show that our model provides a simple actin based

feedback mechanism. A model-free way to do it is to assume that the cell edge advances

at a constant speed V because of actin polymerization. We will not discuss what is the
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relationship between the activator field and the speed V , but we will simply assume to

lower order in complexity that the solution of Eq. (9) is a stationary solution in frame

which moves at a velocity V with respect to the substrate. Introducing the coordinate

ξ = x − V t, we look for a solution ϕ(x, t) = ϕ (ξ = x − V t) with :

∂ϕ

∂t
= ǫ2 ∂ϕ

∂ξ2
+ V

∂ϕ

∂ξ
+ g(ϕ, h) (13)

so that that the actin polymerization rate which sets V influences the profile of the

activator ϕ through the convective term V ∂ϕ/∂x. Since V is set by the the activator

field itself, our model is self- consistent.

To demonstrate that actin dynamics controls in turn the variations of ϕ(x, t)

through the speed V , let consider Fig. 6 where the maximum of the profile of ϕ(ξ)

is plotted against V (V > 0 in the direction set by the outwards pointing normal). This

maximum ϕmax is determined from the stationary solution of Eq. (9) for different values

of V as shown in the inset. This demonstrates that ϕmax decreases when V increases.

Thus if the speed is too high, the maximum of ϕ(ξ) will get down, entailing a less

efficient enhancement of polymerization and thus a decrease in speed. Conversely, if the

speed is to small, ϕmax will increase and this will enhance more the actin polymerization

and thus the speed.

4. Discussion

Our model describes the self-enhancement of an activator field on stressed adhesive

bridges which is reinforced by recruiting a cytosolic molecule. It can describe the

initial stages of cell spreading to extra cellular matrix associated with pathways that

stimulate protusions whereas mature adhesion involve focal adhesions and actin stress

fibers[13]. This early stage was recently found to be independent on talin 1 and 2[54].

Talin interaction with β integrin cytosolic tail allows the integrin conformational switch

between low to high affinity[44] and it represents the first stage of focal adhesion

assembly that sustains long term adhesion. Thus, cell spreading and focal adhesion

assembly are separable processes and our study applies only to the early times signaling

pathways where actin polymerization is activated by ligand-bound integrins.

Indeed, integrin occupancy at the initial stage allows the activation of Src family

kinases[54] and thereby monomeric downstream GTPases activation of Rac1 and

Rap1[13, 3] and likely a PIP2 burst[30]. Both PIP2 and Rho family GTPases are

required to recruit WASp/WAVE members. These proteins are inactive in their cytosolic

state but they are in their activated state on the membrane where they stimulate actin

nucleation[47, 32, 54]. These signaling pathways are the experimental clues which allow

to introduce an the activator field. Note, however, that this field may not account for

the activation of a single molecule but for a complete signaling pathway which includes

Src or WASp/WAVE family proteins.

In view of the large number of integrin partner proteins which link adhesion to actin

polymerization, it is unlikely that cells use only one activation factor as the ϕm(x, t)
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of our model. We thus ask what matters if instead of a unique scalar field we use a

multicomponent field (ϕ0 = ϕm, ϕ1, . . . , ϕn) to describe a full reaction pathway. Since

integrins can be either in an unactivated or in an activated state, our model suggests to

write the chemical potential for the activated state as:

µ = µ0 − Bϕm +
1

2
kbh

2(x) (14)

where µ0 is a reference and B > 0 gives that the chemical potential of the activated

state decreases upon binding with the species ϕm but that it increases with stretching

(compare with (3)). This change in affinity with elasticity is consistent with the change

in size of the extracellular domain of the integrins which extend from 5 to 25 nm when

fully activated[21].

Eq. (14) describes a mechanistic trade-off between the potency of being activated

by binding to ϕm and the cost of streching. The sum of this to terms alone is able to

provide stress induced enhancement of activation, since the excitation goes larger with

the extension h(x) (see Fig. 2 where the largest functioning point, i.e. zero, corresponds

to the largest value for h(x)). Thus taking definition (14) translates the ability for the

integrins to be activated into a positive feedback loop for the self-excitation of the

ϕm(x, t) field. It seems to us that this condition is necessary but not sufficient for the

network (ϕ0 = ϕm, ϕ1, . . . , ϕn) to have two or more functioning points, one of which

corresponding to dentitric polymerization§.
Our model also offers a theoretical basis for the effect of topographic characteristic

on cell migration and spreading. Although the effects of topography have been

extensively investigated, the mechanism determining the cell-surface reaction are largely

unknown[10, 2]. It should be also useful in situations where adhesive substrate is micro-

patterned on a flat area and force the cells to be at the border of an adhesive and

non-adhesive zone[46, 22]. In this case, one is interested in quantifying the activity

which takes place along the adhesion rim. The predicted result reported in this paper is

the co-localization of an activator field with the border of the adhesive area. Moreover,

this diffusion mechanism describes a long range receptor-receptor interaction mediated

by the activator field. Fluorecent biosensors for localization of the activator field should

match the pattern of microtextured cell substrates.

