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Modeles approchés pour la simulation d’'ondes a travers desotiches
minces periodiques

Résumé :Ce travalil est dédié a I'étude de la propagation d’ondessiitpues a travers une couche mince
circulaire et périodique. La période et I'épaisseur de lacbe, proportionnelles a un petit paramétre
sontdéveloppement de la solution par rapport au petit patra#i Puis nous en déduisons des modeéles
approchés dans lesquels la couche périodique est remplacéee condition de transmission équivalente.
Ces modeéles, validés théoriquement et numériguement,amantage d'étre mieux adaptés aux simula-
tions numériques que le probléme initial.

Mots-clés : développements asymptotiques, conditions de transmiggjaivalentes homogenéisation,
équation de Helmholtz



Approximate models for wave propagation across thin peécioderfaces 3

Introduction

This work is dedicated to the study of asymptotic models @ased with acoustic waves scattering from
thin rings that contain regularly spaced heterogeneiti#s.are interested in situations where the thick-
ness of the ring and the distance between two consecutieedgeneities are very small compared to the
wavelength of the incident wave and the diameter of the rlibige easily understands that in those cases,
numerical computation of the solution would become prdhibias the small scale (denoted &ygoes to

0, since the used mesh needs to accurately follow the gepofatre heterogeneities. In order to overcome
this difficulty, we shall derive so-callefipproximate Transmission Conditigmeghich are transmission con-
ditions that only involve the traces of the field and of itsmat derivative on the boundary of the ring and
which yield to approximations of the exact solution thatymaimially converge to the exact one ¢as- 0).

The numerical discretization of approximate problems meeted to be much less expensive than the exact
one, since the used mesh has no longer to be constrained sm#ilescale.

The use of such approximate models is a rather classical toghe modeling of wave propagation
phenomena when a (geometrical) small scale is present {@atyeference is[]1] from the engineering
literature). As explained above, the main idea would be péaee an exact problem, which is difficult and
expensive to numerically solve (basically due to the neddadl mesh refinement imposed by the small
scale), with an approximate one which is numerically muckeqter.

Without being exhaustive, let us indicate some works froerttathematical literature that share simi-
larities with our problem or employed methods. For instaficgt order approximate boundary conditions
have been derived for electromagnetic scattering probfeons perfect conductors coated with periodic
thin structures in]2] for the Maxwell equations in planaogeetries, in[[B] and [4] for the Helmholtz equa-
tion in circular geometries. Higher order conditions haeeoderived in[[5] for the Laplace problem and
in [6], [I7] for the Helmholtz equation. The case of approxiemaansmission conditions has been studied
in [8] and [9] for perforated thin conductors: inl [8] the twestiterms of the asymptotic expansion of the
solution has been obtained. The case of effective trangmissnditions modelling highly conductive thin
sheets is treated i [ILO]. The goal of this work is to complentize above mentioned studies in two direc-
tions: The first one is to provide a complete description efasymptotic of the solution with respect to
the small parameter (in the case of thin circular periodierfaces). We shall employ for that purpose the
technigue of so-called matched asymptotic expansionsf@gsérstance([111],[[12] and13]). The second
one is the derivation ofariational andstableapproximate interface conditions which are accurate up to
O(6?) and up toO(62) errors. The accuracy of these conditions is theoreticaityraumerically validated
through error analysis and numerical simulations of tesbf@ms. The latter also demonstrate the effec-
tiveness of introduced approximate models.

The remaining of this report is organized as follows. In 8ectl, we describe the setting of the
problem and introduce some notation. Section 2 is dedidatéte construction of a matched asymptotic
expansion of the solution. The derivation and error analg$iapproximate transmission conditions is
done in Section 3. The last section is devoted to numerigallsitions and validations of the approximated
problems. Finally, in order to facilitate the reading okthéport, proofs that are too technical are postponed
to appendices.

1 Setting of the Problem
In these first investigations, we shall restrict ourseheethe scalar scattering problem modelled by the
Helmholtz equation in two dimensions. Let andp® denote the acoustical characteristics of the medium

Q) whered is a small parameter that will be introduced later. Then twuatic fieldu® satisfies:

V- (10Vud) +w?p’u’ = f inQ, (1)

RR n° 7197



4 Bérangere Delourme, Houssem Haddar , Patrick Joly

wherew denotes the pulsation of time variation afidenotes a given source term.
In order to simplify the exposure of the error analysis wdlsssume thaf? is a disk:

Q= {(J:,y) eR? /a2 492 < Re}.

To shorten notation, we also introduce the interior dontin the exterior domaif2™ and the interface
Sr, defined by

0 = {(x,y) ER2 /a2 142 < RO},
Qt = {(z,y) GRQ,RO <Vat4y?< Re}v
SRO = {(:rvy) € RQv \% x? +y2 = RO} .

Moreover, we replace the radiation condition satisfied:byy the following impedance condition on the

boundary of2 denoted by5x, :
1

%ir +iwu’ = 00nSp,. )

Readers who are familiar with scattering problems can bigyeamvinced that the theoretical treatment of
the scattering problem iR? (where [2) is replaced by the Sommerfeld radiation cona)taan be deduced
with minor modifications.

We assume that the mediuthis made of a ring (of mean radiug,) Q‘}% =< |r—Ro| < g plugged

into an homogeneous medium.{,1.~.). This ring contains many regularly spaced heterogerssiti¢he
azimuthal directiond) which means in particular tha andp? are periodic in the angular varialdsee

Figurell).

Figure 1:Q

To clearly define this angular periodicity, we introduce toaled tangential variablg and the scaled
normal variable) (see Fig[R):

T*Ro
= d =2 3
S 5 an 1% 5 3)

INRIA



Approximate models for wave propagation across thin peécioderfaces 5

Figure 2: the scaled variabl&sandV

We assume that there exist two functignsind p of the scaled variableS € Rt andV € R, that are
independent of and that satisfy:

. 1
p(V, 5 +1) = pu(V,S), u(V,S) = oo it V| > 3,
and i (4)
p(V,5+1)=p(V,5), p(V,5) = poo it V>3,
such that
10 (r,0) = (- ’530,9%) and p(r,0) = p(~ ’fle%) forr > 0andd € [0,27].  (5)
We also make standard assumptions on the bounds for matesjarties,
3 (ftm, piar) ER?, 0 < iy < 1 < pina,
(6)
3 (pmypmr) ERZ, 0 < p < p < pur-

Finally we shall assume that the support of the source fedoes not intersect the thin rirfgp;.

