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émanant des établissements d’enseignement et de
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ABSTRACT

Context. Supernova remnants are believed to be a major source of energetic particles (cosmic rays) on the Galactic scale. Since their
progenitors, namely the most massive stars, are commonly found clustered inOB associations, one has to consider the possibility of
collective effects in the acceleration process.
Aims. We investigate the shape of the spectrum of high-energy protons produced inside thesuperbubbles blown around clusters of
massive stars.
Methods. We embed simple semi-analytical models of particle acceleration and transport inside Monte Carlo simulations of OB asso-
ciations timelines. We consider regular acceleration (Fermi 1 process) at the shock front of supernova remnants, as well as stochastic
reacceleration (Fermi 2 process) and escape (controlled bymagnetic turbulence) occurring between the shocks. In thisfirst attempt,
we limit ourselves to linear acceleration by strong shocks and neglect proton energy losses.
Results. We observe that particle spectra, although highly variable, have a distinctive shape because of the competition between ac-
celeration and escape: they are harder at the lowest energies (indexs < 4) and softer at the highest energies (s > 4). The momentum
at which this spectral break occurs depends on the various bubble parameters, but all their effects can be summarized by a single
dimensionless parameter, which we evaluate for a selectionof massive star regions in the Galaxy and the LMC.
Conclusions. The behaviour of a superbubble in terms of particle acceleration critically depends on the magnetic turbulence: if B is
low then the superbubble is simply the host of a collection ofindividual supernovae shocks, but if B is high enough (and the turbulence
index is not too high), then the superbubble acts as a global accelerator, producing distinctive spectra, that are potentially very hard
over a wide range of energies, which has important implications on the high-energy emission from these objects.
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1. Introduction

Superbubbles are hot and tenuous large structures that are
formed around OB associations by the powerful winds and
the explosions of massive stars (Higdon & Lingenfelter 2005).
They are the major hosts of supernovae in the Galaxy, and
thus major candidates for the production of energetic particles
(e.g., Montmerle 1979, Bykov 2001, Butt 2009, and references
therein). Supernovae are indeed believed to be the main con-
tributors of Galactic cosmic rays (along with pulsars and micro-
quasars), by means of thediffusive shock acceleration process (a
1st-order, regular Fermi process) occurring at the remnant’s blast
wave as it goes through the interstellar medium (Drury 1983;
Malkov & Drury 2001).

Supernovae in superbubbles are correlated in space and time,
hence the need to investigate acceleration by multiple shocks
(Parizot et al. 2004). Klepach et al. (2000) developed a semi-
analytical model of test-particle acceleration by multiple spheri-
cal shocks (either wind termination shocks, or supernova shocks
plus wind external shocks), based on the limiting assumption
of small shocks filling factors. Ferrand et al. (2008) performed
direct numerical simulations of repeated acceleration by succes-
sive planar shocks in the non-linear regime (that is, takinginto

account the back-reaction of energetic particles on the shocks).
However, to ascertain the particle spectrum produced inside
the superbubble as a whole, one must also consider important
physics occurringbetween the shocks. Since the bubble interior
is probably magnetized and turbulent, we need to evaluate gains
and losses caused by the acceleration by waves (a 2nd-order,
stochastic Fermi process) and escape from the bubble.

In this study, we combine the effects of regular acceleration
(occurring quite discreetly, at shock fronts) and stochastic accel-
eration and escape (occurring continuously, between shocks), to
determine the typical spectra that we can expect inside superbub-
bles over the lifetime of an OB cluster. We choose to treat regular
acceleration as simply as we can, and concentrate on modeling
the relevant scales of stochastic acceleration and escape inside
superbubbles. We present our model in Sect. 2, give our general
results in Sect. 3, and present specific applications in Sect. 4.
Finally we discuss the limitations of our approach in Sect. 5and
provide our conclusions in Sect. 6.

2. Model

Our model is based on Monte Carlo simulations of the activity
of a cluster of massive stars, in which we embed simple semi-
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analytical models of (re-)acceleration and escape (described by
means of their Green functions). To evaluate the average prop-
erties of a cluster ofN⋆ stars, we perform random samplings of
the initial mass function (Sect. 2.1). For a given cluster, time is
sampled in intervals dt = 10 000 yr, which is short enough to en-
sure that at most one supernova occurs during that period, but by
chance for large clusters, and which is long enough to consider
that regular acceleration at a shock front has shaped the spec-
trum of particles – acceleration is thought to take place mostly
at early stages of supernova remnant evolution, and in a super-
bubble the Sedov phase begins after a few thousands of years
(Parizot et al. 2004). Here we do not try to investigate the ex-
act extent of the spectrum of accelerated particles: we set the
lowest momentum (injection momentum) to bepmin = 10−2 mpc
(which is the typical thermal momentum downstream of a super-
nova shock) and set the highest momentum (escape momentum)
to be pmax = 106 mpc ≃ 1015 eV (which corresponds to the
“knee” break in the spectrum of cosmic rays as observed on the
Earth). We note that the theoretical acceleration time frompmin
to pmax (in the linear regime, without escape) is roughly 8 000 yr
(assuming Bohm diffusion withB = 10µG), which is again con-
sistent with our choice of dt. This corresponds to 8 decades inp,
at a resolution of a few tens of bins per decade (according to
Sect. 2.2.2).

The procedure is then as follows: for each time bin in the
life of the cluster, either (1) a supernova occurs, and the distri-
bution of particles evolves according to the diffusive shock ac-
celeration process, as explained in Sect. 2.2; or (2) no supernova
occurs, and the distribution evolves taking into account accelera-
tion and escape controlled by magnetic turbulence, as explained
in Sect. 2.3. This process is repeated for many random clusters
of the same size, until some average trend emerges regardingthe
shape of spectra (note that average spectra are not monitored for
each bin dt but in larger steps of 1 Myr).