5. Conclusion

In this paper, we have introduced a simple reaction-diffusion model for an activator field

of actin polymerisation. The dynamic of this field entails a positive loop which depends

on the steching elasticity which builds up at the margin of the contact area between the

cell and the substrate. This approach should useful to describe the short times following

the contact between a cell and a substrate when focal adhesions and stress fibers did

§ The converse statement that a general network with more than two functioning point possesses a

positive circuit has been proven by Soulé[43].
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not have time to complete their development. This is the case where one studies, for

example, cell spreading. It should be also useful in situations where micro-structuration

of patterned substrates forces the cell to be at the borderline between an adhesive and

a non-adhesive zone. In this case, one is interested in quantifying the activity which

takes place along the adhesion rim[15].

The main results reported in this paper as follows. First, there is a co-localization of

an activator field with the border of the adhesive area. Second, there exists progressive

waves for the activator field with a speed scaling as
√

Db where D is a typical diffusion

constant and b−1 the life time of an activated state. This co-localization follows the

rules of a reaction-diffusion mechanism where the propagating diffusing wave is pinned

at the border of the adhesive zone. On the experimental side, our mechanism suggests to

probe using biofluorescence assays on textured micro-patterns both the activation of the

receptors involved in cell adhesion with the proteins involved in actin polymerization.
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Appendix A. Modeling the cell edge as a chemical reactive surface

- Introduction - We consider a simple model system where a cytosolic protein ϕc can

adsorb on the adhesive bridges I with reaction rate m+,−. The concentration of adsorbed

molecules will be noted as ϕi. When adsorbed, we assume that it is transformed to a

high energy state, i.e. activated, with concentration ϕ⋆
i by an enzymatic coupling to

an other chemical reaction which is used as an energy source. The back reaction is

supposed to be negligible if the concentration of the corresponding exchange factor is

sufficiently low. Finally, ϕ⋆
i undergoes desorption on the membrane where it goes back

to the cytosol with a life time 1/b. Let I denotes an integrin or a receptor associated

with an adhesive bridge, the total reaction pathway is:

ϕc + I
m+

GGGGGGGBF GGGGGGG

m−

ϕi GGGGGGGGGGGGGGBF GGGGGGGGGGGGGG ϕ⋆
i

k0
+

GGGGGGBF GGGGGG

k0
−

ϕm

b
GGGA ϕc + I (A.1)

where ϕi is the concentration of activators bound to adhesive bridges. We note this

quantity ϕi. Assuming quasi-stationary solutions, we find :

ϕ⋆
i =

k0
−

k0
+

ϕm +
l+
k0

+

m+

m− + l+
ϕc (A.2)

which implies that the chemical potential of µi (ϕ
⋆
i ) is a function of the concentration ϕm.

Eq. (A.2) is valid when the kinetic coefficients k0
+,− are independent of the coordinate x

along the membrane and it assumes that the diffusion of the species ϕm can be neglected.
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- Including elasticity - To find the stationary and local distribution of membranous

ϕm(x, t), we generalize this reaction pathway to include elasticity. From now on, the

two kinetic coefficients are denoted by k+,−. First, if the diffusion in the cytosol is fast

enough, we can assume that the concentration ϕc in the reaction layer just above the

membrane is independent of the coordinate x along the membrane. Second, Van’t Hoff’s

law implies that the ratio of the kinetic coefficients is a function of difference of chemical

potential between the bound phases, ϕi(x, t), and the membranous one, ϕm(x, t) :

k−

k+

=
k0
−

k0
+

exp [β∆µ] =
k0
−

k0
+

(1 + β∆µ + . . .) (A.3)

where β∆µ is a small parameter.

To find ∆µ , we note that for bound activators ϕ⋆
i , the chemical potential is the

derivative of the free energy including the stretching energy. Thus,

µi(ϕ
⋆
i (x, t)) = kBT

[

1

2
kbh(x)2∂nb

∂ϕ

∣

∣

∣

ϕ=ϕ⋆

i

]

(A.4)

which gives ∆µ since the chemical potential of the cytosolic phase is constant.

