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Pair-vibrational states in the presence of neutron-proton pairing
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Abstract

Pair vibrations are studied for a Hamiltonian with neutron-neutron, proton-proton and
neutron-proton pairing. The spectrum is found to be rich in strongly correlated, low-lying
excited states. Changing the ratio of diagonal to off-diagonal pairing matrix elements is
found to have a large impact on the excited-state spectrum. The variational configuration
interaction (VCI) method, used to calculate the excitation spectrum, is found to be in very
good agreement with exact solutions for systems with large degeneracies having equal T = 0
and T = 1 pairing strengths.
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1. Introduction

The collective features of many quantum
systems are driven by the tendency of the
constituent particles to form pairs which
translates into the existence of a strong at-
tractive pairing interaction. In atomic nu-
clei the correlations between pairs of nu-
cleons give rise to pair-vibrational states
which occur when nucleons are collectively
excited across a gap in the single-particle
spectrum [1]. The conditions for the exis-
tence of such states are level degeneracies
just above and below the gap and an ap-
propriate value for the pairing interaction
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strength. Given these conditions, there ex-
ist excited (pair-vibrational) states with en-
ergies substantially less than the energy re-
quired to promote a pair of nucleons across
the gap. In such cases the correlation en-
ergy in the excited state is comparable to
or larger than it is in the ground state.

The problem of pair vibrations has been
previously studied for a Hamiltonian with
like-particle pairing [1, 2]. However in sys-
tems such as nuclei with two different kinds
of particles, the pairing interaction has both
isoscalar (T = 0) and isovector (T = 1)
components. The interaction between iden-
tical nucleons is of pure isovector charac-
ter while the neutron-proton interaction has
both an isoscalar and an isovector compo-
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nent. Since there is no a priori reason for
the isoscalar pairing to vanish—empirically
it is found to be of the same order as isovec-
tor pairing—both modes are present in nu-
clei, rendering the problem of pair vibra-
tions in nuclei considerably more complex
but also richer.
In this Letter we investigate the nature

of pair-vibrational states in the presence
of isoscalar and isovector pairing. Us-
ing a variational configuration-interaction
(VCI) [3] method, we solve a many-body
problem for neutrons and protons dis-
tributed over levels interacting through
the two types of pairing with adjustable
strengths. This method is tested by com-
paring to solvable cases and is found to
be excellent for the lowest eigenstates.
We then present results for more realistic
choices of the strengths and parameters of
the model Hamiltonian, and study the influ-
ence of these modifications on the character
of the pair vibrations.

2. Model, Calculations and Results

Our Hamiltonian is [4, 5]

H =
∑

i>0

ǫi
(

a†iai+a
†
−ia−i+b

†
ibi+b

†
−ib−i

)

−
∑

i,j

GT=1
i,j

[

A†
iAj +B†

iBj + C†
iCj

]

−
∑

i,j

GT=0
i,j

[

(M †
iMj +N †

iNj)δΩiΩj

]

−
∑

i,j

GT=0
i,j

[

D†
iDj

]

, (1)

where, in the spherical limit, i denotes a
single-particle state with spin projection
jz = ±Ωi and energy ǫi. In the deformed
limit, i denotes a Nilsson orbital whose
projection on the nuclear symmetry axis
is ±Ωi. In either case, each level i ac-
commodates at most two neutrons and two

protons. The operators a†i and b†i create
a neutron (n) and a proton (p), respec-
tively. Furthermore, the n-n and p-p pair
creation operators are A†

i = (a†ia
†
−i) and

Bi
† = (b†ib

†
−i). The T = 1 n-p pair cre-

ation operator is C i
† = 1√

2
(a†ib

†
−i + a†−ib

†
i )

and the T = 0 n-p pair creation operator is
Di

† = i√
2
(a†ib

†
−i − a†−ib

†
i ). Also, M

†
i = (a†ib

†
i )

and N †
i = (a†−ib

†
−i). We choose the proton

wave function with jz = 1/2 as the negative
of the equivalent neutron wave function.

In the model system that we use to elu-
cidate the properties of pair vibrations, we
take eight levels at ǫ = 0 MeV and eight
levels at ǫ = 1 MeV. Each levels has an
angular momentum J = 1/2 and accomo-
dates two neutrons and two protons. Be-
cause all levels have J = 1/2, the T = 0M †

i

and N †
i modes play an important role in de-

termining correlations in the wave functions
and are in fact equivalent to the A†

i and B
†
i

T = 1 modes. We consider 16 neutrons
and 16 protons here so that for zero pair-
ing strengths the ground state has all levels
filled up to the gap and the lowest pair ex-
citations are at 2 MeV. We carry out calcu-
lations for several (off-diagonal) interaction
strengths GT=1 = 0.05, 0.10, 0.15, 0.20 and
0.30 MeV. We consider three cases.