Philosophy behind approximate interface conditions

We first recall that the variational problem associated firand [2) can be written as: find € H'(Q)
such that

a®(u®,v) = L(v) Yve HYQ), (7)
where

a® (u,v) :/ (uSVu-VT)wap&u@) dr + iw,uoo/ uv ds,

Q SRe
L(v) = / fo dx.
Q
This problem is well-posed and is stable uniformly with restos:

Proposition 1.1. Problem [T) is well-posed. Moreover, there exists a coristamdependent of such
that,

5(,,0
a’(u’,v
Il <C  sup LWL

vu’ € HY(Q). (8)
vEH(2),0#£0 HU”Hl(Q)

RR n° 7197



6 Bérangere Delourme, Houssem Haddar , Patrick Joly

The proofis standard and is given in secfionlA.1.

We remark that:’ can be split into two parts:

. / (,LLOOVu -Vo — w2poom7) dr + iwuoo/ uv ds, 9
Q\Q'SR SRe

. / (,u‘SVu -V — w2p5u@) dz. (10)
Qf

When approximating problerll(7) using finite elements, thexrpeoblem comes from the approximation
of the term [[ID), since’ andp® have fast variations. The goal of approximate transmissmrditions
would be to replace this term by a boundary integral of thenfor

u(RF, 0 o(RE,0
/ B <6u( Oﬂ: )> ' <av( Oﬂ: )) ds, (11)
SRy m(RO 79) m(R() 79)
WhereB? is a local boundary operator that takes into account theachernistics of the medium inside the
small ring. Roughly speaking, we say tfﬂft is a transmission operator of ordgif (LI) approximates

(@T) up toO(67*1) error. The larger is the value gf the more complicated is the expressiorﬁﬁf In

theory, one can buiIoB? for any order;j but calculations become extremely heavy for 3. We shall
restrict ourselves here fo= 1 andj = 2.

The process of obtaining tl”@ is based on two main steps.

* In the regionlr — Ry| > 6 we first prove that the solution has a polynomial asymptotjza@sion

of the form
uw = Z 0" Uy,
neN

This step is very technical. The rigorous analysis emplbggechnique of matched asymptotic ex-
pansions, and indeed requires introducing the expansitiredfeld in the regiofr — Rg| ~ 4 .

e Then, in order to derive an approximate model of orfleve truncate the asymptotic expansion at
J
n = j,and consideu? = Z 0" u,. Then we shall observe, from analytical expressions of &z n

n=0

fields, the existence (B? such that

) u$(Ry ,0) o(RE,0) . -
_ 2 _ i
/r_Rij %(Ri ) : @(Ri ) dS:/Q“ (u Vuj~Vv—wpujv) dr + O(&71).
' or 07 or 0 R

As we shall notice, the construction lﬁf is not unique. The main difficulty is to derive expressions
of B? that have "good"stability properties (namely for which #ygproximate solution satisfies an uni-
form stability estimate similar td18)) . Unfortunately we dot have a systematic procedure to derive a
"good"expression foB? . The final expressions we will provide are motivated by tH&adilties encoun-
tered when studying the well-posedness of the approximatehassociated with the "natural"expressions
provided by the asymptotic expansion.

INRIA



Approximate models for wave propagation across thin peécioderfaces 7

We end this part by introducing some short notation:uetc H'(Q") N H'(22~). We abbreviate the
exterior and interior values of on the interfaceSr, by u™ andu™:

ut(0) == u(Rg,0), u”(0) :=u(Ry ,0).

The jump and mean values acrdsg, respectively denoted by and(u) are defined by:

[u] == ut —u™, (u) == % (ut +u). (12)

RR n° 7197



8 Bérangere Delourme, Houssem Haddar , Patrick Joly

2 Asymptotic Expansion

In order to develop accurate approximate models, we lookafoomplete description of the asymptotic
behavior of the solution whefitends to zero: the natural idea is to build an expansiaif of powers of
J.

The basic method to obtain asymptotic expansions is diviltedhree main steps: starting from an ansatz
we formally derive the formal expansion. In a second stepwegthat the terms of the asymptotic expan-
sion are well defined. The last step is to validate the asytie®pansion by establishing error estimates.

From a technical point of view, we use the method of matchgdhptotic expansion. This method has
been developed by Van DicK ([l14]) to treat singular perttidmeproblems which arise in fluid mechanics.
A standard work on the matched asymptotic expansions apmi¢he Helmholtz equation can be found
in [L2],[13] and complex situations are studied Inl[15]. Fecent applications, we refer the reader to
[L1],[Z8].

2.1 Main ldeas Behind Matched Asymptotic Expansions

Due to the fast variations with respect to angular cooréiidt is not possible to write an uniform expan-
sion of the solution in the whole domafh Roughly speaking, the solutiar oscillates more rapidly in
the vicinity of the periodic ring than far from it. The teclyie of matched asymptotic expansion consists
in separating these two distinct behaviors by expandingtfiessolution (separately) in the far field zone (
|T’ - R0|

> 1) and in the near-field zoné(— Ry| ~ ¢). Then match the two expansions in an intermedi-
ate zone) < ||r — Ry|| < 1.

2.1.1 Ansatz
 Far from the periodic ring, we assume that a standard palyaleexpansion holds:

Z §"ut(r,0) 7> Ry,

5 ,9 — neN 13
0= e (13)

neN

The far field terms.= are assumed to be independensofNote also that we assume thgf are
defined inQ* (see figurE3R)).

- Periodicity ——

s=-1/2 s=1/2
(@ QF andQ~ (b) Bo

Figure 3: Domains for far and near field terms

INRIA



Approximate models for wave propagation across thin peécioderfaces 9

* Near the periodic ring, we have to take into account theggiéeity of 4 andp. That is why the
expansion of.’ is more complicated:

R _ n . _T'_RO _ 9
umm_%%él%wﬁﬁ)wm V=—— andS = Rox, (14)

where the near field terni$, are defined i3y x [0, 27| whereB, is the periodicity cell (see Figure
B®)):

1 1
By ::{(S,V)€R2,—§<S<§}. (15)

In order to take into account the fast oscillations:6fin the vicinity of the ring, we impose of,,
to be 1-periodic in the tangential variable S. This kind ofaa is classical in the homogenization
theory (see for examplE [L7II[Z]I[5] for more details).

