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Abstract. A geometric analysis of the sdg interacting boson model is performed.

A coherent-state is used in terms of three types of deformation: axial quadrupole

(β2), axial hexadecapole (β4) and triaxial (γ2). The phase-transitional structure

is established for a schematic sdg hamiltonian which is intermediate between four

dynamical symmetries of U(15), namely the spherical U(5) ⊗ U(9), the (prolate and

oblate) deformed SU±(3) and the γ2-soft SO(15) limits. For realistic choices of the

hamiltonian parameters the resulting phase diagram has properties close to what is

obtained in the sd version of the model and, in particular, no transition towards a

stable triaxial shape is found.

1. Introduction

Phase transitions are well-known phenomena. They are said to occur if an order

parameter of the system experiences, as function of a control parameter, a rapid change

at a particular point. A phase transition may be of first or second order, depending

on the discontinuity of the first- or second-order derivative of the order parameter as

a function of the control parameter (Ehrenfest classification). Phase transitions have

been observed in countless classical and quantal systems, usually composed of very large

numbers of particles and hence allowing a statistical treatment. The atomic nucleus,

however, consists of less than 300 particles (nucleons) and finite-system effects may

therefore play a role.

The concept of phase transitions is used in nuclear physics either to describe the

behaviour of hot nuclei resulting from heavy-ion collisions or in the context of so-called

‘quantum’ phase transitions, also called shape phase transitions. The latter is the subject

this paper and relies on a method proposed by Gilmore in 1979 [1]. Its central idea is that

any quantum-mechanical hamiltonian that can be written in terms of the generators of a

compact Lie algebra, has an unambiguously defined classical analogue with a geometric

interpretation in terms of shape variables of which the phase-transitional behaviour can

be studied. A few years before Gilmore’s proposal, in the middle of the 1970s, Arima

and Iachello [2, 3, 4, 5] had proposed a novel way to describe the nucleus with a set of

s and d bosons, called the interacting boson model (IBM) [6], which precisely has the
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property that it can be cast in terms of generators of the unitary Lie algebra U(6) to

which Gilmore’s technique can be applied. This approach was advocated by Dieperink et

al. [7] and lead to a geometric interpretation of the IBM [8, 9] and to a connection with

the Bohr–Mottelson description of the nucleus [10]. The problem of phase transitions

in the IBM was subsequently addressed by Feng et al. [11] but was solved in its full

generality only many years later by López-Moreno and Castaños [12].

Although the early work in the 1980s determined the most essential phase-

transitional properties of the IBM, many additional related features of the model have

been studied over the years [13, 14, 15]. This area of research received renewed impetus

following Iachello’s suggestion of critical-point symmetries E(5) and X(5) [16, 17],

nuclear examples of which were proposed by Casten and Zamfir [18, 19]. The central idea

of Iachello’s method is to provide a description of nuclei at the phase-transitional point

through the (approximate) analytic solution of a geometric Bohr hamiltonian. This

rekindled interest in the phase-transitional behaviour of algebraic models from various

angles: the correspondence between the E(5) solution of the Bohr hamiltonian and the

U(5)–SO(6) transition in the IBM was studied in detail [20, 21, 22, 23, 24], the existence

of an additional prolate–oblate transition was recognized [25, 26], a connection with

Landau theory of phase transitions was established [27, 28, 29], the influence of angular

momentum was investigated [30, 31, 32], the connection with shape coexistence was

revisited [33], the algebraic framework of quasi-dynamical symmetries was established

to deal with transitions between two phases [34, 35, 36, 37, 38], phase transitions of

excited states were considered [39]. In addition, several extensions of the IBM were

re-examined from this angle such as the neutron–proton version of the model [40] or its

configuration-mixed version [41].

In this paper we report on a phase-transitional study of another extension of the

IBM, namely the sdg-IBM, which includes a g boson to account for hexadecapole

deformations of the nucleus. We give a brief review of the sdg-IBM in section 2 and

discuss its classical limit in section 3. Since a general sdg hamiltonian has too many

interaction parameters, a simpler parametrization is proposed in section 4. The method

for establishing the phase diagram is explained in section 5 for the specific case of the

sdg-IBM and then applied to obtain partial and complete diagrams in sections 6 and 7,

respectively. The conclusions of this work are summarized in section 8.

2. The general hamiltonian of sdg-IBM

We refer the reader to the paper of Devi and Kota [42] for an excellent review of studies

with the sdg-IBM. We limit ourselves here to a concise description of the hamiltonian

of the model which is needed in this work. The building blocks of the sdg-IBM are s,

d and g bosons with angular momenta ℓ = 0, 2 and 4. A nucleus is characterized by a

constant total number of bosons N which equals half the number of valence nucleons

(particles or holes, whichever is smaller). No distinction is made here between neutron

and proton bosons.
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Since the hamiltonian of the sdg-IBM conserves the total number of bosons, it can

be written in terms of the 225 operators b†ℓmbℓ′m′ where b†ℓm (bℓm) creates (annihilates) a

boson with angular momentum ℓ and z projection m. This set of 225 operators generates

the Lie algebra U(15) of unitary transformations in fifteen dimensions. A hamiltonian

that conserves the total number of bosons is of the generic form

Ĥ = E0 + Ĥ(1) + Ĥ(2) + · · · , (1)

where the index refers to the order of the interaction in the generators of U(15). The

first term E0 is a constant which represents the binding energy of the core. The second

term is the one-body part

Ĥ(1) = ǫs[s
† × s̃](0) + ǫd

√
5[d† × d̃](0) + ǫg

√
9[g† × g̃](0)

