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Abstract In the current work, we consider the inverse problem in scatterometry which consists
in determining the feature shape from an experimental ellipsometric signature. The reformulation
of the given nonlinear identification problem was considered as a parametric optimization problem
using the Least Square criterion. In this work, a design procedure for global robust optimization is
developed using Kriging and global optimization approaches. Robustness is determined by Kriging
model to reduce the number of real functional calculations of Least Square criterion. The technical
of the global optimization methods is adopted to determine the global robust optimum of a surrogate
model.

Keywords Inverse problem in scatterometry, Kriging, Global Optimization

1 Introduction
The process control in microelectronics manufacturing requires real time monitoring

techniques. Among the different metrology techniques, scatterometry, based on the anal-
ysis of the light diffracted by microscale patterns using for example an ellipsometer, is
well suited. The problem of computing the signature from a given structure shape, which
is referred to as the direct problem, is dealt with using conventional Maxwell equations
solvers, generally based on modal methods [1]. On the opposite, the inverse problem
[2],[3], which allows the determination of the feature shape from an experimental sig-
nature is solved by parametric optimization problem using the Least Square objective
function. This inverse problem is difficult to solve. On one hand, the problem is ill-
posed, which requires for example the use of regularizationmethods. On the other hand,
the use of traditional methods of optimization brings us back to a local optimum and the
quality of the result depends on the initial point. To solve this problem, [7] developed a
precomputed library in order to find the best parameters inside this library. Among the
disadvantages of this method, the computing time of the direct problem is too expensive
i.e. the long running times of the computer codes involved and the failure to simulate data
which coincides better with experimental.



To deal with the local optimum and the dependence of the initial point, we propose a
new approach based on the Kriging interpolation method and using the techniques of the
global optimization. The Kriging interpolation method [4],[5], developed by Matheron
and Krige [6] is based on the theory of regionalized variables. It is a stochastic interpo-
lation, which has proven to be reliable when approximating deterministic behaviors [5].
Indeed, it attempts to obtain statistically the optimal prediction, i.e. to provide the best
linear unbiased estimator. The basic premise of the Kriginginterpolation method is that
every unknown point can be estimated by the weighted sum of the known points. The
method also provides a mechanism for estimating the interpolation error for any approx-
imated point. Thus, the use of this interpolation method allows to create the response
surface, and the global optimum of the problem is found usinga global optimization al-
gorithm.

The paper is organized as follows. In the second section, we present the principles of
ellipsometric scatterometry and then talk about the directand inverse problems. In section
4, we present the efficient global optimization (EGO) [8] algorithm sequentially samples
results from an expensive calculation, does not require derivative information, uses an
inexpensive surrogate obtained by techniques Kriging to search for a global optimum. In
the final section, we present an application of the EGO algorithm to the simple synthetique
example and to the inverse problem of ellipsometry.

2 Ellipsometric signature and inverse problem
Scatterometry is used as a generic term for several metrology methods, which may

be described as a measurement technique for a quantitative evaluation of the geometrical
or material properties of an object through the analysis of the light scattering from the
surface under test. Since no imaging optics is used, the surface and the shape have to be
reconstructed from intensity and/or polarization data detected in the far field. In our case,
we use spectroscopic ellipsometry. The metrology device that measures the polarization
change upon reflection by the sample is kept static whereas the incident wavelength is
varying. As mentioned in the introduction, the direct problem is used to establish signa-
tures from a given shape topography using a Maxwell solver. We use the Modal Method
by Fourier Expansion to do that. This method is well adapted for the rectangular topogra-
phy of the samples used in the microelectronic manufacturing which are of primary inter-
est for us. During etching, the multi-wavelengthλi , the direct problem gives numerically
intensityIλi

= (Is(λi)
theo, Ic(λi)

theo). Our goal is to solve the inverse problem [2, 3] which
allow the determination of the feature shape from an experiment ellipsometric signature
m(λi) = (Is(λi)

exp
, Ic(λi)

exp).

For this, we consider the objective function Least Square which can be written as a
difference between the theoretically computed direct specter and the real measure:

J(L) =
1

2

i=n

∑
i=1

(Iλi
−m(λi))

2
, (1)

whereL is the set of optimization parameters. The objective of thiswork is to find the
global optimum for this objective functionJ using the response surface obtained by Krig-
ing techniques. For more details on the Kriging see [?, 4]. In our study, we have applied



the Kriging techniques fo the reconstruction of the ellipsometric signatures [11]. Now,
we present In the next section, the global optimization procedure.