» The two expansion§(14) and {13) are assumed to be alsoinalich overlapping zone@}tM and
Q) 5 defined by (see Figulg 4):

Of 5= {(r0) eR*n~(8) <r—Ro <n*(5)},
Qs = {(r,0) e R*,n=(6) < —(r — Ro) <" (0)},

wheren* are chosen such that< =~ < n™ and,

:i:(;)
lim n¥ = T C) T 16
dyn™ =0, lim =5 > (16)

For instancey ™ (8) = v/ ands™ (§) = 2v/§ would be convenient.

Figure 4: Overlapping zones

Let us notice that, using propertiéS16)pffor the near field, overlapping areas correspon to
going to+oo. On the contrary, for the far field, the overlapping areasesgond to- ~ R,.

A detailed analysis of the behaviour of far and near fields allibw us to find matching conditions
that enable far and near field expansions to match in theapgirig zones.

Expansiond(d3) an@{ll4) will be justified by the error anialyrs SectiorL.ZH.

In the two following sections, we shall formally derive thguations satisfied by far fields termg and
near fields term§/,,.

RR n° 7197



10 Bérangere Delourme, Houssem Haddar , Patrick Joly

2.1.2 Far Fields Equations

Substitutingu’ by its far field expansiofi{]3) in the Helmholtz equatidn () &n the impedance condition
(@) and formally separating the different powerg pfve obtain the equations satisfied by the far fields terms

Uy, .

ifn=0
oo AuE 4 Wipsut = { (J; i 0 in QF,
if n# (17)
+
87‘ =0 OnSR

We emphasize that™ are not entirely defined since we did not prescribe yet bognanditions onSg, :
we now have to find transmission conditions betwegrandu,, on the interfaceSr,. More precisely, we

want to determine the jumja,,] and the jump of the normal derivati‘{/gﬂ] acrossSg,. These conditions
T
will be obtained from the matching conditions between fat aear fields (see sectibn Zl11.4).

2.1.3 Near Fields Equations

Let us first remark thafn € N, sincey = 5R andsS = RTQ
AUy _ 10U,
dr ~ 5 0V’

AU, _ U, | Ry U,
o~ 90 5 9S"

Consequently,

2 5 5 2 _ 1 (20 (,0Un 20 ( 0Un
P (V- OVU) + P Un) = 5 (P an gy ) F Rigg (g

+l aU”+Ri OUn +R O*Un
s \"Fay Tag \ M e 013506

Replacing: by Ry + 0V gives

2 5 5, 2 _ L (20 (’)U 20 (,00n
P (V. VU) + p0Un) = 55 (Bigss (mgyy | + Bigg (g
1 o ( oU, U, o ( ou, 0*U.
~(2
5 ( RoVay \# ( v ) T fongy + Hops (“ a0 ) +R0u3539)
ou,, 5 0 ou, 82U 2
(V“ v Vv <“W> g ol
+0 (2VRopw?U, )

INRIA



Approximate models for wave propagation across thin peécioderfaces 11

Sincew? is solution of the homogeneous Helmholtz equation in thiniticof the periodic ring
Z §"r? (V.(u°VU,) + p°w?U,) = 0.
neN

Introducing [IB) in the previous equation, and collectiagrts of 5™, we obtain equations for the near
fieldsU,, that can be written in the following form (we adopt the coni@mthatU,, = 0 if n is negative):

AUy, = —A1Up 1 — AUy 2 — A3Uy, 3 — AyUp 4 in By (19)
where
o, oU o, oU
—p2 =, 2= (==
oU
AU = A?(@) + AU,

. opU oUu
Orr . -
with .AlU = Ry 95 +,LLR()8S,

1 0,6 oU oU
U .= (2 2 7 (== -
AU v ( RV av(uav)—i—RoVuav),

0*U
AU = A (Gaz) + A3(U),

with AU = pU,

0 oU ou
0 . 2 2 2
AU =V W, <M_8V) JruV—aV +wpRyU,

AsU = V(2Row?pU),

AU = V2 (w?pU).
To entirely define the near fields, we need to prescribe tlediabiour for largd’. The matching conditions

allow us to determine these behaviours. A modal expansithreafear field terms in the overlapping zones
(i.e for largeV’) makes possible the writing of these matching conditions.

. 1
Modal Expansion of U, for V| > 3

The following proposition establishes the behaviout/gffor large). An important point to notice here
is the fact that the impact of the periodic ring is localizedts vicinity.

o . 1 :
Proposition 2.1. LetU,, be a function inC* (]0, 27[) x C> ( < (V, S) € R? such that|V| > 3 which

satisfies[[119), which is 1-periodic ifi and which is non-exponentially increasing for largle Then, the

RR n° 7197



12 Bérangere Delourme, Houssem Haddar , Patrick Joly

behaviour ofU,, for large V is given by

n+1

; 1
+ k —27r\l|V 2imlS -
(Y, 5,0) chk )V Y ZBnlk e forv > =, (20)
1€Z,1£0 k=0
n+1 1
— k 27r\l|V 2imlS _ =
Un(V,8,0)=>_ Cr(@)VF + > ZBnlk forv < -2, (21)
k=0 1€Z,1£0 k=0

WhereBiLk(H) denote some constants that only depend.on
The proofis done by induction. The main idea is to wtiteas Fourier series:
Un(V,0,8) :=>_(Un)i(V,0) *™5.
lez
Then solve the equation f¢t/,,); whered is a parameter. The complete proof is given in Appeldi A.2.

Notation 2.2. In order to shorten notation, we shall denotedfy’ ~>°) any term that can be written in the

form:
Z (Z BlJ,rk(e)Vk) e—2mllV] y2imls
lEZ,I#0 k=0

whereB; ;, does not depend ot and V.
The expression af(V~>°) may vary from one line to another buf) ™ °°) always satisfies

lim V" xo(V™>)=0 VmeR.

V—+too
Moreover,o(V~°°) is periodic with respect t&' and/ ) dS =0.
1
For instance we can write,
n+1 1
0) = k ) for + =
(1, S, Z% ) VE+o(VT>) for £V > o

2.1.4 Matching Conditions Between Far-fields and Near-fiels

We are now in a position to derive the matching conditions.céfesider the overlapping zonelkt
Qs = {(r,0) € R x [0,27],77(6) < |r — Ro| <™ (d)} .

where the functiong~ andn™ verify (@8) (for example, we can choose () = v/§ andn™ (§) = 2V/).
We also setr = r — Ry.