≡ ǫsn̂s + ǫsn̂d + ǫdn̂g, (2)

where × refers to coupling in angular momentum (shown as an upperscript in round

brackets), b̃ℓm ≡ (−)ℓ−mbℓ,−m and the coefficients ǫs, ǫd and ǫg are the energies of the

s, d and g bosons, respectively. The third term in the hamiltonian (1) represents the

two-body interaction

Ĥ(2) =
∑

ℓ1≤ℓ2,ℓ′
1
≤ℓ′

2
,L

ṽL
ℓ1ℓ2ℓ′

1
ℓ′
2

[[b†ℓ1 × b†ℓ2 ]
(L) × [̃bℓ′

2
× b̃ℓ′

1
](L)]

(0)
0 , (3)

where the coefficients ṽ are related to the interaction matrix elements between

normalized two-boson states,

ṽL
ℓ1ℓ2ℓ′

1
ℓ′
2

=

√

√

√

√

2L + 1

(1 + δℓ1ℓ2)(1 + δℓ′
1
ℓ′
2
)
〈ℓ1ℓ2; LM |Ĥ(2)|ℓ′1ℓ′2; LM〉. (4)

Since the bosons are necessarily symmetrically coupled, allowed two-boson states are

s2 (L = 0), sd (L = 2), sg (L = 4), d2 (L = 0, 2, 4), dg (L = 2, 3, 4, 5, 6) and g2

(L = 0, 2, 4, 6, 8). Since for n states with a given angular momentum one has n(n+1)/2

interactions, 32 independent two-body interactions v are found: six for L = 0, ten for

L = 2, one for L = 3, ten for L = 4, one for L = 5, three for L = 6 and one for

L = 8. Together with the constant E0 and the three single-boson energies ǫs, ǫd and

ǫg, a total of 36 parameters is thus needed to specify completely the hamiltonian of the

sdg-IBM which includes up to two-body interactions. This number is far too great for

practical applications. In the following sections we explain how possible simplifications

draw inspiration from the classical limit and from the sd-IBM.

3. The classical limit

The classical limit of an IBM hamiltonian is defined as its expectation value in a coherent

state [1] and yields a function of the relevant deformation parameters which can be

interpreted as a potential surface depending on these parameters. The method was first

proposed for the sd-IBM [8, 7, 9]. The extension to the sdg-IBM was carried out by

Devi and Kota [43] who established the classical limit of the various limits of U(15).
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The coherent state for the sdg-IBM is given by

|N ; α2µ, α4µ〉 ∝
(

s† +
∑

µ

α2µd†
µ +

∑

µ

α4µg
†
µ

)N

|o〉, (5)

where |o〉 is the boson vacuum and the αλµ are the spherical tensors of quadrupole

(λ = 2) and hexadecapole (λ = 4) deformation. They have the interpretation of

shape variables and their associated conjugate momenta. If one limits oneself to static

problems, the αλµ can be taken as real; they specify a shape and are analogous to the

shape variables of the droplet model of the nucleus [10]. In particular, they satisfy

the same constraints as the latter which follow from reflection symmetry, that is, (i)

αλµ = αλ−µ and (ii) αλµ = 0 for µ odd.

The most general parametrization of a surface with quadrupole and hexadecapole

deformation has been discussed by Rohoziński and Sobiczewski [44] and involves five

shape parameters: two of quadrupole (β2 and γ2) and three of hexadecapole character

(β4, γ4 and δ4). A considerable simplification of the problem is obtained by relating the

two hexadecapole variables (γ4 and δ4) that parametrize deviations from axial symmetry

in terms of the corresponding quadrupole variable γ2, according to the Cayley-Hamilton

theorem [45]. In terms of the latter variables, the coherent state (5) is rewritten as

|N ; β2, β4, γ2〉 =

√

1

N !(1 + β2
2 + β2

4)
N

×
(

s† + β2

[

cos γ2d
†
0 +

√

1
2
sin γ2(d

†
−2 + d†

+2)
]

+ 1
6
β4

[

(5 cos2 γ2 + 1)g†
0 +

√

15
2

sin 2γ2(g
†
−2 + g†

+2)

+
√

35
2

sin2 γ2(g
†
−4 + g†

+4)
])N |o〉. (6)

The range of allowed values for the quadrupole shape variables is 0 ≤ β2 < +∞
and 0 ≤ γ2 ≤ π/3. On the other hand, the hexadecapole shape variable β4 is

unrestricted [45]. The expectation value of the hamiltonian (1) in this state can

be determined by elementary methods [46] and yields a function of β2, β4 and γ2

which is identified with a potential V (β2, β4, γ2). In this way the classical limit of

the hamiltonian (1) has the following generic form:

V (β2, β4, γ2) = E0 +
∑

n≥1

N(N − 1) · · · (N − n + 1)

(1 + β2
2 + β2

4)
n

×
∑

klm

a
(n)
kl;m(β2)

k(β4)
l cos(3mγ2), (7)

where n refers to the order of the interaction. If up to two-body terms are included in

the hamiltonian, the non-zero coefficients a
(n)
kl;m are

a
(1)
00;0 = ǫs, a

(1)
20;0 = ǫd, a

(1)
02;0 = ǫg,

a
(2)
00;0 = 1

2
v0

ssss, a
(2)
20;0 =

√

1
5
v0

ssdd + v2
sdsd, a

(2)
02;0 = 1

3
v0

ssgg + v4
sgsg,

a
(2)
30;1 = −2

√

1
7
v2

sddd, a
(2)
21;0 = 2

√

2
7
v2

sddg + 6√
35

v4
sgdd,

a
(2)
12;1 = −10

3

√

2
77

v2
sdgg − 4

√

5
77

v4
sgdg, a

(2)
03;0 = − 112

9
√

1001
v4

sggg,
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a
(2)
03;2 = − 50

9
√

1001
v4

sggg, a
(2)
40;0 = 1

10
v0

dddd + 1
7
v2

dddd + 9
35

v4
dddd,

a
(2)
31;1 = −2

√
2

7
v2

dddg − 12
7
√

11
v4

dddg,

a
(2)
22;0 = 1

3
√

5
v0

ddgg + 5
9

√

2
11

v2
ddgg + 16

3
√

715
v4

ddgg

+ 2
7
v2

dgdg + 1
18

v3
dgdg + 85

462
v4

dgdg + 47
99

v6
dgdg,

a
(2)
22;2 = 5

63

√

2
11

v2
ddgg + 10

21

√

5
143

v4
ddgg − 1

18
v3

dgdg + 5
66

v4
dgdg − 2

99
v6

dgdg,

a
(2)
13;1 = − 20

21
√

11
v2

dggg − 36
77

√

5
13

v4
dggg − 10

√
2

33
v6

dggg,

a
(2)
04;0 = 1

18
v0

gggg + 625
6237

v2
gggg + 167

2457
v4

gggg + 5
81

v6
gggg + 2485

11583
v8

gggg,

a
(2)
04;2 = 25

891
v2

gggg + 50
3861

v4
gggg + 35

891
v6

gggg + 280
11583

v8
gggg, (8)