3 Efficient Global Optimization Algorithm (EGO)
This section is inspired the work of Donald R.Jones, Matthias Schonlau and William

J.Welch [8]. We give same technique developed in this paper.The idea is based on the
optimization of the response surfaces constructed by Kriging model. The simplest way is
to fit a surface and to find the minimum of the surface. However,if we process for this
procedure, we can easily lead to a local minimum, and we have no information (idea) on
the uncertain areas of the response surface given by Krigingmethod. It puts too much
emphasis on exploiting the predictor and no emphasis on exploring points where we are
uncertain. To eliminate this problem, we must put some emphasis on sampling where we
are uncertain, as measured by the standard error of the predictor. To combine the search
for local and global minimum and we take into account the uncertainties of the Kriging
surfaces. We use a criterion based of the balances between local and global search is
“expected improvement′′. This concept is introduced in the literature at 1978 in [9].The
EGO is a surrogate (or meta) modeling technique, where the expensive objective function
evaluation is replaced with a model that is both cheap to construct and to evaluate.

This technique uses a Kriging surrogate model to predict thevalues of the objective
function as a few, sparsely distributed sample points(y(x1), ...,y(xn). These sample points
are generally chosen by a space filling sampling method. The kriging technique is essen-
tially a method of interpolation between known points that gives a mean prediction, ˜y(x),
in addition to a measure of the variability of the prediction, s(x), the error estimate stan-
dard. Another suitable global optimization technique is the direct method [10], which
is employed to solve an auxiliary problem to find the next bestplace to sample for a
minimum primary objective function. The secondary objective function used to solve
the auxiliary problem in this application is the Expected Improvement (E[I ]) objective
function. The improvement function(I) is defined as the improvement of the current pre-
diction, ỹ(x), at pointx over the minimum value of the current set of samples,ymin, i,e
:

I = max(ymin− ỹ(x),0). (2)

The expected improvement, defined as the expectation of the improvement, is given by :

E[I ] = (ymin− ỹ)φ(
ymin− ỹ(x)

s(x)
)+s(x)Φ(

ymin− ỹ(x)
s(x)

) (3)

Whereφ is the standard normal cumulative density function, andΦ is the standard normal
probability density function.

The point at which the value of the expected improvement is maximized gives the
best point at which to calculate the true objective function. The expected improvement
is construceted to search for both local and global minima [8]. The surrogate model is
then updated to include the newest sampled point, and the operation is repeated until the
sampling point has not been found. An overview of the algorithm is given as follows:

Algorithm 1.



1. An initial set of input parameters is selected.
2. The true objective function y is evaluated for all new members of the set.
3. A Kriging surrogate model is fitted to the values of the objective function.
4. Maximization of the expected improvement objective function criterion E[I ],
5. The result of the maximization ( the next input parametersmost likely to improve

the true objective function) is added to the set.
6. The process repeats from step 2 until a predetermined number of iterations is

reached or
Max(E[I ])

ymin
< ε

4 Numerical results
4.1 Synthetic numerical results

In order to validate and to explain the EGO algorithm, we are testing with a simple
synthetic example. We consider the true function

f (x) = x.sin(x)+x.cos(x). (4)

the objective is to find the global optimum of the true function (4) (the blue sold line in
Figure 1). We consider that we have just the same points generated by this true function
(y(x1),y(x2), ...,y(x7)) (the red star in Figure 1), and we create response surface using the
Kriging techniques (the black shaded line in Figure 1) associate the standard errorMSE
(the green line in Figure 1). Now, we apply the global optimization algorithm described
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Figure 1: The true function (blue solid line), the set pointsused for the kriging interpola-
tion (red star), the surface Kriging (black dashed line) andthe estimator error (green solid
line)