* Sincen($) tends to0 whené tends ta0, for the far field terms, the overlapping area corresponds to
v =~ 0. Sinceu,, shall be regular, we can use its Taylor expansiof ins:

vk 9k uE (R, 0)

un(Ro0) =) 35 5%
keN

Therefore in the overlapping area the far field is given by

> un(r,0) =Y > " kw. (22)

neN neNkeN

INRIA



Approximate models for wave propagation across thin peécioderfaces 13

(%)

* Forthe near field terms, sin<:~e6— tends totoco whend tends td), the modal expansions 6%, 20)
and [21) can be used:

R v, AN
ov vy _ + ks—k v
Un(0. ==, 5) ;cn_,k(e)y 5 +0((5) )

Therefore, summing with respectitoand reordering the terms give

+o00 oo
ZanUn(o,RToe,%): 3 Zé"uk0f+k,k+o<<%) ) (23)

neN n=—1keN

Identifying the two serie§{23) and{]22) and separating tvegus ofv andé give the matching conditions:

0 ifk=n+1,
Cok =19 10"t (Ro,0) ; (24)

As explained in Appendix B, the matching conditionsfor 2 are redundant conditions. This is due to the
fact thatU,, andu;r are solutions to second order PDE. For instance knowing thel®y datau; (R, 0)

+
and ng (Ro, ) are sufficient to determine higher order derivativea6f Also from expression§20) and
1), one notices that after applying the Laplace operatdf,t that theij_,c can be entirely determined
for k > 2. '
Let us also notice that these matching conditions provatestmission conditions for the far field termgs
since

_ ouy, _
[tn] = 0;1 -Chq and {W] = Cf:,o —Cho-

We shall prove in AppendixIB that the system of equations nuddiee far fields equationg{lL7), the near
fields equationd19) and the matching conditidn$ (24) elytilefine the far fields terms, and the near
fields termdl,, of the asymptotic expansion for any orde(see also propositidn 2.8). The proof uses an
abstract framework, first introduced by Claelysl[11], thayra hard to catch for readers who are not fa-
miliar with matched asymptotic expansions. This is why wenfd it useful to explicit the construction for
the first terms using a step by step method. Theses termsapadis used in the approximate transmission
conditions later on.

2.2 Construction of the First Terms of the Asymptotic Expan$on

In this section, we first compute step by step «; andUy, U; andU,. A preliminary important step
consists in finding a suitable framework to solve near fiettbhfgms (as explained il [lL8] (chapter 2).1[19]
and [8]).

2.2.1 Variational Formulation for the Resolution of Near Fields Problems

Let us consider the following problem for the unkno®iV, S) and a given dat#:

{v (uWVU)=F inD/(R?), (25)

UW,5+1)=U(V,S).

RR n° 7197



14 Bérangere Delourme, Houssem Haddar , Patrick Joly

We introduce the weighted-periodic functional sp#icé(R?)

Wi (R?) := {u € D'(R?), Vv € L*(By), - € L*(By) andv(, S + 1) = v, S)} :

(1+V2)2

equipped with the scalar product

_ 1 _
uv = VU -VV dSd ——=UV dSd
( 9 )W1 /BO V + /B() 1+V2 Va

whereB; is the periodicity cell[[I5).
Since constant functions arelifi; (R?) and are solutions of{25), we also consider the quotientespac

W(R?) = Wy|R.
The norm onW(R?) is defined by

101l = 8 10+ el o -

The following proposition gives basic propertiesiW{R?). The proof is standard and is done is appendix

A3

1/2
Proposition 2.3. W(RR?) is a Hilbert space. Moreover the semi-notm- (/ |VU|2deV) is an
B

0

equivalent norm o (IR?).

We now introduce the variational formulation associateith e problem(25): find’ € W (R?) such that
a(U,V)=<F,V > VYV ecWR?, (26)

where,

a(U,V)z/ WU - YV dSdV,
Bo

and<, > denotes the duality product on the dua(RR?)* of YW (R?) with respect to thé.? duality product.
The following existence and uniqueness result is an imnedansequence of the Lax Milgram theorem:
Proposition 2.4. Assume thaF" € W(R?)*. Problem(Z8) has a unique solution iwV(R?). If we further
assume thatF’, 1)y, (r2)+,w, (r2) = 0, then the solution td{26) satisfi€s]25).

2.2.2 Construction of the first near field terms : Uy, U; and U,

In the remainder of this section, we assume thatu; andus exist. This assumption will be verified latter.
With the previous framework it is possible to determine thel/; andU,. We also obtain semi-explicit
formulas for these terms by separating the macroscopiabiafl form the microscopic variableésand).

e Construction of U,
Using the matching conditionE{R4) and the modal expang@iisand [21L), we introducE, € W, (R?)
solution to

AUy = R3V - uVU, =0, in D' (R?)

From Propositiofi2]4, we deduce tHat(V, S,0) = cte(#). In addition the matching conditions tell us
that

1
Uo(V, S,0) = ug (Ro,0) +o(V™>) for +V > 5

INRIA



Approximate models for wave propagation across thin peécioderfaces 15

Thereforeug (Ro, 0) = uy (Ro, 0) = cte(f) which means in particular that
[ug] = 0.
Le us notice that we can also write that
Uo(V, 5, 0) = (uo)(0)

For convenience, we introduce the notatigh(V, S) := 1 so thatlUy(S, V,0) = (uo(0))Vy (S, V). This
complicated notation will be justified by subsequent forasubr higher order terms.

To shorten the notation, we shall no more indicate the degrarelord since it plays only the role of a
parameter in the following problems.

e Construction of Uy
From the expression df, and [ID), we observe that one needs to consfiuctolution to the following
equations:

1 ou .
Vvt =~ () AR0F) + (GRA) in D), o
Ul(V, S+1,V, 9) = Ul(V, S, 0),
and which satisfies an asymptotic behaviour
+ 8U8E — o 1
U1V, S,0) =ui (Ro,0) + VW +o(V™>) for £V > 3 (28)
We shall construdl/; as

wherel; € W, (R?) satisfies a problem of the forifi{|26), P is a function which haslgnomial behaviour
with respect to when+)V — +oo andy is a smooth truncation function such that

w1 if V| > 2,
7Y 0 i<

Remark 2.5. In this constructiorl/; depends ory but U; does not depend on this function. To see that
we first observe that if we have constructed two functiénandU;, then from[[ZP) and{28) we see that
the differenceD; = U; — U7 is in W1 (R?), and goes t®) as|V| — +oo. Moreover equatior{27) yields
that D, satisfies[[25) wittF' = 0. Then Propositio 214 implieB; is equal to0.