in terms of the single-boson energies ǫℓ and the matrix elements between normalized

two-boson states,

vL
ℓ1ℓ2ℓ′

1
ℓ′
2

≡ 〈ℓ1ℓ2; LM |Ĥ(2)|ℓ′1ℓ′2; LM〉. (9)

This analysis shows that the geometry of the sdg hamiltonian depends on 19

parameters (including E0), considerably smaller than the 36 parameters of the quantum-

mechanical version of the same hamiltonian. The structure of the phase diagram

associated with the general sdg hamiltonian (7) might be of interest but is well beyond

the scope of the present analysis. In the next section we show how a simplified sdg

hamiltonian can be constructed which presumably captures the essential features of the

phase-transitional behaviour in the sdg-IBM.

4. A generalized Casten triangle

A simplified hamiltonian of the sd-IBM is of the form

Ĥsd = ǫd n̂d + κ Q̂ · Q̂ + κ′L̂ · L̂, (10)

where Q̂ is the quadrupole operator with components Q̂µ ≡ [d†×s̃+s†×d̃](2)µ +χ[d†×d̃](2)µ

and L̂ is the angular momentum operator, L̂µ ≡
√

10 [d† × d̃](1)µ . The Q̂2 and L̂2 terms

in (10) constitute the hamiltonian of the so-called consistent-Q formalism (CQF) [47];

for χ = ±
√

7/2 it gives rise to the deformed or SU(3) limit and for χ = 0 to the

γ-unstable or SO(6) limit. In an extended consistent-Q formalism (ECQF) [48] the

term n̂d is added with which the third, vibrational or U(5) limit of the sd-IBM can be

obtained. The ECQF hamiltonian thus allows one to reach all three limits of the model

with four parameters.

The eigenfunctions of the ECQF hamiltonian are, in fact, independent of κ′ and,

furthermore, of the overall scale of the spectrum, reducing the number of essential

parameters to two, the ratio κ/ǫd and χ. The physically relevant portion of this

parameter space can be represented on a so-called Casten triangle [49]. Its vertices

correspond to the three limits of the sd-IBM, U(5), SU(3) and SO(6) for spherical,

deformed and γ-unstable nuclei, respectively. The three legs of the triangle describe
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transitional cases, intermediate between two of the three limits, while an arbitrary point

on the triangle corresponds to an admixture of the three limits.

In this paper we propose a similar hamiltonian in the sdg-IBM. The different

dynamical symmetries of the sdg-IBM are known since long [50, 51]. In particular, three

limits occur in sdg-IBM, namely U(5)⊗U(9), SU(3) and SO(15), that are the analogues

of the limits of the sd-IBM. An immediate generalization of the sd hamiltonian (10) is

therefore of the form

Ĥsdg = ǫdn̂d + ǫgn̂g − κQ̂(2) · Q̂(2) − κ(1 − χ2)Q̂(4) · Q̂(4), (11)

where Q̂(2)
µ and Q̂(4)

µ are the quadrupole and hexadecapole operators, respectively, given

by

Q̂(2)
µ = σ[s† × d̃ + d† × s̃](2)µ

+ χ
(

11
√

10
28

[d† × d̃](2)µ − 9
7
σ′[d† × g̃ + g† × d̃](2)µ + 3

√
55

14
[g† × g̃](2)µ

)

,

Q̂(4)
µ = [s† × g̃ + g† × s̃](4)µ . (12)

The parameter χ is chosen so that 0 ≤ χ ≤ 1 and σ, σ′ = ±1 are two arbitrary

phases leading to four possible realizations of SU(3) [51]. For χ = 1 the quadrupole

operator is a generator of sdg-SU(3) while for χ = 0 it becomes a generator of

SO(15). Other parametrizations of the hexadecapole strength with the same effect

could be taken in the hamiltonian (11), such as
√

1 − χ2 or (1 − |χ|); they differ

little in actual results and the dependence (1 − χ2) is chosen here for its convenience.

Note that with this parametrization the deformed limit has a vanishing hexadecapole

interaction which is then only present in the γ-soft SO(15) limit. To do otherwise

would require a hexadecapole operator taken from one of the other two strong coupling

limits of sdg-IBM, SU(5) or SU(6). Since these have a questionable microscopic

interpretation [52], this is not done here.