Case 1. We set GT=0 = GT=1 and take
equal diagonal and off-diagonal matrix el-
ements; diagonal matrix elements refer to
i = j in Eq. (1) while off-diagonal ones in-
volve i 6= j interactions. It is known from
the work of Flowers and Szpikowski [6] that
a system of neutrons and protons, interact-
ing through pairing with equal T = 0 and
T = 1 strengths and occupying degener-
ate orbits, is analytically solvable because
of an underlying dynamical symmetry as-
sociated with the SU(4) algebra which oc-
curs as a subalgebra of the total n-p pair-
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ing algebra SO(8). If we group the single-
particle levels into two sets at different en-
ergies, we obtain a two-level SO(8) prob-
lem which is no longer analytically but still
numerically solvable through the diagonal-
ization of matrices of modest size [7, 8].
This is true for the lowest eigenstates of
the pairing Hamiltonian which are of low
seniority (provided the pairing force is at-
tractive) and for which the necessary cou-
pling coefficients [for SO(8) ⊃ SU(4) and
SU(4) ⊃ SUS(2) ⊗ SUT (2)] are known [7].
The current problem of eight-plus-eight J =
1/2 levels is equivalent to a two-level SO(8)
description in which each level has a spa-
tial degeneracy of eight, i.e., each level can
accommodate 16 neutrons and 16 protons.
Exact energies can also be obtained with the
Richardson-Gaudin method for the higher-
rank algebra SO(8) for non-degenerate lev-
els with equal T = 0 and T = 1 pairing
strengths [9]. These exact solutions provide
a very valuable test for the approximate so-
lutions described below.

Case 2. We again set GT=0 = GT=1

but diagonal matrix elements are now 2.4
times the off-diagonal ones. Our motiva-
tion is that the increased value of the diag-
onal matrix elements explains the Wigner
energy anomaly [5] and also the discrep-
ancy between ‘observed’ single-particle gaps
and those obtained from Woods-Saxon po-
tentials in N = Z nuclei [10]. In the SO(8)
model of Refs. [7, 8] it is also possible to take
unequal diagonal and off-diagonal pairing
strengths, if only two levels are considered.
However, in the current application we have
16 levels. In this case, the unequal diagonal
and off-diagonal pairing strengths suggested
by physical arguments, no longer permit the
same solution technique as in Refs. [7, 8].
Cases 3 and 3’. We set diagonal matrix

elements to be 2.4 times the off-diagonal

ones and we change the relative strengths of
T = 0 and T = 1 pairing, i.e., in case 3 we
set GT=0 = 0.9×GT=1 and in case 3’ we in-
terchange the pairing strengths. Case 3 sug-
gests the sorts of differences to be expected
in heavier nuclei where odd-odd N = Z
nuclei have a 0+ ground and a 1+ excited
state. Case 3’ suggests light nuclei where
the 0+ state is not the ground state in odd-
odd N = Z nuclei. The energies are the
same in cases 3 and 3’ but the (J, T ) labels
of the states are interchanged.
For the even-even systems considered

here, we use a variational wave function of
the form

Θi = P
k
∏

ψ†
i,k|0〉, (2)

where |0〉 is the physical vacuum and ψ†
i,k is

a creation operator of the form

ψ†
i,k =

[

1 + Ui(1, k)A
†
k + Ui(2, k)B

†
k

+Ui(3, k)C
†
k + Ui(4, k)D

†
k

+Ui(5, k)M
†
k + Ui(6, k)N

†
k

+Ui(7, k)W
†
k

]

, (3)

with W †
k = A†

kB
†
k. This is an extended ver-

sion of the variational wavefunction used in
previous studies [3, 5, 10] by virtue of the
addition of the M †

k and N †
k terms which are

needed because all jz values are the same
and these modes are collective. The op-
erator P projects definite neutron number,
proton number, number parity of T = 0 n-p
pairs [5] and now also Jz. We project before
carrying out the variational procedure.
The variational trial wave function, Ξn+1

m ,
is [3]

Ξn+1
m = Φn

m +Θn+1, (4)

where Φn
m, the starting wave function, is

Φn
m =

n
∑

i=1

tni,mΘi, (5)
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with n the number of VCI basis states,
and m the specific state (ground or excited
state) that we are approximating. All Θi

have exactly the same structure differing
only in the numerical values of the ampli-
tudes Ui(j, k). Each of the fully projected
states Θi consists of 1.108× 1012 Slater de-
terminants.