In the following, we describe our modeling of massive stars,
supernovae shocks, and magnetic turbulence.

2.1. OB clusters: random samplings of supernovae

We are interested in massive stars that die by core-collapse, pro-
ducing type Ib, Ic or II supernovae, that is of mass greater than
mmin = 8 m⊙, and up to saymmax = 120m⊙. These are stars of
spectral type O (> 20 m⊙) and include stars of spectral type B
(4 − 20 m⊙). Most massive stars spend all their life within the
cluster in which they were born, forming OB associations. To
describe the evolution of such a cluster, one needs to know the
distribution of star masses and lifetimes.

The initial mass function (IMF)ξ is defined so that the num-
ber of stars in the mass intervalm to m + dm is dn = ξ (m) × dm,
so that the number of stars of masses betweenmmin andmmax is
N⋆ =

∫ mmax

mmin
ξ (m) dm .Observations show thatξ can be expressed

as a power law (Salpeter 1955)

ξ (m) ∝ mα , (1)

with an index ofα = 2.30 for massive stars (Kroupa 2002). This
function is shown in Fig. 1.

Stars lifetimes can be computed from stellar evolution mod-
els, and here we use data from Limongi & Chieffi (2006), which
is plotted in Fig. 2. The more massive they are, the faster stars
burn their material. A star at the thresholdmmin = 8 m⊙ has a
lifetime of tSN,max ≃ 37 Myr, which is also the total lifetime of
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m(m⊙)

Fig. 1. Distribution of massive stars masses: the initial mass
function. For each clusterN⋆ = 100 stars are randomly chosen
in the IMF (1). The dashed curve represents the experimental
histogram of masses afterNOB = 1000 samples (with resolution
d logm = 0.05). The dotted curves show 1-, 2-, 3-sigma standard
deviations over the clusters set. The solid curve is the theoretical
IMF.
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107

108

tSN

yr
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m/m⊙

Fig. 2. Distribution of massive stars lifetimes (data from
Limongi & Chieffi (2006)).

the cluster; a star ofmmax = 120m⊙ lives only tSN,min ≃ 3 Myr.
Regarding supernovae, the active lifetime of the cluster isthus

∆t⋆OB = tSN (mmin) − tSN (mmax) ≃ 34 Myr . (2)

2.2. Supernovae shocks: regular acceleration

2.2.1. Green function

To keep things as simple as possible, we limit ourselves here
to the test-particle approach (non-linear calculations will be pre-
sented elsewhere). In the linear regime, we know the Green func-
tion G1 that links the distributions1 of particles downstream and
upstream of a single shock according to

fdown(p) =
∫ ∞

0
G1 (p, p0) fup (p0) dp0 ; (3)

1 The distribution functionf (p) is defined so that the particles num-
ber density isn =

∫

p
f (p) 4πp2 dp, wherep is the momentum.
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it reads

G1 (p, p0) =
s1

p0

(

p
p0

)−s1

H (p − p0) (4)

whereH is the Heaviside function, and

s1 =
3r

r − 1
, (5)

wherer is the compression ratio of the shock.

2.2.2. Adiabatic decompression

Around an OB association, particles produced by a supernova
shock might be reaccelerated by the shocks of subsequent super-
nova before they escape the superbubble. The effect of repeated
acceleration is basically to harden the spectra (Achterberg 1990,
Melrose & Pope 1993).

When dealing with multiple shocks, it is mandatory to ac-
count for adiabatic decompression between the shocks: the mo-
menta of energetic particles bound to the fluid will decreaseby a
factorR = r1/3 when the fluid density decreases by a factorr. To
resolve decompression properly, the numerical momentum res-
olution d logp has to be significantly smaller than the induced
momentum shift (Ferrand et al. 2008).

2.3. Magnetic turbulence: stochastic acceleration and
escape

Particles accelerated by supernova shocks, although energetic,
might remain for a while inside the superbubble because of mag-
netic turbulence that scatters them (they perform a random walk
until they escape). Because of this turbulence, particles will also
experience stochastic reacceleration during their stay inthe bub-
ble. We present here a deliberately simple model of transport, to
obtain the relevant functional dependences and order of magni-
tudes of the diffusion coefficients. The turbulent magnetic field
δB is represented by its power spectrumW(k), defined so that

δB2 ∝
∫ kmax

kmin
W(k) dk, wherek = 2π/λ, λ is the turbulence scale,

and kmin (respectivelykmax) corresponds to waves interacting
with the particles of highest (respectively lowest) energy. This
spectrum is usually taken to be a power law of indexq

W(k) ∝ k−q , (6)

normalised by the turbulence level

ηT =

〈

δB2
〉

B2 +
〈

δB2
〉 . (7)

2.3.1. Diffusion scales

If the turbulence follows Eq. (6), then the space diffusion coeffi-
cient is given by

Dx (p) = D⋆x ×
(

p
mpc

)2−q

, (8)

where we assume that the turbulence spectrum extends suffi-
ciently for this description to remain correct at the lowestpar-
ticle energies. Using results from Casse et al. (2002) obtained
for isotropic turbulence, one can assume that

D⋆x ∝ η−1
T Bq−2 λ

q−1
max . (9)

For standard turbulence indices, we obtain

Dx (p)

1026 cm2.s−1
≃
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. (10)

Particles diffuse over a typical length scale ofxdiff =
√

6 Dx t.
They are confined within the acceleration region of sizexacc
as long asxdiff (t) < xacc, hence a typical escape time istesc =

x2
acc/6 Dx, that is, using Eq. (8)

tesc(p) = t⋆esc×
(

p
mpc

)q−2

, (11)

where

t⋆esc∝ ηT B2−q λ
1−q
max x2

acc . (12)