With the help of the expression (8) for the general hamiltonian of the sdg-IBM the

classical limit of the special hamiltonian (11) yields

〈Ĥsdg〉
N

=
ǫdβ

2
2

1 + β2
2 + β2

4

+
ǫgβ

2
4

1 + β2
2 + β2

4

− (N − 1)κ

(1 + β2
2 + β2

4)
2

×
[

4β2
2 − σσ′χ

(

72
7

√

2
7
β2

2β4 + 2
7

√

5
7
[11β3

2 + 10β2β
2
4 ]σ

′ cos 3γ2

)

+ χ2
(

605
1372

β4
2 + 5813

2058
β2

2β
2
4 + 3125

6174
β4

4 + 18
√

10
343

[11β3
2β4

+ 10β2β
3
4 ]σ

′ cos 3γ2 − 25
6174

[33β2
2β

2
4 + 35β4

4 ] cos 6γ2

)

]

− 4(N − 1)κ(1 − χ2)β2
4

(1 + β2
2 + β2

4)
2

, (13)

where only the two-body parts of the Q̂(2) · Q̂(2) and Q̂(4) · Q̂(4) operators have been

considered. We note first of all that a change of sign of the product σσ′ is equivalent

with the change χ → −χ. We may thus take σσ′ = +1 and consider the parameter

range −1 ≤ χ ≤ +1. Secondly, we remark that everywhere else σ′ occurs in combination
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with cos 3γ2 and, consequently, the change σ′ → −σ′ is equivalent with the replacement

γ2 → π/3 − γ2. This means that without loss of generality the choice σ = σ′ = +1 can

be made as long as the range −1 ≤ χ ≤ +1 is considered. This can also be understood

from the form of the Q̂(2)
µ operator in eq. (12) from which it is clear that the change

σ → −σ is equivalent to χ → −χ. The two choices χ = −1 and χ = +1 each correspond

to a dynamical-symmetry limit of the SU(3) type which shall be referred to as SU−(3)

and SU+(3), respectively.

Choosing ǫd as the overall energy scale, we summarize the preceding discussion by

stating that we seek to minimize (in β2, β4 and γ2) the following energy surface:

V3(β2, β4, γ2; η, χ, r)

=
β2

2

1 + β2
2 + β2

4

+
rβ2

4

1 + β2
2 + β2

4

− η

(1 + β2
2 + β2

4)
2

×
[

4β2
2 − χ

(

72
7

√

2
7
β2

2β4 + 2
7

√

5
7
[11β3

2 + 10β2β
2
4 ] cos 3γ2

)

+ χ2
(

605
1372

β4
2 + 5813

2058
β2

2β
2
4 + 3125

6174
β4

4 + 18
√

10
343

[11β3
2β4

+ 10β2β
3
4 ] cos 3γ2 − 25

6174
[33β2

2β
2
4 + 35β4

4 ] cos 6γ2

)

]

− 4η(1 − χ2)β2
4

(1 + β2
2 + β2

4)
2
, (14)

where the notation η ≡ (N − 1)κ/ǫd and r ≡ ǫg/ǫd is introduced. The order parameters

are β2, β4 and γ2, and the control parameters are η, χ and r. The subscript 3 in V3

refers to the number of order parameters and is used to distinguish it from V2 introduced

below. Physically meaningful values of the parameters imply η > 0. It is convenient

to introduce, instead of η = ξ/4(1 − ξ), the control parameter ξ = 4η/(1 + 4η) such

that ξ ∈ [0, 1] instead of η ∈ [0, +∞[. (The combination 4η instead of η is chosen in ξ

for later convenience.) Furthermore, since the g boson is higher in energy than the d

boson we have r > 1. In the limit r → ∞ one recovers the sd-IBM. Again, it is more

convenient to introduce, instead of r = 1/(1 − ζ), the control parameter ζ = (r − 1)/r

such that ζ ∈ [0, 1] instead of r ∈ [1,∞[. The definition adopted here for η or ξ is

similar to the one of Iachello [6], so that we can easily compare with sd-IBM for ζ = 1.

The parameter space covered by the hamiltonian (11) can be summarized with a

generalization of the Casten triangle which becomes a prism, as shown in figure 1. Also

indicated on the figure are the different symmetry limits of the sd-IBM and sdg-IBM.

The point (ξ, ζ) = (0, 1) is denoted as U(5), as should be, and the point (ξ, ζ) = (0, 0),

somewhat arbitrarily, as U(9), so that all vertices of the prism are labelled, facilitating

the discussion of the structure of the phase diagram. Note that the U(5)⊗U(9) symmetry

is valid for any combination of ǫd and ǫg (and hence for all ζ ∈ [0, 1]) as long as ξ = 0.



Phase transitions in sdg-IBM 8

UH9L

SOH15L

SU-H3L

SU+H3L SU-H3L

SU+H3L

UH5L

SOH6L

Ζ

Ξ

Ξ

Χ

Figure 1. The Casten prism associated with the hamiltonian (11) of the sdg-IBM.

The different symmetry limits of the sd-IBM and sdg-IBM are indicated with black

dots. The three control parameters ξ, χ and ζ, as defined in the text, are indicated

alongside the corresponding axes of the prism.

5. Method

The problem here is more complicated than in sd-IBM because of an extra order

parameter (β4) and an extra control parameter (r). The necessary and sufficient

conditions for the potential energy V to have a (Morse or normal) critical point in

(β∗
2 , β

∗
4 , γ

∗
2) are

∂V3

∂β2

∣

∣

∣

∣

∣

(β∗

2
,β∗

4
,γ∗

2
)

=
∂V3

∂β4

∣

∣

∣

∣

∣

(β∗

2
,β∗

4
,γ∗

2
)

=
∂V3

∂γ2

∣

∣

∣

∣

∣

(β∗

2
,β∗

4
,γ∗

2
)

= 0. (15)

Furthermore, whether the critical point is a minimum, maximum or saddle point depends

on whether the eigenvalues of the stability matrix in (β∗
2 , β

∗
4 , γ

∗
2),

H3(β
∗
2 , β

∗
4 , γ

∗
2 ; ξ, χ, ζ) ≡























∂2V3

∂β2
2

∂2V3

∂β2∂β4

∂2V3

∂β2∂γ2

∂2V3

∂β4∂β2

∂2V3

∂β2
4

∂2V3

∂β4∂γ2

∂2V3

∂γ2∂β2

∂2V3

∂γ2∂β4

∂2V3

∂γ2
2























(β∗

2
,β∗

4
,γ∗

2
)

, (16)

are all positive, all negative or both positive and negative. If, in addition to the

condition (15), the determinant of the stability matrix vanishes,

∆3(β
∗
2 , β

∗
4 , γ

∗
2 ; ξ, χ, ζ) ≡ detH3(β

∗
2 , β

∗
4 , γ

∗
2 ; ξ, χ, ζ) = 0, (17)

a so-called degenerate (or non-Morse) critical point is found [53]. This ensemble is of

particular importance since it defines the points at which the energy surface changes in
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structure and hence at which the system possibly undergoes a shape phase transition.