Using the linearity with respect t@%ﬂ) and(%
T

Wy, vV andV; solutions to the following problems:

), it will be useful to consider three canonical functions

- VP € Wi (R?) and

1 .
V- (uVV0) = _ﬁA?VOO in By, o)
0

V2 =+AF (V) +0(V™>°) when £V >
s V' € Wi (R?) and
L 1 00 1.

0 (31)
Vit = A5 (VY +0o(V™>) when +V >

RR n° 7197



16 Bérangere Delourme, Houssem Haddar , Patrick Joly

« W{ is such that¥) — xV € W;(R?), and
{v -(uVWI) =0 in By,

o 0 1 (32)
Wg =+AF (W) +V+0o(V">°) when £V > 3

In the equations abovel! (V') denotes a constant (with respecttands) that may depend ovi: A (V)

is the coefficient of degree 0 in the polynomial behaviouvdbr V > 3"

Proposition 2.6. Problems[(3iL) [[30) an@{B2) have a unique solution (of tne@Zd)). Moreovel,” = 0.

Proof.

» Since AV = 0, Propositio 214 implies that is constant. The second equation[in] (30) implies
thatV,” = 0.

o (VD) = ,RLQ% Moreovergg € W1 (R?)*. Propositiol.ZK proves th&§' exists and is unique

up to a constant. PropositifnP.1 and the second equatifl)rsét this constant.

« W does not have a variational behaviour for latyeéNe therefore cannot directly apply Proposition
[Z4. However note that iy exists then it is unique (using similar arguments asfox.
We setiV := Wy — x(V)V. Then,
V- (uVWg) = f in By,

~ 1
Wg = £AF (W) +o(V™>°) when +V > 3

wheref := — 10 (A(X(V)V)) = —pe (2X' (V) + X (V)V).
Sincef is regular and is compactly-supported it is clear that Wi (R?)*. To obtain the existence

of W(?, we only need to check the compatibility conditi?@ f dSdv = 0. But this is verified

. By
since,
/ fdsdy = lim / — oo A(X(V)V) dSdV
Bo Vo——+o0 %
_ o (2000 OV)V)
Vo—+00 AV |v=—w aV  |v=w
= 0.
o
Now, we can explicitly construdt; as
8u0

Ul(vvsvo) :O‘(Q)VOO(SaV) + 6(9) WOO(Vvs> + < (R(), )>V11(V,S)

00
wherea(f) and3(6) have to be determined. It is clear ttiat satisfies the equatiof{P7) since

Ve (uV0) = al®)V - (u9VE) + B(0) Y - (iVWS) H(S DV - u TV
=0 =0
_ _<%>L%
B 90 "Ry 0S’
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Approximate models for wave propagation across thin peécioderfaces 17

. . . 1. .
Now we are going to determineand/3. The behaviour ot/; for largeV (wheny > 5) is given by

G~ o)+ (AFOR)0) + AT ) + Y ATOTH0) (39)
In the same way, whey < %
+ (170 + Quo + (0
G~ al) - (AFOR)0) + AT ) + Y ATOTH0) (34)

To determinex andg it suffices to identify the different powers dfin 33),{33) with [Z8):

« The identification of the term of degréegives

8u§ B Ouy
o = B(0) and = B(0).

Therefore, we obtain

Oug OJug

[W} =0 and p(0) = <W>.

« In the same manner the identification of the term of de@rgees

uf = al6) + ATOVE0) + AT,
up = a(0) — ATWE)B0) — AV,

Therefore, adding and subtracting the two previous equsitjeld

(’)uo

] =2 (A5G + A NG

50 >) and «(f) = (u1).

To summarize,

Ur = (u)Vy + () Vit + (

Qo) WP (35)

8u0 >
00

{%} =0 (37)

[w] = 245 (Wo)(5=) + 245 (Vi)( 55 (36)

e Construction of U,
One needs to construth 1-periodic inS solution of the following equation

82

AR V) + ALR)

V- VU, = Ri <<8“1>A9<v0> (

8u0

+(GAVE) + (ol AG(T9) + (GA) + (T . @9
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18 Bérangere Delourme, Houssem Haddar , Patrick Joly

and which satisfies the following asymptotic behaviour

0 2 92 1
Us(V, S,0) =ui + V% + V—<a—u20> +o(V™>®) for £V > 3 (39)
We adopt the same method as &or. we shall construdt/; as
Us(V, 5,0) = Ua(V, 5,60) + x(V)PT(V,0) + x(=V) P~ (V,0), (40)

wherel, € W, (RR?) satisfies a problem of the forf@I2B;* are polynomials ang is a smooth truncation

function such that
. 1 ify>2, (41)
XW=3 0 gy

In order to separate the macroscopic varigdiem the microscopic ones, it will be useful to consider five
new canonical functions solutions to the following probtem

o VP such that’y) — x(V)PT(Vy) — x(=V)P~(V3) € W1(R?) and

1 .
V- (W) =~ A(VP) i By,
0

42)
1 (
V9 = +AL(VY) + PE(V)(V) +0o(V™>°) when V > 3
where,
+ 0 0 VQ + 0
PE(VR) (V) = VAT (VY) + 5 42 (V2),
with,
Ai(VO) — _WQPOO
2 2 Lo )
+ 0 + 0 — 0 1 Vo % 0 0 1
241 (VF) = —Vo(AF (V) + A7 (V) — —— AV (ol > 3).
Mooty Vo —%
« V3t € Wi (R?) such that
1 .
V- (uVV) =~ 25 AW in By,
0 , (43)
Vot = £ A5 (Vy) +o(V™>) when V > 3

Vi such that/Z — x(V)PT (V) — x(=V)P~ (V) € W1 (R?) and

1 .

V- (uVVy) = =3 (AT(V]) + AS°VY) in B,
Ry (44)

1
VE = AT (V) + PE(VA(V) +o(V™) when V> -

2 b
where,
V2
PE(VE)(V) = (VAT (V) + 5 A3 (V),
with
1
Ay (V) = T

1
/ / (A (V) + A8V (Vol > ).