For standard turbulence indices, we obtain

tesc(p)
1013 s

≃
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)
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(
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)2
(
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)− 1
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ηT
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)
1
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(

xacc
40 pc

)2
(
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2

q = 3/2
.(13)

Interaction with waves also leads to a diffusion in momen-
tum. Using results from quasi-linear theory, we can expressthe
diffusion coefficient as

Dp (p) = D⋆p × (mpc)2 ×
(

p
mpc

)q

, (14)

where

D⋆p ∝ ηT B4−q λ
1−q
max n−1 . (15)

andn is the number density (which determines the Alfvén veloc-
ity together withB). For standard turbulence indices, we obtain

Dp (p)

10−38 g2.cm2.s−3
≃
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20

(
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)
7
3
(
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10 pc

)− 2
3
(
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)−1
(

p
mpc

)
5
3

q = 5/3

ηT

1,4

(

B
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)
5
2
(
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10 pc

)− 1
2
(

n
10−2 cm−3

)−1
(

p
mpc

)
3
2

q = 3/2
. (16)

2.3.2. Green function

Becker et al. (2006) presented the first analytical expression of
the Green functionG2 for both stochastic acceleration and es-
cape that is valid for any turbulence indexq ∈]0, 2[. It is defined
so that, for impulsive injection of distributionfinit , the distribu-
tion after timet is

fend(p, t) =
∫ ∞

0
G2 (p, p0, t) finit (p0) dp0 . (17)

Neglecting losses, it can be expressed as

G2 (p, p0, t) =
2− q

p0

√

p
p0

√
zz0ξ

1− ξ
(18)

× exp

(

−
(z + z0) (1+ ξ)

2 (1− ξ)

)

I

(

1+ q
2− q

,
2
√

zz0ξ

1− ξ

)

,

z (p) = 2 p2−q/

(

(2− q)
√

D⋆p t⋆esc

)

,

ξ (t) = exp
(

2(q − 2) D⋆p t /
√

D⋆p t⋆esc

)

,



4 Ferrand and Marcowith: The spectrum of cosmic rays accelerated inside superbubbles
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Fig. 3.Mean supernovae rate as a function of time. For each clus-
ter,N⋆ = 100 stars are randomly chosen in the IMF. The central
curve represents the experimental mean rate of supernovae after
NOB = 1000 samples (with resolution dt = 104 years). The top
curves show 1, 2 and 3 standard deviations over the clusters set.
The solid curve is the theoretical mean rate of supernovae over
the cluster’s active lifetime (2), i.e.N⋆/

(

tSN,max− tSN,min
)

.

where I(o, x) is the modified Bessel function of the first kind,
and we recall thatD⋆p andt⋆esc are defined by Eqs. (15) and (12)
respectively.

G2 represents the distribution of particles remaining inside
the bubble. One can also evaluate the rate of particles escaping
the bubble by dividingG2 by the escape time given by Eq. (11):

Ġ2,esc(p, p0, t) =
G2 (p, p0, t)

tesc(p)
=

p2−q G2 (p, p0, t)
t⋆esc

. (19)

3. Results

3.1. Distribution of supernovae shocks

Before presenting the spectra of particles, we briefly discuss the
temporal distribution of shocks during the life of the cluster, be-
cause this controls the possibility of repeated acceleration.

3.1.1. Rate of supernovae

As an illustration of our Monte Carlo procedure, if we count the
number of supernovae in each time bin [t, t + dt], we can esti-
mate the mean supernovae rate. The result is shown in Fig. 3. In
agreement with the “instantaneous burst” model of Cerviñoet al.
(2000), we observe that the distributions of masses and lifetimes
combine in such a way that, but for a peak at the beginning, the
rate of supernovae is fairly constant during the cluster’s life, and
can be expressed to a first approximation by

dnSN

dt
≃

N⋆
∆t⋆OB

≃ N⋆ × 3.10−8 yr−1 , (20)

where we recall that∆t⋆OB is the active lifetime of the cluster,
given by Eq. (2).

3.1.2. Typical time between shocks

Knowledge of the time distribution of supernovae is important to
acceleration in superbubbles, because, depending on the typical
interval between shocks, accelerated particles may or may not
remain within the bubble between two supernovae explosions,

10−5

10−4

10−3

10−2

10−1

100

f(∆t)

10−4 10−3 10−2 10−1 100 101 102

∆t / ∆̄t

Fig. 4. Distribution of the interval between two successive
shocks (normalised to the average interval between two super-
novae). For each cluster, the interval between twosuccessive su-
pernova is monitored, within the numerical resolution d log∆t =
0.05. Colour codes for different numbers of starsN⋆, logarith-
mically sampled between 10 and 500 (purple= 10, blue= 27,
green= 71, orange= 189, red= 500).

and thus experience repeated acceleration2. We thus monitor the
time interval∆tS N between twosuccessive supernovae. The re-
sult is shown in Fig. 4. We note that (1) the most probable time
interval between two shocks is simply the average time between
two supernovaē∆tSN = ∆t⋆OB/N⋆ ; and (2) when time intervals
are normalised by this quantity, all distributions have thesame
shape independently of the number of stars (apart from very low
numbers of stars).

To investigate the probability of acceleration bymany suc-
cessive shocks, we now compute the maximum time∆tmax that
a particle has to waitwithin a sequence ofn successive shocks.
Only particles whose escape time is longer than this value may
experience acceleration byn shocks. As previously, all distribu-
tions have the same shape once time intervals are normalisedby
∆̄tSN, and are very peaked, but now the most probable value of
∆tmax is a few times longer than the average value (the more suc-
cessive shocks we consider, the higher the probability of obtain-
ing an unusually long time interval between any two of them).
This is summarised in Fig. 5, which shows the most probable
value of∆tmax as a function of the number of successive shocks.
We note that∆tmax may reach 10 times̄∆tSN, and that it is an
imprecise indicator whenN⋆ andn are low.