The points that satisfy the condition (17) define a surface in the control parameters

space (ξ, χ, ζ). Degenerate critical points shall be denoted as (ξ∗, χ∗, ζ∗). Our goal will

be to determine the appearance of the degenerate critical surface in the Casten prism

of figure 1.

The problem of determining the phase diagram for the Casten prism can be

addressed by noting that solutions of the last of the equations in (15) satisfy one of

the two equations

sin 3γ2 = 0, cos 3γ2 =
9β2(9

√
2χβ4 − 7

√
7)(11β2

2 + 10β2
4)

5
√

5χβ2
4(33β2

2 + 35β2
4)

. (18)

These two conditions define the two possible classes of solutions. The first class

corresponds to critical points with axial symmetry, γ∗
2 = 0 (prolate) or γ∗

2 = π/3 (oblate).

A further simplification is then obtained by noting that the off-diagonal elements of the

stability matrix involving γ2 vanish at γ∗
2 = 0 or γ∗

2 = π/3, and hence the points in the

degenerate critical set (ξ∗, χ∗, ζ∗) satisfy one of the two following equations:

det













∂2V3

∂β2
2

∂2V3

∂β2∂β4

∂2V3

∂β4∂β2

∂2V3

∂β2
4













(β∗

2
,β∗

4
,γ∗

2
)

= 0,
∂2V3

∂γ2
2

∣

∣

∣

∣

∣

(β∗

2
,β∗

4
,γ∗

2
)

= 0. (19)

Furthermore, we note that cos 3γ2 always occurs in Eq. (14) in combination with an odd

power (1 or 3) of β2. Since the replacement γ2 → π/3 − γ2 corresponds to a change in

sign of cos 3γ2 and no change in cos 6γ2, both cases γ2 = 0 and γ2 = π/3 are covered

by putting γ2 = 0 and allowing also negative values of β2. This further simplifies the

potential energy surface (14) which now only depends on the two order parameters β2

and β4,

V2(β2, β4; η, χ, r)

=
β2

2

1 + β2
2 + β2

4

+
rβ2

4

1 + β2
2 + β2

4

− η

(1 + β2
2 + β2

4)
2

×
[

4β2
2 + χ

(

22
7

√

5
7
β3

2 + 72
7

√

2
7
β2

2β4 + 20
7

√

5
7
β2β

2
4

)

+ χ2
(

605
1372

β4
2 + 198

√
10

343
β3

2β4 + 923
343

β2
2β

2
4 + 180

√
10

343
β2β

3
4 + 125

343
β4

4

)

]

− 4η(1 − χ2)β2
4

(1 + β2
2 + β2

4)
2
. (20)

In summary, critical points (β∗
2 , β

∗
4) with axial symmetry are obtained from the

simultaneous conditions

∂V2

∂β2

∣

∣

∣

∣

∣

(β∗

2
,β∗

4
)

=
∂V2

∂β4

∣

∣

∣

∣

∣

(β∗

2
,β∗

4
)

= 0, (21)
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where one assumes γ∗
2 = 0 and allows negative values of β∗

2 . The points (ξ∗, χ∗, ζ∗) in

the degenerate critical set should satisfy one of the two following equations:

∆2(β
∗
2 , β

∗
4 ; ξ, χ, ζ) = 0,

∂2V3

∂γ2
2

∣

∣

∣

∣

∣

(β∗

2
,β∗

4
,γ∗

2
)

= 0, (22)

where ∆2(β
∗
2 , β

∗
4 ; ξ, χ, ζ) is the determinant of the 2 × 2 stability matrix,

H2(β
∗
2 , β

∗
4 ; ξ, χ, ζ) ≡













∂2V2

∂β2
2

∂2V2

∂β2∂β4

∂2V2

∂β4∂β2

∂2V2

∂β2
4













(β∗

2
,β∗

4
)

. (23)

The second class corresponds to critical points without axial symmetry, obtained

as solutions of the second equation in (18).

Before attacking the problem of the occurrence of shape phase transitions for the

entire hamiltonian (11), it is instructive to study, as a function of r or ζ , the three legs

of the triangle between the limits U(5)⊗U(9), SU+(3) and SU−(3). This will determine

the structure of the phase diagram on the faces of the prism of figure 1. In this analysis

care should be taken to cover the two cases χ > 0 and χ < 0, and study in particular

the behaviour at χ = 0, for instance in the SU−(3)–SO(15)–SU+(3) transition.

6. Partial phase diagrams

6.1. The U(5) ⊗ U(9) to SO(15) transition

The U(5) ⊗ U(9)–SO(15) transition is obtained for χ = 0 and r = 1 (or ζ = 0) while η

varies from 0 to +∞ (or ξ from 0 to 1). At the top side of the prism, for r = ∞ (or

ζ = 1), this reduces to the U(5)–SO(6) transition. We are interested here in the entire

phase diagram in η and r (or ξ and ζ) which can be established by an expansion in β2

and β4 around (0,0). Since there is no dependence on γ2 for χ = 0, the analysis can be

done starting from the potential (20). Up to fourth order we obtain

V2(β2, β4; η, χ = 0, r) ≈ (1 − 4η)β2
2 + (r − 4η)β2

4 − (1 − 8η)β4
2

− (1 − 16η + r)β2
2β

2
4 − (r − 8η)β4

4 , (24)

involving even powers of β2 and β4 only. The expansion (24) shows that the potential

always exhibits a minimum, saddle point or maximum at β∗
2 = β∗

4 = 0. This is confirmed

by computing the stability matrix at β∗
2 = β∗

4 = 0:

H2(0, 0; ξ, χ = 0, ζ) =













2(1 − 2ξ)

1 − ξ
0

0
2[1 − ξ(2 − ζ)]

(1 − ξ)(1 − ζ)













. (25)

The zeros of the determinant of the stability matrix determine the degenerate critical

points which separate the different possible shapes of the potential. They are ξ = 1/2

(or η = 1/4) and ξ = 1/(2 − ζ) (or η = r/4). Consequently, we find that the potential
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has (I) a minimum for ξ < 1/2, (IIa) a saddle point for 1/2 < ξ < 1/(2 − ζ) and (IIb)

a maximum for ξ > 1/(2 − ζ), always at β∗
2 = β∗

4 = 0.