247 (V) = ~Wo(AF (V) + 45 (V2) —
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Approximate models for wave propagation across thin peécioderfaces 19

o W such thatV — x(V)P+(W?) — x(=V)P~ (W) € W;(R?) and
1 .
V- (uVWY) = == (A} (W) in By,
R
0 1 (45)
WP = £AT (W) + PEWY)(V) + o(V™™)  when V> -,

where,

PEWR)Y) = (£V)AF (WD) + A2 (000),
with,
1

Ay (W) = R’

_ 1 Vo ors 1
24 (WD) = ~Wo(AF V) + 4700~ —= [ [* vy =0 (al > 3)
codp -

« Wi = (x(V) = x(=V))A] (W{)V € W (R?) and

1 .
V- (uVW) = fR—8<Ai’<W8>> in By,

1 46
Wi = AT (W) + (EV)AT (W) +0o(V™>°) when V> 3 (46)
where
2aton) = [ LA (vl D
1 1 MOOR(Q) vy s 1 0 0 9/
Using the linearity of the equatiof{]38), it is natural to sooctU, as
0 0 8u1 82 aU()
Ua(V,5.6) = a(@)Vf(V,9)+BOWIV,S) + (S 1V, S) + (G0 V2V, 8) + (52 V (V. S)
ou 0%ug
+Huo)VZ(V, 8) + (5 )WV, 8) + (555 ) Wi (V. 5), (47)

wherea(#) ands(6) are two functions of that have to be determined.
By construction, it is clear thdf, satisfies[[38). To compute(d) and3(6), we have to identify the terms
of order0 and1 of the polynomial expansion @f,.

 The identification of the polynomial term of degree 1 gives

uf u .

WL 56) + (AT<V£><8;)920> + AT (V) o) + AT (W1 )<geao>)
U+ ’ 2u

T = 500) — (AT NG + AT )+ AT (W) G50 ).

Adding and subtracting the two previous equations give

8u1

<W>7 (48)

B(0) =
and
82’[1,() >
000r’

T ] =2 A7) (GG + 2 AT () + 2 ATV
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In the same manner, replacifdy @8) in expressioi{37), the identification of the polynalterms
of degree 0 yields
Oouy ouy 82U0 Oug
£ =at0)+ (A5G + A5G + ATV G + A5 )G

Uy =« 8r>

AT (V) o) + AT (VEG2) + AT OV G )
iz = a0) ~ (450G + as ) G + A7) G + 45 v G
FAT ) o) + ATV ) + AF OV Gt ).

Adding and subtracting the two previous equations give

and
8u1 + 1 8U1 + 2 0 0 +
Jus) = 245 (W L) 4+ 245 (V) oty + 245 (VN ) + 245 (V) (o)
F2AT (W) 4 243 (W) (S0

In addition, note that the identification of the polynoni&im of degree 2 o/, is automatically true

since
ou ou 0%u Ju
:I: g1 + vul :I: 0 + (171 0
0 0 . 0
R3
82U0>

Ju
+ AT (V) (o) + AT (WD) (F2) + A5 (W))(5a2
N—— N—_—— r N—_—— r
0

_w?poo Ro

Hoo

:<%>.
To sum up:
0 8u1 (’)ul (’)2u0
UaV,5,0) = () VI0,5) + (G5 WRW,8) + () WW,8) + (50) EW,8)
F(T) VAW, ) + (0 VD, ) + (G2 W, ) + (o) WiV, 5),
@)
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ou ou 9%u ou
ua] = 24FOW9) (S2) + 24 (V) () + 245 (Sa0) + 245 () (S
+(1/0 + g0y U0 oty Pt
F2ATVE) (o) + 245 (WE) (T2) + 245 (7)) (-0, (50)
8U1 (’)2u0 8u0 (’)2u0
1G] = 2t G+ 210 G + 24705 (o) + 247 07D) (G505

2.2.3 Construction of the First Far Field Terms: ug and u;

In the previous part, we have seen thaijf u; andus exist and are unique, thdg,, U; andU, exist and
are unique. Moreover the jumps and the normal derivativeppiofu, andug across the interfacgr, are
given by:

B B
[uo] = 0, [ua] = Ao(r 22y + AL (Z 2,
g and ouy or %quo 9%uq (52)

r—| =0, = i) Z 9

[ ar} [T 87’} Bouo) + Bul(Zaa0) + Bal )

where
+ 0
4= WWo) =y 245 (V}1),

Ry
By = 2Ro AT (Vy)), By =2RoAT (WD), By =2RoAf (V3).

From the previous conditions and the far fields term equat{@i), it is possible to construat andu;:

e Construction of ug

Since[ug] = {r%] = 0, we shall construct as solution to the following well-posed problem: find
T

up € HY(Q) such that

2
Wy = inpro),
Hoo Hoo (53)

0
Zuo + iwup = 00N Sk, .
or

AUO +

Note that the limit problem is the problem without periodity.

e Construction of u;
From [52) and[(1l7), we shall construgt as the solution to the following problem:
findu, € HY(QT) N H*(Q™) such that

2
Wi, — L ot npian,
Hhoo Hhoo

Aul +

0
ch +iwu; =00nSg,,

or (54)
] = Ao(r 22y 4 4,250y,

or 06
8u1 - 82U0
{Tﬁ] = BO<UO> + Bl<m> + BQ<

62’[1,0>
002 "
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Proposition 2.7. Problem [B4) is well-posed.
Proof. We first remark that if:; existsu; is unique. Then we shall construet as
Uy = 111 + R,
whereii; € H'(Q) andR is a bearing of the jump condition defined by
- x(r — Ro) (Ao(r%i;’> + Al(%» if > R,
0 ifT<<f%,

andy is a smooth function such that

1 ifo<z< @

x(r) = _
0 ifz> w.