3.2. Average cosmic-ray spectra

3.2.1. General trends

Proton spectra for clusters of two different sizes inside a typical
superbubble are shown in Fig. 6. For a given sample, we observe
a strong intermittency during the cluster lifetime (from blue to
red), especially at early times. Nevertheless, we clearly see con-
vergence to an average spectrum as we increase the numberN
of samples (from top to bottom). Comparing results for 10 and
100 stars (left and right), we see that what actually mattersis
the total number of supernovaeN × N⋆. The limit spectrum ex-
hibits a distinctive two-part shape, with a transition froma hard

2 Note that this will also strongly depend on the initial energy of the
particles: the higher the energy they have gained from one shock, the
sooner they will escape the bubble, and hence the smaller chance they
have to be reaccelerated by a subsequent shock.
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nshocks

Fig. 5. Maximum time interval between two successive shocks
in a sequence ofn successive shocks (normalised to the aver-
age interval between two supernovae). Solid curves correspond
to the most frequent value of∆tmax (i.e., maxima of the curves
in Fig. 4). Dotted lines indicate the envelope of the distribution
(they correspond to a decrease in the maximum value by a fac-
tor of 10, 100, 1000). Colours code the number of starsN⋆ in the
same way as in Fig. 4 (note thatN⋆ coincides with the maximum
number of successive shocksn for which data are available).

regime (flat spectrum, of slopes < 4) to a soft regime (steep
spectrum, of slopes ≥ 4). We also show the escaping spectra in
Fig. 7. We see that they have the same overall shape, but are a
bit harder (as highly energetic particles escape first) and of much
lower normalization.

Hard spectra at low energies are produced by the combined
effects of acceleration by supernova shocks (Fermi 1) and reac-
celeration by turbulence (Fermi 2). Soft spectra at high ener-
gies are mostly shaped by escape, which preferentially removes
highly energetic particles. The transition energy is controlled
by a balance between reacceleration and escape timescales,and
thus depends on the superbubble parameters.

3.2.2. Parametric study

For each cluster, we must define eight parametersN⋆, r, q, ηT , B,
λmax, n, andxacc, which are more or less constrained. We sam-
ple the size of the cluster roughly logarithmically between10
stars and 500 stars , i.e.N⋆ =10, 30, 70, 200, 500. We consider
only strong supernova shocks ofr = 4. We compare the classi-
cal turbulence indicesq = 5/3 (Kolmogorov cascade, K41) and
q = 3/2 (Kraichnan cascade, IK65). We consider two different
scenarios for the magnetic field: if a turbulent dynamo is operat-
ing thenB ≃ 10µG andδB≫ B, so thatηT ≃ 1 (Bykov 2001); if
not, then because of the bubble expansionB ≃ 1µG andδB < B
(if δB = B/2, thenηT = 0.2). The external scale of the turbu-
lenceλmax is at least of the order of the distanced⋆ between two
stars in the cluster, which, for a typical OB association radius of
35 pc (e.g., Garmany 1994), and assuming uniform distribution
(a quite crude approximation), is

d⋆ ≃
56 pc

N1/3
⋆

, (21)

which is 26, 12 and 7 pc for 10, 100 and 500 stars respectively.
However,λmax will be higher if turbulence is driven by super-
nova remnants, the radius of which increases roughly as

rSNR ≃ 38 pc

(

t
104 yr

)2/5

(22)

in the Sedov-Taylor phase inside a superbubble (Parizot et al.
2004). Hence, we considerλmax = 10, 20, 40, 80 pc. We consider
the size of the acceleration region to be of the order of the ra-
dius of a supernova remnant after our time-step dt = 10 000 yr,
which isxacc= 40pc according to Eq. (22). However, in evolved
superbubbles it might be higher, up to more than 100 pc, so we
also try 80 pc and 120 pc. The density inside a superbubble is
always low, and to assess its influence we perform simulations
with n = 10−3 cm−3, n = 5 × 10−3 cm−3, andn = 10−2 cm−3.
This provides 720 different cases to run. And in each case, we
have to set the numberN of samplings per cluster: convergence
of average spectra typically requiresN⋆ × N ≃ 104, but the gen-
eral trend is already clear as soon asN⋆×N ≃ 103, so we simply
takeN = 103/N⋆.

We thus had to perform many simulations to explore the pa-
rameter space. However, interestingly, the effects of the 6 pa-
rameters relevant to stochastic acceleration and escapeq, ηT , B,
λmax, n, andxacc can be summarized by a single parameter, the
adimensional numberθ⋆ introduced by Becker et al. (2006)

θ⋆ =
1

D⋆p t⋆esc
, (23)

which, according to Eqs. (15) and (12) varies as

θ⋆ ∝ η−2
T B2q−6 λ

2q−2
max x−2

accn . (24)

For standard turbulence indices, we have

θ⋆ ≃























2
η2

T

(

B
10µG

)− 8
3
(

λmax
10 pc

)
4
3
(

xacc
40 pc

)−2 (

n
10−2 cm−3

)

q = 5/3

10−2

η2
T

(

B
10µG

)−3 (

λmax
10 pc

) (

xacc
40 pc

)−2 (

n
10−2 cm−3

)

q = 3/2
. (25)

For all the possible superbubble parameters considered here,θ⋆

ranges from 10−4 to 10+4. Since we consider only strong super-
nova shocks ofr = 4, the single remaining parameter is the num-
ber of starsN⋆ (represented by dots of different colours and sizes
in subsequent plots), which has a weaker impact on our results.