In addition, for ξ > 1/2, critical points in β2 occur for β∗
2 6= 0 (i.e. quadrupole-

deformed critical points). The dependence of β∗
2 on ξ and ζ is obtained by solving

∂V2/∂β2 = 0 for β4 = 0, yielding

β∗
2 = ±

√

2ξ − 1 = ±
√

4 − ǫd

4 + ǫd

. (26)

Hence the picture emerges that the spherical minimum β∗
2 = β∗

4 = 0 at ξ = 1/2

continuously evolves into the two quadrupole-deformed minima (26). The phase

transition is of second order. It should be emphasized that this result is independent of

ζ (or r) and that the entire line ξ = 1/2 exhibits a second-order phase transition when

crossed. In particular, we recover the results of sd-IBM [6] which corresponds to ζ = 1.

One should verify the nature of the critical points by calculating the stability matrix at

β∗
2 = ±

√
2ξ − 1 and β∗

4 = 0:

H2(±
√

2ξ − 1, 0; ξ, χ = 0, ζ) =













2ξ − 1

2(1 − ξ)ξ3
0

0
ζ

ξ(1 − ζ)













. (27)

Both matrix elements are positive definite and hence one always has a minimum.

Finally, for ξ > 1/(2 − ζ), additional critical points with β∗
4 6= 0 occur (i.e.

hexadecapole-deformed critical points). The dependence of β∗
4 on ξ and ζ is obtained

by solving ∂V2/∂β4 = 0 for β2 = 0, yielding

β∗
4 = ±

√

ξ(2 − ζ) − 1

1 − ξζ
= ±

√

4 − ǫg

4 + ǫg

. (28)

So the spherical saddle point β∗
2 = β∗

4 = 0 at ξ = 1/(2− ζ) continuously evolves into the

two deformed critical points (28), the nature of which follows from the stability matrix

at β∗
2 = 0 and β∗

4 = ±
√

[ξ(2 − ζ) − 1]/(1 − ξζ):

H2(0,±
√

ξ(2 − ζ) − 1

1 − ξζ
; ξ, χ = 0, ζ)

=













−ζ(1 − ξζ)

ξ(1 − ζ)2
0

0
[ξ(2 − ζ) − 1](1 − ξζ)3

2(1 − ξ)ξ3(1 − ζ)4













. (29)

One matrix element is positive definite while the other is negative definite and hence

both critical points are saddle points in this case.

The phase diagram in the (ξ, ζ) plane with χ = 0 deduced in this way is shown

in figure 2. The parameter space is divided in three areas with qualitatively different

potentials in β2 and β4, characterized by the number and nature (minima, maxima

or saddle) of Morse critical points. The potential surfaces in the regions indicated in

figure 2 are characterized by
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Figure 2. The phase diagram in the (ξ, ζ) plane of the Casten prism for χ = 0.

The lines or curves represent the locus of degenerate critical points that separate the

different regions as discussed in the text. Symmetry limits of the sd-IBM and sdg-IBM

are indicated with black dots. The entire ζ axis corresponds to the U(5) ⊗ U(9) limit

of sdg-IBM.

• (I) a spherical minimum (β∗
2 = β∗

4 = 0);

• (IIa) a spherical saddle point and two quadrupole-deformed minima (β∗
2 6= 0,

β∗
4 = 0);

• (IIb) a spherical maximum, two quadrupole-deformed minima and two

hexadecapole-deformed saddle points (β∗
2 = 0, β∗

4 6= 0).

The degenerate critical lines in the phase diagram correspond to bifurcation lines: at

ξ = 1/2 the spherical minimum splits into two quadrupole-deformed minima and at

ξ = 1/(2 − ζ) the spherical saddle point splits into two hexadecapole-deformed saddle

points.

6.2. The U(5) ⊗ U(9) to SU(3) transitions

The U(5) ⊗ U(9)–SU+(3) transition is obtained for χ = +1 and r = 1 (or ζ = 0) while

η varies from 0 to +∞ (or ξ from 0 to 1). A similar transition, from U(5) ⊗ U(9) to

SU−(3), is obtained for χ = −1. At the top side of the prism, for r = ∞ (or ζ = 1),

the U(5) ⊗ U(9)–SU±(3) transitions almost reduce to U(5)–SU±(3), their analogues in

sd-IBM. This correspondence is not exact since the coefficient of the [d† × d̃](2)µ term in



Phase transitions in sdg-IBM 13

U
H5
L´

U
H9
L

UH9L

UH5L

H3LSUsdg

H3L~ SUsd

Ia

Ib

II

IIIa
IIIb

0.5 1

0.5

1

Ξ

Ζ

Figure 3. The phase diagram in the (ξ, ζ) plane of the Casten prism for χ = −1.

The lines or curves represent the locus of degenerate critical points with γ∗
2

= 0 that

separate the different regions as discussed in the text. Symmetry limits of the sd-IBM

and sdg-IBM are indicated with black dots. The entire ζ axis corresponds to the

U(5) ⊗ U(9) limit of sdg-IBM.

the quadrupole operator (12) is 11
√

10/28 ≈ 1.24 while it is
√

7/2 ≈ 1.32 in sd-IBM.