)

Note that, by constructiofR] = [u1]. Sinceuq is smooth in the vicinity ofSg,, R is in H'(Q1) N
. : : I OR
H'(Q7). Moreover, since(r — Ry) is constant in the vicinity of = Ry, [ra—} = 0.
T

It follows that, satisfies the following classical variational form

2
/ (Vﬂl Vi p°°11117> +/ w10 = L(v) Yo € H'(Q),
QTuQ- Hoo SRe

where,
W2 poo 2 8%ug 0%y
L = AN v B B B v
0 = [ (6+ZE ) row [T (Batun) + BilG + BaG) ) @
27 aR ~
N—_——
=0

Since the linear fornd, is continue, (L (v)| < C||v|| g1 (), @1 exists and is unique. Consequently, problem
&4) is well-posed. O

2.3 Construction of the Whole Asymptotic Expansion
We can generalize the previous used approach to constsuamdU,, for anyn:

Proposition 2.8. The system of equations madelaf (17],(19) (24) has uswmugons(u,,, U,) such
thatu,, € H*(QT) N HY(Q7), Un(+,-,0) € H}.(R?) and is non-exponentially increasing with respect to
V. Moreover,

Auy, + n=00—— inQtuQ,
n . 3k’un7. ’ n—1 j 8k+1un, .
funl = 303 2Ty 4 (v + 30 S oDt s (W) (), 5
j=1 k=0 §=0 k=0
Oun] s, g G O,
Se] =S S o + S w S o) o),
j=2 k=0 j=1k=0
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and

n o J k J k+1
(’) Up,— J RQ, k 0 Up—1— J Ro,e) k
VSG Z 39k V +ZZ 00k Or >Hj’
7=0 k:O 7=0 k=0

(56)

where (W Jnen,k<n and (V,; )neN’kgn are two families of functions defined Hy (1130) ahd132) in the
AppendiB . These functions depend only of the fast vaggbbnd) and are solutions of periodic cell
problems posed if,. AT and A are linear forms also defined ifi{lI30) afd{132).

The proof of this proposition is technical and is explainediétails in the AppendiXIB. It is based on a
new version of the matching conditions introduced by X.€&g11]) and on the introduction of the two
families of functiong W*),.en r<n and(V,¥),.en r<n. These two families of functions can be understood
as 'basis’ functions for near fields terms.

Remark 2.9. By writing this system, we have decoupled the computatidardiields terms from the
computations of near fields terms. More precisely, we cahdompute the far fields terms, and next, by
post-processing, we can reconstruct the near fields terms.

2.4 Justification of the Asymptotic Expansion

The justification of asymptotic expansion is classicals Ibased on a the stability result of the exact prob-
lem (@) and a consistency result (Standard works on this &dnastification are[[18] and [16]).

Again, we will denote by; a smooth function such that
limnpn=0, and lim b +o00.
5—0 ’ §—00

We also define a truncated functigne C*°(R) such that

1 when|z| > 1,
€Tr) =

0 when|z| < 2.

We finally introducey,,(r, ) = X(ﬂ) ande?, the error of orden
n
e =u’ 4+ (1— Xn)te + xqUi", (57)

whereu] is the ordem truncated far field expansion abf]’ is the ordem truncated near field expansion:
n
> 8wt if r > R,

> 8'uy if r < R,
=0

)

1=0

2.4.1 Consistency

Proposition 2.10. There is a constar’ independent of such that

6% (€5, 0)| < O™ % + 8" ) |[v]| g1 e - (58)
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The proof is rather classical and is given in AnnExelA.4. Tremidea of the proof is to separate the
consistency erroa’ (€2, v)| into two parts: the matching error and the error on the Heltatemuation in
the near field area. Indeed, it is easily seen that

a‘g(si, v) = / ;L‘s(ug —U")Vxy - VU — u5(V(u2 —U)-Vx)o+ a(Uj, xyv) -
Q N———

) equation error
matching error

Estimating separately the two kinds of error gives the @esiesult[BB). The upper bound of the match-
ing error brings into play the matching conditions. To estieja(U;*, x,v)|, we use that fact that by
constructiorl/* almost satisfies the Helmholtz equation.

2.4.2 Convergence
The previous consistency resdlf}58) and the stabilityltéBulead to the first convergence result:
€™y < Cn™ 1 (59)

This previous error estimate is not optimal. By triangulaeduality, we can obtain better local error
estimates:

Proposition 2.11. Let us introduce
Q) = {(Scay) €R* Va?+y? <Ry —7},
Qi;:{(l',y)eR2, V$2+y2>R0+’y}7

Q,={(V,0) e Rx[0,27], —y <v <+~}. (60)
Foranyn > 0, for anyy > 0, there are a constan® independent of and a constand, > 0 such that for
anyd < 0,

n

[ u® — Z‘Slul_HHl((z;) + [’ — Z 5ZU1+HH1(Q¢) <Comtt (61)
1=0 1=0

Similarly, for anyn > 0, for any~ > 0, there are a constan® independent of and a constant, > 0
such thatforany < 0,Vj € N

1o I
/ / u® (Ro+ov,58) — Y FUR .5, 52)
—vJJ k=0

N[

2
asdy | <cétt,

il J+1 b . 1
/_v/j gy | 4 Rotov. 2 )—ZéUk(vs,Ro asdv | <cst,

W=

v J+1 B . 2 1
/V/j 35 U (R0+5V,1§j‘) - Z(S Up(v,s, 52 ds dy <CHT, (62)

k=0

=

2
dgdy| <ot

¥ 2 n
/ / ud (Ro+6V,0) — Z 5kUk(V7KL59a9)

k=0

o 27 o
/ / 5 %(Ro+5V,0) Zé"”Uk(v Rof g

1
2 2

dody | <costt.
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Proof. By triangular inequality,

n n+3 n+3
[u? =" o' <lu® = stu| YD sl
u Ul od) =N e o) W llm o) -
=0 =0 l=n+1
<Céntt

n+3
But, for § small enoughy® — Z Sl = "3 @&d). Consequently,
=0

lu® =~ 6" gty < Cn(8)"+2 4 67+,
=0

Choosingn(6) = 52 leads to convergence estimdfel(61). The proof[fdr (62) islairand is given in
Appendix [A35). O

Remark 2.12. It is possible to obtain a global result convergence estemaing multiscale expansion
instead of matched asymptotic expansion (see for exaljéjPa detailed comparison between matched
asymptotic expansion and multiscale expansion): this esipa is given by

n 7R 9
ar = Zél <vl(r,9) + ;7 (r,0) +W(¥;R0559)> ;
1=0

where
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3 Approximate Conditions

We are now in a position to build approximate models. Thesgeaismare of course based on the asymptotic
expansion. The main idea is to look fof, which is close to the first terms of the far fields expansion
n

Z 8%u;, and which is solution of a variational problem. (see foramse [2] and[ll7]) .

k=0

The main difficulties in carrying out the construction of amgmate modelis to find well-posed variational
approximate problems. For the moment, we do not have sysitemathod to derive approximate well-
posed problem at any order. In this report, we only build tret ind second order approximate conditions.