To characterize the spectra of accelerated particles, we use
two indicators, which are plotted in Figs. 8 and 9. We checked
that the results are independent of the resolution, provided that
there is at least a few bins per decompression shift. The resid-
ual variability seen originates mostly in the simulation proce-
dure itself, which is based on random samplings. In Fig. 8, we
show the momentum of transition from hard to soft regimes, de-
fined as the maximum momentum up to which the slope may
be smaller than a given value (3 or 4 here). Above this momen-
tum, the slope always remains greater than this value. Below
this momentum, the slope can be as low as 0, meaning that par-
ticles pile-up from injection – but we note that it can also hap-
pen to be≥ 4 at a particular time in a particular cluster sample,
since distributions are highly variable. Asθ⋆ increases, the tran-
sition momentum falls exponentially from almost the maximum
momentum considered (a fraction of PeV) to the injection mo-
mentum (10 MeV). For rule-of-thumb calculations, one can say
that the slope can be< 3 up to p = 1/θ⋆ GeV. In Fig. 9, we
show the shallowest slope (corresponding to the hardest spec-
trum) obtained at a fixed momentum (1 GeV and 1 TeV here).
As θ⋆ increases, the lowest slope rises from 0 (which is possi-
ble in the case of stochastic reacceleration) to 4 (the canonical
value for single regular acceleration in the test particle case).
As expected, the criticalθ⋆ between hard and soft regimes de-
creases as we increase the reference momentum: the break oc-
curs aroundθ⋆ = 10 for p = 1 GeV, and aroundθ⋆ = 0.01 for
p = 1 TeV.
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Fig. 6. Sample results of average spectra of cosmic rays inside the superbubble. The particles spectrumf and its logarithmic slope
s = d log f /d logp are plotted versus momentump. The size of the cluster isN⋆ = 10 (left) andN⋆ = 100 (right). The number of
samplings rises from top to bottom:N = 10, 100, 1000. Other parameters areq = 5/3, B = 10µG,ηT = 1,λmax = 10pc,xacc= 40pc,
n = 10−2 cm−3.
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Fig. 7. Sample results of average spectra of cosmic rays escaping the superbubble. The particles spectrumf per unit time and its
logarithmic slopes = d log f /d logp are plotted versus momentump. The size of the cluster isN⋆ = 10 (left) andN⋆ = 100 (right).
The number of samplings isN = 1000. Other parameters are as in Fig. 6:q = 5/3, B = 10µG, ηT = 1, λmax = 10 pc,xacc= 40 pc,
n = 10−2 cm−3.

This overall behaviour can be explained by noting thatθ⋆ is
roughly the ratio of the reacceleration time to the escape time.
Low θ⋆ are obtained when reacceleration is faster than escape,
allowing Fermi processes to produce hard spectra up to high en-
ergies, as particles become reaccelerated by shocks and/or tur-
bulence. In contrast, highθ⋆ are obtained when escape is faster
than reacceleration, resulting in quite soft in-situ spectra, as par-
ticles escape immediately after being accelerated by a supernova
shock. The caseθ⋆ = 1 corresponds to a balance between gains
and losses, in the particular case of which the spectral break oc-
curs around 10 GeV fors > 4, and around 1 GeV fors > 3.

4. Application

4.1. A selection of massive star regions

We gathered the physical parameters of some well observed
massive star clusters and their associated superbubbles. The re-
liability and the completeness of the data were our main selec-
tion criteria. The parameters useful for our study are: the cluster
composition (number of massive stars), age, distance, size, and
the superbubble size and density. We note that we are biased
towards young objects, since older ones are more difficult to iso-
late because of their large extensions and sequential formations.
Information about density is sometimes unavailable. The density
can span several orders of magnitude, usually between 10−2 and
10 cm−3 in the central cluster (Torres et al. 2004), and between
10−3 and 10−1 cm−3 in the superbubble (Parizot et al. 2004). If
X-ray observations are available, it can be indirectly estimated
from the thermal X-ray spectrum, given the plasma temperature
and the column density along the line of sight. In the case of
a complete lack of data, we accept a mean density of between
5 × 10−3 cm−3 and 5× 10−2 cm−3. Unfortunately, the magnetic
field parameters can not be directly measured, so that we con-
sider different limiting scenarios:B = 1 µG andηT = 0.2 if the
turbulence is low, andB = 10µG andηT = 1 if the turbulence is
high. In each case, we compare our results for turbulence indices

q = 5/3 andq = 3/2. The maximal scale of the turbulenceλmax
may be taken to be as small as the size of the stellar cluster (espe-
cially in the case where few supernovae have already occurred),
or as large as the superbubble itself.

These quantities are used to estimate the key parameterθ⋆
in each of the selected objects using Eq. (25). All the param-
eters and results are summarised in Table 1. Before discussing
the implications of these values, we provide details of the se-
lected regions in the following two sections, regarding clusters
found in our Galaxy and in the Large Magellanic Cloud (LMC),
respectively.

4.1.1. Galaxy

We selected 6 objects in the Galaxy.

– Cygnus region: in this region we identify two distinct
objects, the clusters Cygnus OB1 and OB3, which have
blown a common superbubble, and the cluster Cygnus OB2.
We note that the latter was detected at TeV energies by
Hegra (Aharonian et al. 2005) as an extended source (TeV
J2032+4130), and by Milagro (Abdo et al. 2007), as ex-
tended diffuse emission and at least one source (MGRO
J2019+37). A supershell was also detected around the
Cygnus X-ray superbubble, which may have been produced
by a sequence of starbursts, Cygnus OB2 being the very last.

– Orion OB1: this association consists of several subgroups
(Brown et al. 1999), the age of 12 Myrs selected here corre-
sponds to the oldest one (OB1a).

– Carina nebula: this region is one of the most massive star-
forming regions in our Galaxy. It contains two massive stel-
lar clusters, Trumpler 14 and Trumpler 16 (Smith et al.
2000), of cumulative size of approximately 10 pc.