In what follows, we generalize the kinetic equation for the field ϕm(x, t). We will

assume that the activation from ϕc to ϕ⋆
i is fast so that ∂ϕ⋆

i /∂t = ∂ϕi/∂t = 0. This

gives a relationship equivalent to (A.2) :

ϕ⋆
i =

k−

k+

ϕm +
l+
k+

m+

m− + l+
ϕc (A.5)

which is valid if the diffusion for ϕm is neglected. Note that k−/k+ is given by Van’t

Hoff’s law (A.3) and that (A.5) is non-linear.

-Including diffusion on the membrane - Now, we postulate that ϕm(x, t) solves the

diffusion reaction equation :

∂ϕm(x, t)

∂t
=k0

+ exp [βµi(ϕ
⋆
i )]ϕ

⋆
i − k0

−
ϕm(x, t)

+ D
∂2ϕm

∂x2
− bϕm

(A.6)

Eq. (A.6) implies that when the energy of bound molecules ϕ⋆
i (x) will be larger than

the one of the membranous proteins ϕm(x), the molecules will desorb from the adhesive

bridges. We solve (A.6) to leading order in βµi(ϕ
⋆
i ).

In the approximation where the activation reaction is supposed to be fast with

respect to all other processes, we use (A.5) to write µi(ϕ
⋆
i ) as a function of ϕm. Since

(A.6) is already first order in µi(ϕ
⋆
i ), it is enough to use (A.2) instead of (A.5)

µi(ϕ
⋆
i ) =

1

2
kbn0h(x)2K0

e
−1 e−β[Bϕ⋆

i
−Ah(x)2]

[

1 + K0
e
−1e−β[Bϕ⋆

i
−Ah(x)2]

]2

=
1

2
kbn0h(x)2K−1

e

e−β[B′ϕm−Ah(x)2]

[1 + K−1
e e−β[B′ϕm−Ah(x)2]]

2

= µi(ϕm)

(A.7)
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1 2

1

2

3

B1.1 B1.2

Figure B1. In (a), plot of the function h(x) = ex − 1 with its plateau approximation

when the width of each plateau is given by (D/b)
1/2

. In (b), plot of the solutions for

the activator field ϕ(x) when the height h(x) corresponds the two curves of (a). Note

that the plateau approximation gives a reasonable estimate of the maximum value for

the activator.

with :

B′ = B
k0
−

k0
+

K−1
e = K0

e
−1

exp

[

−βB
l+
k0

+

m+

m− + l+
ϕc

] (A.8)

Assuming again that the concentration ϕc in the cytosol is much larger than ϕm, we

have to leading order in ϕm in (A.6)

k0
+ exp [βµi(ϕ

⋆
i )]ϕ

⋆
i ≈

m+l+
m− + l+

ϕc exp [βµi(ϕm)] + k0
−
ϕm

≈ m+l+
m− + l+

ϕc (1 + βµi(ϕm) + . . .)

(A.9)

Using this result for the equation of motion (A.6) gives the equation of motion for

ϕm(x, t) as quoted in the text when ϕm(x, t) is replaced by its linear deviation δϕ(x, t)

around

ϕ0
m =

1

b

m+l+
m− + l+

ϕc (A.10)

Appendix B. Staircase approximation for the height field

One key specificity of our model is the position dependance of the source term

g = g(ϕ(x), h(x)). However, when looking at small scale features, one can assume

the cell profile h(x) to be constant and thus map our problem to a simpler and well

known spatial independant reaction-diffusion problem. Albeit giving a simple criterion

for the existence of stationary concentration profile, the results of this appendix will be

used in the next one.

Consider case (a) of Fig. B1 where h(x) ∼ ex is plotted with its piece wise

approximation. This approximation is designed to fit the original function using a series

of plateaux with a width larger than the diffusion length (D/b)1/2. On each plateau,
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the height field h(x) is constant. Approximating the original function by its plateau

approximation consists of assuming that the height field h(x) doe not vary on the scale

(D/b)1/2 where the variations of the activator field are stiff. Using Eq.(12) to calculate

the speed c of the equivalent wave solution for the diffusion reaction, we see that there

is a critical height hmax at which the speed c passes from positive to negative values.