above for the problem constructed by the set the real points(y(x1), ...,y(x7)) and the
surface ˜y(x) obtained by Kriging. In the next figure, we present the expected improvement
criterionE[I(x)] (the green sold line in the figure 2) and, where it’s maximized, we added
another point in the set, this point is evaluated by the true function 4 (the black triangle
in the right Figure 2). We repeated this process, the EGO method has run using an initial
sampling of 7 points to build the surrogate (the shaded line in Figure 3). A further 5
expensive function evaluation (the triangle in Figure 3) were required to find the global
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Figure 2: The true function (blue solid line), the set of points used for the kriging in-
terpolation (red star), the Kriging surface (black dashed line), the Expected Improvement
criterion (green sold line) and in the right the true function with the add point (the triangle)
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Figure 3: In the left the EGO convergence with 7 points and in the right the convergence
with 2 points are shown

minimum. Now, we apply the EGO method with an initial sampling of 2 points and the
EGO is able to find reasonable solution in 13 function evaluations.

4.2 Real case : a film plan of thickness
Now, we applied the global optimization algorithm combinedwith the Kriging model

in order to find the thickness of the film plan when we know the optical indicesn andk.
We have the objective function described in section 2 by equation 1.

To highlight the method, we compare it with the conventionalmethod of optimization
(classical regression). The thickness approximated is 99,7393. By the classical method
based on conjugate gradient method, we found the following results :

• If the initial point is 150, the method converge to 99,4861 with 32 number of eval-
uations.



• If the initial point is 170, the method converge to 318.6035 with 1474 number of
evaluations.

We remark that this method is dependent on the initial point and, it’s gives the local
minimum.

Now, we present the results of the global optimization method. We show in the next
figure, the initial points and the point which are added by this techniques. In the Figure
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Figure 4: In the left, the EGO with 9 values for initial points, in the right, the EGO with
6 initial points

4, we initiate the algorithm by 9 points (red star in figure 4) and we have the convergence
after 21 evaluations (blue plus in the figure4). By 6 points ofinitialization, the algorithm
EGO converges after 26 evaluations. Now, we apply the EGO method with an initial
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Figure 5: In the left, the EGO with 4 values for initial points, in the right, the EGO with
2 initial points

sampling of 4 and 2 points and the EGO is able to find reasonablesolution in 32 and 36
function evaluations 5.



5 conclusions and future work
The advantage of this algorithm EGO, that’s no dependent of the initial points and it’s

good mean to find the next best place to sample for a minimum objective function. The
algorithm is tested on a dimension greater than one, which gives good results which will
be published.

6 Bibiliography

References
[1] Richard QuintanilhaÉtude du problème inverse en diffractométrie spéctroscopique

PhD thesis, INPG, Grenoble, December 2005.

[2] C.J. Raymond et al. Proceeding of the SPIE vol. 5375, pp. 564-575 (2004).

[3] V..V. Borbo, A.S. Mardezhov, A.I. Semenenko
Solution of the incorrect inverse ellipsometric problemProc. SPIE, Vol. 3485, 354
(1998).

[4] Sacks J, Welch W J, Mitchell T J and Wynn H P.Design and analysis of computer
of Computer experimentsStatistical Science, vol. 4(4): 409-435 (1989).

[5] Olive, M.A., Webster, R. Kriging : a Method of Interpolation for Geographical
Information SystemsInt. J. Geographic Information systems, 1990, Vol 4, N 3, PP
313-332.

[6] Cressie, N.A.Statistics for spatial DataWiley, New York, 1993.

[7] Sébastien SoulanDéveloppement de la scatteromtrie dynamique pour le suivi en
temps réel de procédés. Application la microlectroniquePhD thesis, UJF, Grenoble,
December 2008.

[8] Donald R.Jones, Matthias Schonlau and William J.WelchEfficient Globam Op-
timization of Expensive Black-Box FunctionsJounral of Global Optimization 13:
455-1998

[9] Mockus,J., Tiesis, V. and Zilinskas, A.(1978),The application of Bayesian meth-
ods for seeking the extremum, in L.C.W.Dixon and Szego(eds.), Towards Global
Optimization, Vol.2, pp.17-129. Noth Holland, Amsterdam.

[10] Finkel, D. E., Direct Optimization Algorithm User Guide, center for Research in
Scientific Computer,North Carolina State University, 2003.

[11] L. Afraites, J. Hazart, P. Schiavone,Application of the Kriging method to the recon-
struction of ellipsometric signatureMicroelectronic Engineering, 2009.