– Westerlund 1: this cluster is very compact although it har-
bours hundreds of massive stars. The size of the superbubble
is uncertain, and we assume here the value of 40 pc reported
by Kothes & Dougherty (2007) for the HI shell surrounding
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the cluster. We note that Westerlund 1 was detected by HESS
(Ohm et al. 2009).

– Westerlund 2: the distance to this cluster remains a mat-
ter of debate (see the discussion in Aharonian et al. 2007),
and we adopt here the estimate of Rauw et al. (2007), us-
ing it to re-evaluate the size obtained by Conti & Crowther
(2004). We assume that the giant HII region RCW49 of size
100 pc is the structure blown by Westerlund 2. Tsujimoto
et al. (2007) provided a spectral fit of the diffuse X-ray
emission from RCW49, from which we deduce a density
∼ 1.5× 10−3 cm−3. We note that Westerlund 2 was detected
by HESS (Aharonian et al. 2007).

4.1.2. Large Magellanic Cloud

We selected 3 objects in the LMC. All density estimates here
have been derived from observations of diffuse X-ray emission.
At the distance of the LMC, these observations usually coverthe
entire structure, so that the density deduced is an average over
the OB association and the ionised region around it.

– DEML 192: this region harbours two massive star clusters,
LH 51 and 54 (Lucke & Hodge 1970). We deduced the spa-
tial extensions of both clusters from Oey & Smedley (1998),
but these are probably overestimates, because the edges of
the clusters are not clearly defined.

– 30 Doradus: this region is quite complex as can be seen from
Chandra observations (Townsley et al. 2006). In particular,
the superbubble extension is difficult to estimate precisely.
We decided to assume the value given for the 30 Doradus
nebula by Walborn (1991). The extension of the star cluster
may be larger than the core which harbours several thou-
sands of stars (Massey & Hunter 1998). The core size is
≤ 10 pc (Massey & Hunter 1998), it is even estimated to
be∼ 2 pc by Walborn (1991). The number of massive stars
in R136 depends on the cluster total mass, estimated to be
between 5× 104 M⊙ and 2.5 × 105 M⊙. Using a Salpeter
IMF, one finds thatN⋆(M > 8M⊙) ≃ 400− 2700. We note
that the stellar formation in 30 Doradus was sequential and
started more than 10 Myrs ago (Massey & Hunter 1998).

– N11: this giant HII region harbours several star clusters LH9,
LH10, LH13, and LH14, probably produced as a sequence
of starbursts (Walborn et al. 1999). Here we mostly consider
the star cluster LH9 at the center of N11 and the shell en-
compassing it (shell 1 in Mac Low et al. 1998). LH10 is a
younger star cluster with an estimated age of 1 Myr (Walborn
et al. 1999) in which no supernova has yet occurred. The
other clusters are less powerful.

4.2. Discussion

In Table 1, we can see that in all cases except forq = 3/2,
B = 10µG, the critical momentum∼ 1/θ⋆ GeV is in the non-
relativistic regime. Even if at lower energies the particledistri-
bution is hard, since pressure is always dominated by relativistic
particles, one should not expect a strong back-reaction of accel-
erated particles over the fluid inside the superbubble, compared
to the case where collective acceleration effects are not taken
into account. However, if the magnetic field pressure is close to
equipartition with the thermal pressure as suggested by Parizot
et al. (2004), and provided that the turbulence indexq is suffi-
ciently low, then the impact of particles on their environment has
to be investigated. More generally, ifq is low enough and/or B
is high enough, then the superbubble can no longer be regarded

as a sum of isolated supernovae, but acts as a global accelerator,
producing hard spectra over a wide range of momenta.

One can wonder how solid these results are, given all the
uncertainties in the data. In particular, the parameterθ⋆ is very
sensitive to the accelerator sizexmax. However xmax cannot
be much lower than a few tens of parsecs (the typical size of
the OB association) and cannot be much larger than 100 pc
(the typical size of the superbubble). The maximal scale of the
turbulence,λmax, is even more difficult to estimate, but it also
ranges between those extrema. Determining precisely these
spatial scales is complicated by the difficulty of estimating the
supershell associated with a given cluster, all the more so since
multiple bursts episodes have occurred (as is likely the case
in 30 Doradus). In addition,θ⋆ is directly proportional to the
density, which is not always measured with good accuracy, but
can usually be rather well constrained to within one order of
magnitude. The upper and lower values ofθ∗ given in Table 1
reflect the uncertainties in these three key parameters. In the end,
we believe that the results presented in Table 1 provide a good
indication of whether or not collective effects will dominate
inside the superbubble. Across the range of possible valuesof
size and density, the main uncertainty in the critical parameter
θ⋆ is clearly due to our poor knowledge of the magnetic field
(how strong the field is, how turbulent it is). It can be seen from
Table 1 that for a given prescription of the magnetic turbulence,
the values obtained for both Galactic and LMC clusters are not
very different from one another.

5. Limitations and possible extensions

5.1. Regarding shock acceleration physics

The potentially greatest limitation of our model is its use of a
linear model for regular acceleration: we have not considered
the back-reaction of accelerated particles on their accelerator,
whereas cosmic rays may easily modify the supernova remnant
shock and therefore the way in which they themselves are ac-
celerated (Malkov & Drury 2001). Since non-linear accelera-
tion is a difficult problem, only a few models are available, such
as the time-asymptotic semi-analytical models of Berezhko&
Ellison (1999) or Blasi & Vietri (2005), and the time-dependent
numerical simulations of Kang & Jones (2007) or Ferrand et al.
(2008). We will include one of these non-linear approaches in
our Monte Carlo framework in extending our current work. We
can already note that non-linear effects tend to produce concave
spectra, softer at low energies and harder at high energies than
the canonical power-law spectrum, and may thus compete with
reacceleration and escape effects that we have shown to have
opposite effects. Moreover, non-linearity also occurs regarding
the turbulent magnetic field (mandatory for Fermi process to
scatter off particles), which remarkably can be produced by en-
ergetic particles themselves by various instabilities. This diffi-
cult and still quite poorly understood process has been studied
by means of MHD simulations (Jones & Kang 2006), semi-
analytical models (Amato & Blasi 2006), and Monte Carlo sim-
ulations (Vladimirov et al. 2006).