For case 1, we have exact results for com-
parison. In Table 1 we list the exact energies
for case 1. The exact solutions provide valu-
able tests for future approximate methods.
Our approximation is in extremely good
agreement with the exact results over the
entire range of interaction strengths. The
ground state and first four excited states for
even isospin T are obtained accurately for
150–200 VCI basis states. For odd isospin
T , we consider only the lowest solution as
it is the only one in the energy range of the
four low-lying T -even excited states. The
even-T ground state and the lowest T -odd
state are approximated to a few keV accu-
racy. This seems to be a general feature of
our approximate method - the lowest eigen-
state for a given set of quantum numbers
can be obtained more accurately than ex-
cited states having those quantum numbers.
The first three even-T excited states are ac-
curate to 10–20 keV and the fourth state
to 40–50 keV for the largest values of the
interaction strength and somewhat better
for weaker interaction strengths. The agree-
ment in energy is quite satisfactory and can
be further improved by increasing the num-
ber of VCI configurations.

In Fig. 1 we show the spectra calculated
for the four cases 1-3’. For cases 1 and 2
the four lowest excited states are degener-
ate, one has odd isospin and the other three
have even isospin. The (J, T ) assignments
of these four states are (0,0), (1,1), (2,0),
and (0,2). The fifth excited state is (0,0).

Although the excited-state degeneracy pat-
tern is the same for cases 1 and 2, the exci-
tation energies of the states in the quadru-
plet differ substantially. This has important
implications for the relation between rela-
tive T = 0 and T = 1 pairing strengths
and moments of inertia. The only differ-
ence between the two cases is in the ratio
of off-diagonal to diagonal matrix elements.
Yet the moment of inertia, as determined
by the energy difference of the first 2+ state
and the 0+ ground state, changes by 30–40%
between the two cases.
In case 3 a 10% reduction of the T = 0

strength from the values in case 2 leads to
large changes in the excited-state spectrum
and in the moment of inertia. As there are
no exact solutions for guidance in this case,
we can get some sense of the quality of the
VCI method for excited states by compar-
ing the energy of the Jz = 0 member of the
J=2 multiplet with the Jz = 2 member of
the same multiplet. The Jz = 2 member
of the multiplet is the lowest Jz = 2 state
and can be calculated more accurately. The
Jz = 2 state is calculated to be roughly 10
keV below the states labelled (2,0), giving
us further confidence in the VCI method for
excited states. We have calculated the low-
est Jz = 2 state for both cases 3 and 3’.
The similarity of the energies of the low-

est J = 2+ in case 3’ and case 1 should
make one cautious about inferring anything
about relative T = 0 and T = 1 interaction
strengths from moments of inertia as the 2+

excitation energies depend strongly on both
the relative interaction strengths and diago-
nal matrix element strengths. The effects of
large diagonal matrix elements, when prop-
erly taken into account by including W †

terms, should persist to higher spins.
Not only are excitation spectra affected

by these differences, ground-state correla-
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Table 1: Exact energies (in MeV) for case 1.

GT=0,1 ET=e
0 ET=o

0 ET=e
1 ET=e

2 ET=e
3 ET=e

4

0.05 −3.0146 −1.5206 −1.5206 −1.5206 −1.5206 −1.4482
0.10 −7.7112 −6.6071 −6.6071 −6.6071 −6.6071 −6.4395
0.15 −14.401 −13.299 −13.299 −13.299 −13.299 −12.526
0.20 −22.181 −20.852 −20.852 −20.852 −20.852 −19.327
0.30 −38.780 −36.902 −36.902 −36.902 −36.902 −34.189

The superscripts T = e and T = o denote T -even and T -odd states.

Case 1 Case 2 Cases 3 & 3'

�0,0�
�1,1�
�0,2�
�2,0�

�0,0�

�0,0�
�1,1�
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�0,0�&�0,0�

�1,1�&�1,1�
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Figure 1: Excitation spectra as a function of the off-diagonal pairing strength GT=1. The leftmost spectrum
is obtained for the parameters of case 1, described in the text, the center spectrum is for case 2, and the
rightmost for cases 3 and 3’. Levels are labelled with the quantum numbers (J, T ).