From the expression of the potential surface (14) we note that the change χ → −χ is

equivalent to the simultaneous change β4 → −β4 and γ2 → π/3−γ2. Hence all potential

energy surfaces that can be realized for χ < 0 follow from those with χ > 0 and only

one case needs to be studied. We are interested here in the entire phase diagram in η

and r (or ξ and ζ) and consider the case χ = −1.

An expansion up to third order around (β2, β4) = (0, 0) gives

V (β2, β4, γ2; η, χ = −1, r) ≈ (1 − 4η)β2
2 + rβ2

4 − 22
7

√

5
7
ηβ3

2 cos 3γ2

− 72
7

√

2
7
ηβ2

2β4 − 20
7

√

5
7
ηβ2β

2
4 cos 3γ2. (30)

This shows that the spherical point (β2, β4) = (0, 0) is always a minimum in β4 since

r > 0 and that it is a minimum in β2 for ξ < 1/2 (or η < 1/4).

In general, critical points can only be obtained through a numerical solution of the

equations (15) and (17), which, for a given χ, can be achieved as follows [with reference

to the classical limit (13) expressed in units of κ(N −1)]. Since the hamiltonian is linear

in ǫd and ǫg, it is straightforward to obtain as solutions of the first two equations in (15)

analytic expressions ǫd(β2, β4) and ǫg(β2, β4). Furthermore, the solution of the third



Phase transitions in sdg-IBM 14

equation in (15) is also known in closed form, see (18). As a result, the “unknowns”

ǫd, ǫg and γ2 can be eliminated from (17) to yield a single equation in β2 and β4. This

equation cannot be solved analytically but, for a given value of β2, and always for fixed

given χ, a numerical solution in β4 can be found, and from there γ2, ǫd and ǫg are

determined. Transforming from the (ǫd, ǫg, κ(N − 1)) to the (ξ, ζ) variables, one thus

finds parametric curves in (ξ, ζ) space with β2 as parameter. Identical results are found

by inverting the roles of β2 and β4, in which case the parametric curves in (ξ, ζ) space

have β4 as parameter.

The solution for χ = −1 already displays a surprising richness which is illustrated in

figure 3. The different curves in the figure represent the locus of degenerate critical points

with γ∗
2 = 0, that is, degenerate critical points that satisfy the first of the equations (18).

The physical portion of the phase diagram with 0 ≤ ξ ≤ 1 and 0 ≤ ζ ≤ 1 displays

several regions distinguished by qualitatively different potentials. We may characterize

a potential by listing all its critical points together with the signs of the eigenvalues of

the stability matrix which distinguishes minima from maxima from saddle points. Hence

we introduce for each critical point a notation (λ1, λ2, λ3) with λi = ±. A minimum,

for example, is denoted as (+, +, +). A special situation arises for spherical critical

points with (β∗
2 , β

∗
4) = (0, 0) which can be characterized by the signs of the eigenvalues

(λ1, λ2) of the 2 × 2 stability matrix (23). The different regions of figure 3 then have

the following potentials:

• (Ia) (+, +), (+,−,−), (−,−,−);

• (Ib) (+, +), (+, +,−), (−,−,−);

• (II) (+, +), (+, +, +), (+, +,−), (+,−,−), (−,−,−);

• (IIIa) (+,−), (+, +, +), (+, +,−), (+,−,−), (−,−,−);

• (IIIb) (+,−), (+, +, +), (+, +,−), (+,−,−)2, (−,−,−)2.

We emphasize that this is not the complete classification since it only concerns critical

points with γ∗
2 = 0; an even more complex diagram is found if solutions from the second

of the equations (18) are included. In the study of phase transitions of quantum systems

we are, however, primarily interested in the evolution of global and local minima of the

potential. Therefore, we may for our purpose here ignore the evolution of saddle points

and maxima, and concentrate on minima. From this point of view the phase diagram

is divided into three regions characterized by potentials with (I) a spherical minimum,

(II) a spherical and a deformed minimum, and (III) a deformed minimum. Also, if we

confine our attention to the global and local minima of the potential only, no degenerate

critical point with γ2 6= 0 is found to occur in the physical region of the phase diagram

with 0 ≤ ξ ≤ 1 and 0 ≤ ζ ≤ 1. From now on our analysis will be confined to the

partition of the phase diagram into regions with potentials that differ in the properties

of their minima.

The phase diagram for the U(5) ⊗ U(9)–SO(15) transition of subsection 6.1 is

characterized by two main regions (I) and (II) (see figure 2) since (IIa) and (IIb) are

distinguished by differences in saddle points and maxima only. With respect to the result
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Figure 4. The evolution of the deformation parameters at equilibrium, β∗
2

and β∗
4
,

along three different paths in the (ξ, ζ) plane with 0 ≤ ξ ≤ 1 and ζ = 0, 0.5 and

0.9, respectively. In each case the region of coexistence of a spherical and a deformed

minimum is indicated by the grey area.

of subsection 6.1 we note that the U(5)⊗U(9)–SU(3) transition has an extra region (II)

which is characterized by the coexistence of a spherical and a deformed minimum. This

result is consistent with what is found in the sd-IBM and, moreover, we observe that,

for realistic boson energies with ǫg > ǫd, the actual value of the g-boson energy has little

influence on the size of the coexistence region.

Although one does not have analytic expressions for the deformation parameters at

equilibrium, β∗
2 and β∗

4 , these can be obtained numerically and typical results are shown

in figure 4 for three different paths in the (ξ, ζ) plane. The most striking evolution is

that of the behaviour of β∗
4 as a function of ζ . It is clear from the figure that a first-

order transition occurs in β∗
4 but the discontinuity in β∗

4 becomes smaller for ζ → 1 (or

ǫg → ∞).