Another limitation is that only strong primary supernova
shocks have been considered (of compression ratior = 4), but
since superbubbles are very clumpy and turbulent media, many
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Table 1.Physical parameters for well observed massive-star forming regions in the Galaxy and in the LMC.

Cluster Superbubble θ
(d)
⋆

Name N(a)
⋆

Age
(Myr)

Distance
(kpc)

Size(b)

(pc)
Size(b)

(pc)
Density(c)

(cm−3)
B=1µG
q = 5/3

B=1µG
q = 3/2

B=10µG
q = 5/3

B=10µG
q = 3/2

Cygnus OB1/3 38(16) 2-6(12) 1.8(19) 24 80-100(14) 0.01? 5.104-
5.105

4.102-
3.103

4.100-
4.101

2.10−2-
1.10−1

Cygnus OB2 750(5) 3-4(12) 1.4-1.7(10) 60(11) 450?(5) 0.02(5) 2.104-
2.105

9.101-
7.102

1.100-
2.101

4.10−3-
3.10−2

Orion OB1 30-100(3) 12(2) 0.45(2) 10(2) 140x300(3) 0.02-0.03(4) 3.103-
2.106

4.101-
7.103

3.10−1-
2.102

1.10−3-
3.10−1

Carina nebula ? 3(23) 2.3(8) 20 110(23) 0.01? 2.104-
2.106

1.102-
7.103

1.100-
1.102

5.10−3-
3.10−1

Westerlund 1 450(1) 3.3(1) 3.9(13) 1(1) 40?(13) 0.01? 2.103-
3.106

5.101-
2.104

2.10−1-
3.102

2.10−3-
8.10−1

Westerlund 2 14(21) 2(21) 8(21) 1(6) 100(21,6) 0.0015(24) 1.102-
5.104

2.100-
2.102

9.10−3-
4.100

1.10−4-
1.10−2

DEM L192 135 3(20) 50 60(20) 120x135(9) 0.03(7) 3.105-
1.106

2.103-
4.103

2.101-
9.101

6.10−2-
2.10−1

30 Doradus > 400(22) 2(17) 50 40(25) 200(25) 0.09(27) 2.105-
2.106

1.103-
7.103

2.101-
2.102

6.10−2-
3.10−1

N11 130 5(26) 50 15x30(18) 100x150(9) 0.08(15) 9.104-
4.106

9.102-
2.104

8.100-
4.102

3.10−2-
8.10−1

a N⋆ is the number of stars with mass≥ 8M⊙ (a Salpeter IMF has been assumed, expected for N11 where an index of 2.4 has been used).
b Sizes are either the diameter if the region is spherical, or the large and small semi-axis if the region is ellipsoidal.
c The density is the Hydrogen nuclei density.
d Estimates ofθ⋆ are calculated from Eq. (25), as explained in Sect. 4.1. The range of values ofθ⋆ given for each object and for each magnetic

configuration reflects uncertainties in the actual values ofbubble density, accelerator size and turbulence scale.
References : (1) Brandner et al. (2008), (2) Brown et al. (1994), (3) Brown et al. (1995), (4) Burrows et al. (1993), (5) Cash et al. (1980), (6) Conti

& Crowther (2004), (7) Cooper et al. (2004), (8) Davidson & Humphreys (1997), (9) Dunne et al. (2001), (10) Hanson (2003),(11) Knödlseder
(2000), (12) Knödlseder et al. (2002), (13) Kothes & Dougherty (2007), (14) Lozinskaya et al. (1998), (15) Maddox et al.(2009), (16) Massey
et al. (1995), (17) Massey & Hunter (1998), (18) Nazé et al. (2004), (19) Nichols-Bohlin & Fesen (1993), (20) Oey & Smedley (1998),
(21) Rauw et al. (2007), (22) Selman et al. (1999), (23) Smithet al. (2000), (24) Tsujimoto et al. (2007), (25) Walborn (1991), (26) Walborn
& Parker (1992), (27) Wang & Helfand (1991).

weak secondary shocks are also expected (ofr < 4). The com-
pression ratior depends on the Mach numberMS according to

r =
4 M2

S

M2
S + 3

, (26)

where

MS =
vS

cS
≃ 50

(

vS

5000 km/s

)

( T
106 K

)−1/2

(27)

anduS is the shock velocity (of many thousands of km/s in the
early stages of a remnant evolution) andcS is the speed of sound
in the unperturbed upstream medium (as high as a few hundreds
of km/s in a superbubble because of the high temperatureT of a
few millions of Kelvin). In the linear regime, the slope of accel-
erated particles is determined solely byr according to Eq. (5).
In superbubbles, primary supernova shocks haveMS ≃ 50 and
alreadyr ≃ 4, leading tos ≃ 4; but a secondary shock of say
MS ≃ 5 has onlyr ≃ 3, leading tos ≃ 4.5. We note that al-
though weaker shocks produce softer individual spectra, being
more numerous they may help to produce hard spectra by re-
peated acceleration, so that their net effect is not obvious. To
begin their investigation, we added a weak shock at each time-
step immediately following a supernova (except if another su-
pernova occurs at that moment), of compression ratio randomly
chosen between 1.5 and 3.5. For regular acceleration alone,im-
portant differences are seen between simulations including only
strong shocks, or only weak shocks, or both. But once combined

with stochastic acceleration and escape, these differences are no
longer evident. We have repeated our 720 simulations at medium
resolution and observed that our two indicators (momentum of
transition and minimal slope) remain globally unchanged. The
shape of cosmic-ray spectra thus seems to be mostly determined
by the interplay between reacceleration and escape, acceleration
at shock fronts acting mostly as an injector of energetic parti-
cles. We note that, before supernova explosions, the winds of
massive stars, not explicitly considered in this study, mayalso
act as injectors in the same way, as they have roughly the same
mechanical power integrated over the star lifetime.