Table 2: Off-diagonal ground-state correlation energies (in MeV).

A†A B†B C†C D†D M †M N †N
Case 1 1.21 1.21 1.20 1.20 1.21 1.21
Case 2 0.92 0.92 0.91 0.91 0.92 0.92
Case 3 1.07 1.07 1.06 0.61 0.62 0.62
Case 3’ 0.62 0.62 0.61 1.06 1.07 1.07
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Table 3: Off-diagonal correlation sums (dimensionless).

G.S. 1∗ 2∗ 3∗ 4∗ 5∗ 6∗ 7∗
Case 1e 1.05 1.01 1.01 1.01 0.91 0.95 0.95 0.95
Case 1o 1.01 0.95 0.95 0.95 — — — —
Case 2e 1.01 0.98 0.98 0.97 0.85 0.85 0.92 0.91
Case 2o 0.98 0.92 0.92 0.92 — — — —
Case 3e 0.98 0.92 0.91 0.90 0.83 0.91 0.85 0.83
Case 3o 0.93 0.89 0.86 0.85 — — — —
Case 4e 0.95 0.82 0.82 0.72 0.72 — — —

An asterisk denotes an excited state.

tion energies also change noticeably in go-
ing from case 1 to case 2 and differ sub-
stantially in cases 3 and 3’. In Table 2 we
compare the ground-state off-diagonal cor-
relation energies in the three cases for an
off-diagonal strength GT=1 = 0.1 MeV. For
example, a value of 1.21 MeV forA†Ameans
〈
∑

i 6=j G
T=1
i,j A†

iAj〉 = 1.21 MeV. It is the off-
diagonal correlation energy that measures
the collectivity of a state. Diagonal correla-
tion energies are typically large, whether or
not a state is collective. For a Slater deter-
minant configuration, there is no collectiv-
ity and the off-diagonal correlation energy
vanishes. In our model system, the diago-
nal correlation energy is 24×(GT=1

i,i +GT=0
i,i )

for the Slater determinant configuration. A
10% reduction in T = 0 matrix elements
reduces the off-diagonal T = 0 correlation
energy in the ground state by roughly 40%.
Small changes in the relative strengths are
greatly amplified in the wavefunctions. If
the wave functions were exact, the values
for the first three entries in each line would
be identical, as would be the last three.

In Table 3 we compare the sum of all
off-diagonal correlation energies for the first
eight T -even approximate states and the
first four T -odd states for GT=1 = 0.3 for all
three cases. In addition, we have included

results for a system with only like-particle
pairing, labeled case 4. Although we have
not carried out any minimizations of the T -
even states 6-8 or for T -odd states 2-4, the
energies are in moderately good agreement
with the exact results calculated for case 1.
We choose GT=1 = 0.3 because this is the
largest value for which we have carried out
calculations. Collectivity persists in all of
the excited states. In a system with only
n-n and p-p pairing, the ground state off-
diagonal correlation energy is 2G×P (L−P )
in the degenerate limit, where P (= 8) is the
number of like-particle pairs and L(= 16) is
the number of levels; so we have divided all
correlation energy sums by 128GT=1. The
correlation energy of excited states drops off
somewhat faster in case 4 than in the cases
with n-p pairing. This suggests that many
excited states will show collective features
in nuclides near the N = Z line.

3. Summary

In summary, we have applied the VCI
method to the pair-vibrational excited
states of a Hamiltonian with T = 0 and
T = 1 pairing. We find that there are at
least five excited states with energies below
the two-nucleon excitation energy (ı.e., pair
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vibrations) over much of the range of vibra-
tional interaction strengths. This contrasts
with systems having only n-n and p-p pair-
ing where only two low-lying pair-vibration
states [2] exist. The large off-diagonal corre-
lation energies (indicative of collectivity) of
these excited states suggests that many col-
lective states should be seen in nuclei near
the N = Z line. We find that the moment
of inertia is very sensitive to the ratio of di-
agonal to off-diagonal matrix elements, as
well as expectedly sensitive to the ratio of
T = 0 to T = 1 interaction strengths. Com-
paring VCI results with exact calculations
shows that the VCI method gives accurate
energies for both ground and excited states,
in systems with large single-particle energy
level degeneracies. In a previous study [3]
the method was successfully applied to sys-
tems with non-degenerate levels. The VCI
method is quite general in that it does not
impose any restrictions on energies or ma-
trix elements.
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