6.3. The SU−(3)–SO(15)–SU+(3) transition

The SU−(3)–SO(15)–SU+(3) transition is obtained for η = +∞ (or ξ = 1) while χ

varies from −1 to +1. In the limit η → +∞ there is no dependence of the potential on

either of the boson energies ǫd or ǫg, and hence the search for degenerate critical points

is independent of ζ . It is easy to show that for χ = 0 the equations (15) are satisfied

for β∗
2
2 + β∗

4
2 = 1 and arbitrary γ∗

2 . The potential is not only flat in γ2 but in addition

behaves like a Mexican hat in (β2, β4) around (0,0). Furthermore, for β∗
2
2 + β∗

4
2 = 1,

the condition (17) for a degenerate critical point is satisfied as well. Thus we find that

all points with χ = 0 and arbitrary ζ are degenerate critical. On this line the potential

is flat in γ2 and in the SU−(3)–SO(15)–SU+(3) transition it tilts over from a prolate

minimum with γ∗
2 = 0 for χ < 0 to an oblate one with γ∗

2 = π/3 for χ > 0. No other

degenerate critical points occur for values of χ between −1 and +1.
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7. The complete phase diagram

We are now in a position to piece together the entire phase diagram for 0 ≤ ξ ≤ 1,

−1 ≤ χ ≤ +1 and 0 ≤ ζ ≤ 1. Since the change χ → −χ is equivalent to the simultaneous

change β4 → −β4 and γ2 → π/3 − γ2, it is in fact sufficient to consider only positive

or negative values of χ: the phase diagram is mirror-symmetric with respect to the

U(5)–U(9)–SO(15)–SO(6) plane. In the following we consider the range −1 ≤ χ ≤ 0.

An expansion of the potential up to third order,

V (β2, β4, γ2; η, χ, r) ≈ (1 − 4η)β2
2 + [r − 4η(1 − χ2)]β2

4

+ 22
7

√

5
7
χηβ3

2 cos 3γ2 + 72
7

√

2
7
χηβ2

2β4 + 20
7

√

5
7
χηβ2β

2
4 cos 3γ2, (31)

or, alternatively, the expression for the stability matrix at β∗
2 = β∗

4 = 0,

H2(0, 0; ξ, χ = 0, ζ) =













2(1 − 2ξ)

1 − ξ
0

0
2{1 − ξ[2 − ζ − χ2(1 − ζ)]}

(1 − ξ)(1 − ζ)













, (32)

shows that at the spherical point the potential has (I) a minimum for ξ < 1/2 (or

η < 1/4), (IIa) a saddle point for 1/2 < ξ < 1/[2−ζ−χ2(1−ζ)] [or 1/4 < η < r/(4−4χ2)]

and (IIb) a maximum for ξ > 1/[2 − ζ − χ2(1 − ζ)] [or η > r/(4 − 4χ2)], always at

β∗
2 = β∗

4 = 0. The situation is similar to the transitions discussed in subsection 6.1,

with the only difference that now the separation line between the regions (IIa) and (IIb)

depends on the value of χ while for the U(5) ⊗ U(9)–SO(15) transition we have χ = 0.

If we confine ourselves to an analysis of the properties of the minima of the potential,

we may ignore the separation between (IIa) and (IIb) and treat them as a single region.

A locus of points of particular interest is defined by the condition that two

eigenvalues of the stability matrix vanish. This is possible if there are at least two

order parameters and at least three control parameters, as is the case presently, and

leads to a catastrophe function of the type D±4 [53]. From the stability matrix (32) it

is seen that this happens at β∗
2 = β∗

4 = 0 for ξ = 1/2 (or η = 1/4) and χ2 = ζ/(ζ − 1)

(or χ2 = (ǫd − ǫg)/ǫd). The locus of D±4 catastrophes is represented by a curve in

the (ξ, χ, ζ) space but it is entirely situated in the non-physical portion of this space

(for ǫg ≤ ǫd, below the Casten prism of figure 1) with the exception of the single point

ξ = 1/2, χ = ζ = 0 which is half-way between U(9) and SO(15).

We therefore come to the conclusion that nothing spectacular happens within the

Casten prism which, when it comes to the properties of minima, is divided by two

surfaces in to three regions (see figure 5). The first surface is a plane obtained for

ξ = 1/2, −1 ≤ χ ≤ 0 and 0 ≤ ζ ≤ 1. The second is a parametric surface with parameters

(β2, χ) [or (β4, χ)], constructed with the technique explained in subsection 6.2. This

situation closely parallels what is obtained in sd-IBM and, moreover, it is seen from

figure 5 that the size of the coexistence region is not greatly influenced by the ratio of

boson energies ǫg/ǫd (or ζ). We want to emphasize, however, that this is not a trivial

conclusion but that this result depends on our choice of hamiltonian and of the domain
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Figure 5. Phase diagram of the Casten prism associated with the hamiltonian (11)

of the sdg-IBM. The two planes represent the locus of degenerate critical points that

separate the spherical and deformed regions, and enclose the region of coexistence.

The different symmetry limits of the sd-IBM and sdg-IBM are indicated with black

dots.

available to the parameters ξ, χ and ζ which are guided by physics arguments. If we

were to allow, for example, boson energies with ǫg < ǫd, a much more complex phase

diagram would be uncovered which strongly departs from the one found in sd-IBM.

8. Conclusion

We summarize the three main assumptions at the basis of our geometric analysis of the

sdg-IBM.

(i) The general parametrization of a shape with quadrupole and hexadecapole

deformation is reduced to one in terms of three variables (β2, β4, γ2).

(ii) A simplified sdg hamiltonian is considered which is intermediate between four

dynamical-symmetry limits of U(15), namely U(5) ⊗ U(9), SU±(3) and SO(15).

(iii) Parameters of this simplified sdg hamiltonian are restricted to physically acceptable

values.
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Under the above assumptions we find that the phase diagram is divided into three

regions characterized by potentials with (I) a spherical minimum, (II) a spherical and a

deformed minimum, and (III) a deformed minimum. The deformed minima are either

prolate or oblate depending on the sign of the parameter χ in the quadrupole operator.

No transition towards a stable triaxial shape is found.
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