Finally, one may question our particular choice of stellar evo-
lution models, but we believe that possible variations in the ex-
act lifetime of massive stars would bring only higher order cor-
rections to the general picture that we have obtained. We also
note that we have implicitly considered that stars are born at the
same time, and then evolve independently, while in reality star
formation may occur through successive bursts within a same
molecular cloud, which could be sequentially triggered by the
first explosions of supernovae. Another possible amendmentto
our model is that stars of mass greater than 40 solar masses may
end their life without collapsing, and thus without launching a
shock. We have repeated our 720 simulations at low resolution
considering the occurrence of supernovae only form < 40 m⊙,
and checked that our two indicators remain globally unchanged.
This seems consistent with the shape of the IMF (there are very
few stars of very high mass) and the shape of star lifetimes (stars
of very high mass have roughly the same lifetime).



10 Ferrand and Marcowith: The spectrum of cosmic rays accelerated inside superbubbles

5.2. Regarding inter-shock physics

We use an approximate model of stochastic acceleration, be-
cause of the use of relativistic formulae and the neglect of en-
ergy losses, to be able to use results from Becker et al. (2006).
However, we note that, in terms of stochastic acceleration,the
relativistic regime is reached whenmpv ≫ mpvA, wherev is the
particle velocity andvA the Alfvén velocity

vA =
B
√
µ0ρ
≃ 2.107 cm.s−1

(

B
10µG

)

( n
10−2 cm−3

)− 1
2

, (28)

and in a superbubble this condition is met forp≫ 1 MeV, since
vA/c ≃ 10−3. Although we could of course implement more in-
volved models of transport, we emphasize that our main objec-
tive was to find the key dependences of the problem, and we
have shown that it is mainly controlled by the parameterθ⋆.
Regarding losses, the formalism of Becker et al. (2006) allows
for systematic losses, but for mathematical convenience these
are supposed to occur at a rate∝ pq−1, which can describe
Coulomb losses only in the very special case ofq = 2. But pro-
ton losses above 1 GeV are dominated by nuclear interactions
(Aharonian & Atoyan 1996) with a typical lifetime of 6.107yr/n,
wheren is the density in cm−3, which is far longer than the su-
perbubble lifetime given the low densityn ≤ 10−2 cm−3 (but
this might become a concern when cosmic rays reach the parent
molecular clouds wheren > 102 cm−3). At very low energies
(around the MeV), ionization losses might also be importantand
compete with stochastic reacceleration.

Finally, we note that most parameters are time-dependent,
and might become considerably different at late stages. For com-
pleteness, we have performed our simulations until the explo-
sion of the longest lived stars, but over tens of millions of years
the overall morphology and properties of the superbubble might
change substantially as it interacts with its environment.As
long as the typical evolution timescale of relevant parameters
is longer than our time-stepdt = 10 000 yr, their variation can
be taken into account simply by varying the value ofθ⋆ accord-
ingly. Otherwise, direct time-dependent numerical simulations
similar to those of Ferrand et al. (2008) will be necessary.

6. Conclusions

Our main conclusions are as follows:

1. Cosmic-ray spectra inside superbubbles are highly variable:
at a given time they depend on the particular history of a
given cluster.

2. Nevertheless, spectra follow a distinctive overall trend, pro-
duced by a competition between (re-)acceleration by regular
and stochastic Fermi processes and escape: they are harder at
lower energies (s < 4) and softer at higher energies (s > 4),
shapes that are in agreement with the results of Bykov (2001)
based on different assumptions3.

3. The momentum at which this spectral break occurs critically
depends on the bubble parameters: it increases when the
magnetic field value and acceleration region size increase,
and decreases when the density and the turbulence external

3 Bykov (2001) considers acceleration of particles by large-scale
motions of the magnetized plasma inside the superbubble, which de-
pends on the ratioDu/Dx whereDx is the space diffusion coefficient,
controlled by magnetic fluctuations at small scales, andDu = UL de-
scribes the effect of large scale turbulence, whereU is the average tur-
bulent speed andL is the average size between turbulence sources.

scale increase, all these effects being summarized by the sin-
gle dimensionless parameterθ⋆ defined by Eq. (23).

4. For reasonable values of superbubble parameters, very hard
spectra (s < 3) can be obtained over a wide range of ener-
gies, provided that superbubbles are highly magnetized and
turbulent (which is a debated issue).

These results have important implications for the chemistry
inside superbubbles and the high-energy emission from these ob-
jects. For instance, in the superbubble Perseus OB2 there isob-
servational evidence of intense spallation activity (Knauth et al.
2000) attributed to a high density of low-energy cosmic rays,
but EGRET has not detectedπ0-decay radiation, which places
strong limits on the density of high-energy cosmic rays. This
is consistent with the shape of the spectra obtained in this work.
We are thus looking forward to seeing how new instruments such
as Fermi and AGILE will perform on extended sources such as
massive star forming regions, which have recently been estab-
lished as very high-energy sources. In that respect, we makea
final comment that the high intermittency of predicted spectra
might explain the puzzling fact that some objects are detected
while others remain unseen.
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