In this limit, the maximum height h(xmax) at which the activator reaches its maximum

ϕ(xmax) corresponds to the condition c(h) = 0 in (12) Thus, a criterion on the equivalent

plateau problem gives a criterion for the maximum height, and thus the maximum value

of the activator field. This criterion can be used to get the numerical values of ϕ(xmax)

as a function of the parameters entering into the problem (see next Appendix).

Appendix C. Additional results

To understand how the variations of the activator field depends on the parameters of

the problem, it is useful to write the reaction-diffusion equation (9) as :

∂ϕ

∂t
= D

∂2ϕ

∂x2
− C1ϕ + C2

∂F

∂ϕ
(C.1)

where :

F (ϕ, h) =
h2

1 + exp [−C3ϕ + C4h2 − C5]
(C.2)

with constants Ci defined in table C1 in terms of the physical constants defined in text.

Henceforth, we will divide the variations of ϕ(x, t) into its slow varying component

corresponding to the dorsal part of Fig. C1 and its fast component. The latter

corresponds to the precursor region ahead of the adhesive belt.

In the limit of small diffusion coefficient, and in a region sufficiently far away from

the maximum of ϕ(x), the effect of a diffusion coefficient is small[1]. Thus, we set D = 0

in (C.1) and solve the algebraic equation for the slow variations of ϕ(x) (we call ϕs(x)):

ϕs(x) =
C2

C1

∂F

∂ϕ

∣

∣

∣

ϕs(x),h(x)
(C.3)

whose solution can be approximated to leading order in 1/β as the solution of :

C4

C3

h2(x) − C5

C3

=
C2

C1

∂F

∂ϕ

∣

∣

∣

ϕs(x),h(x)
(C.4)

Because of Eq. (C.2), Eq. (C.4) is nothing but a second order polynomial equation for

exp [ϕs(x)] which can be solved to get ϕs(x).

ϕs(x) =
C4

C3

h(x)2 +
ln

[

C2C2

3

C1C4

− 1
]

− C5

C3

(C.5)

This equation corresponds to the dashed curve of Fig. C1 where it approximates very

well the numerical solution.
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To find the fast component of the activator, ϕf (x), valid in the precursor region,

we note that the height h(x) does not vary on the scale where ϕf (x) varies. This means

that h′(xmax) ≪ (D/b)1/2 and h(x) can be taken as a constant. This is the plateau

approximation of the previous appendix (see Fig. B1).

For h = Cst., we assume a travelling wave solution at velocity c in the coordinate

system ξ = x − ct. Thus, we look for a solution ϕ(x, t) = ϕ̃(ξ) which satisfies :

c
∂ϕ̃

∂ξ
+ D

∂2ϕ̃

∂ξ2
− C1ϕ̃ + C2

∂F

∂ϕ̃
= 0 (C.6)

Since C1ϕ̃+C2
∂F
∂ϕ̃

has three zeros as a function of ϕ̃ at h = Cst., we see after multiplying

Eq. (C.6) by ∂ϕ̃/∂ξ and integrating between the two end zeros (0, ϕmax) that :

c

∫ +∞

−∞

dx

(

dϕs(x)

dx

)2

= −1

2
ϕ2

max +
C2

C1

F (ϕmax, h(xmax)) (C.7)

Figure C1. Plot of the activator concentration ϕ(x, t) starting from an initial

perturbation of the ϕ = 0 state. The upper curve is the t → +∞ limit which has

converged to the stationary solution of Eq. (C.1). The dashed curve is the slow

varying component ϕs(x) (see C.5). The curve corresponds to the maximum of ϕ(x, t)

according to the condition (C.9).

Since the maximum height hmax corresponds to the condition where c passes from

positive to negative values, we have the pinning condition c = 0. Eq. (C.7) is a single

equation for to the unknowns (ϕmax, h(xmax)). From the numerical point of view, a very

good approximation consists in solving (C.7) together with the condition for ϕ(xmax) to

be the inflexion point of the source source term :

∂3F

∂ϕ3

∣

∣

∣

ϕ=ϕ(xmax)
= 0 (C.8)

This gives :

ϕ(xmax) =
C4

C3

h(xmax)
2 − C5 + ln(2 −

√
3)

C3

(C.9)
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Table C1. Table of symbols used in the Appendix :τ, ϕ0 are arbitrary normalization

factors.

Symbols Meaning

C1 b · τ
C2

1

2
n0kbΓh2

0
τ

C3 βAφ0

C4 βBh2

0

C5 ln(K0

e )

which corresponds to the maximum of the activator field in Fig. C1. Eqs. (C.7) and

(C.9) gives a system of two equations with two unknown which can be numerically

solved.
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