We adopt the following process to obtain approximate pnoiste
« First, we look for a variational problem: these problemes@mvenient to use finite-element methods.

* Then, in order to prove existence and uniqueness of théicoJwve try to build approximate prob-
lems that satisfy the Fredholm alternative.

« Finally, we prove a uniform stability result with respeatit

This method is already studied kv [2],[3]] [7] arid]21] in ttese of the derivation of effective boundary
conditions. The case of effective transmission conditimosglelling highly conductive thin sheets is treated
by K.Schmidt[10].

3.1 First Order Approximate Problem
3.1.1 Building of the Approximate Problem

To manipulate simple expressions, we shall consider theapEase wherg andp are symmetric:
{ ILL(S’ V) :M(_Sa V) and M(S7V) :,U/(S,—V),

The general case do not present any additional difficulty,given in the append[xIC.

General Method

Combining the result of the propositifaR.8 and the propertif the familiegV,*) and (W ") in the sym-
metric case (see appenflk E) gives the problems verifiad)@ndu; :

Aug+ P = L inorua-, Aup + 0?20 =0 inQtua,
fhoo Jhoo “05
U
[uo] =0 onSg, [ui] = Ao<7’8—r0> on Sg,,
and
8u0 aul 82U0
|:T 87“:| =0 OnSRm [TW:| :B()<U()>+BQ<W> onSRO,
0
ﬂJrz'wuozo, onsSkg, %Jriwul:() onSg.,
or or .
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where
247" 1/2
w9 ,0 1 1 1 1

Ag = 0 = —— - — Wi(z,8) =W (-=,8) ) dS

0 RO RO RO /_1/2( 0(2’ ) 0( 2’ )) )

1/2  1/2 B
Bo = 2Ro A, | / / RO“’ Bow™(Poe =) gy,
2 1/2J-1/2

1/2 1/2 1 oy1
By =2RyAT, = — + —L)dSav|.

To computedy, By and By, it suffices to compute the periodic cell problems satisfigd’p @) andivy
©2).

Remark 3.1 (the case of constant coefficients)
If we assume thai® and p° are piecewise constants, which means that
0 0
if v <= if v <=
S R e L
Hoo €lse P €lse
then the constantd,, By and B, have explicit expressions:

— R 2
Ay = Moo Mo7 By = ow (poo — po) and B, = oo — Ho
toRo oo Hoo o

Setad = ug + duy. Using the two previous problem&] has the following properties:

A + w2l gl = L inaru -,
oo Moo
=6 8“1 2
[a9] = 6 Ao(r ) +0(6%) onSg,, (a)
(63)
o B 92l
|:Ta—7}:| =0 <B0<U(1$> + BQ< 8921 >) + 0(52) on SRm (b)
a~6
W +iwid =0 onSg,.

Consequently, it is natural to construct the first order epjpnate solutiori’ in the variational spac¥®
and satisfying P ):

V= {ve H'(Q")nH'(Q") such thatv(Ro,0)) € H),,.(]0,27()},
where,

2m
pe, (10, 2x[) = {v € D'(R) such thaty is 1-periodic inS and/o <|v’|2 + |v|2) < +oo} ,
and

AR+ w228 = L inor uQ-,
00 Hoo

) [0 ]_5A0<raai> on Sk,

0 . 0%
|: 67‘1:| 5<B0<’U(1s>+B2<W21>) 0nSRO,
8~6

EJrzwvl =0 onSg,.
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Difficulties

We consider the variational formulation associated?g)( find e Y such that

d‘s(ﬁfv):/ LT) Vuve,
Q

+uQ- Moo

2
al (u,v) :/ ( v poom‘)) +iw/ uv
Qtun- Hoo Sk

o T ou v, 1 [P
5B [ (@ -8 [ GG+ [ Wl

It is clear thatéz does not always satisfies the Fredholm alternative: altholg first terms are compact
2”<8u><av>
00" 90

where,

or coercive, the termi By / can be neither coercive neither compacBif > 0. Moreover,
0

27
whereas— / | is compact for a given, this term cannot be easily controlled whetends ta0.

Remark 3.2. Note that this problem already exists in the case of homagenthin layers: ifu. > o
Ag and By are positive. Ifu., < o Ag and By are negative.

3.1.2 Centered Approximate Problem

To overcome this difficulty, we do a consistent modificatiantsthat the two last terms becomes coercive.
The main idea is to shift the jump terms @6 whereq is a positive parameter that we have to determine
later. Instead of computing the jump directly on the limieiriaceSr, ,we will compute the jump between
two different interfaces separated &yd (see Fig[h).

Figure 5: Qa6 = Q1 UQ

For simplicity of notation, we introduce the following ntitan

92 == g(Ro + ad),

1 _
(@)a = 5(92 +95):
9]0 =94 — 9o

Combining Taylor expansions arld163-((a)-(b))) yields:

Gul

[“ﬂ =06 (Ao + —) (r ar

) (15 + 0(0?),
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and

~9

ad W2poo - 20\ 0%
] o (- rem I, + (- B Gbe ) o)

Let us introduce the constants), BS', BS and the open se;

2« w2poo 2c
Ay = Ag + — B§ := By — 2aR, B := By — —
0 0+R0, 0 0 ol fo 2 2 Ro’

Qfs = {(:c,y) ER* Ry+ad < /a2 +y? < Re},
O = { (2,9) € B2 VaZ 4 < Ry — s}

The important point here is that there exisfs such that, for anyx > «*, B{ is negative and4g is
positive.

Remark 3.3. In the thin layer casey = % works for any (o, po) € (RF)2.
To do the numerical analysis of this shifted approximatedatiom, we consider the Hilbert space,
Vas = {u € H'(Q};) N H'(Q;), such that{u), € H,,,.(]0,27[)},

equipped with the norm

1 27 N 2 v
ol = 190+ 190 s+ 53 [ 10O d0+ 6155 s [ <|<v>|2+\<@>

2
) de.

Itis now clear that fory > o* the problem, find:$ € V5

A 4?2y — L inar o,

oo oo

o oud

[19], = 045 (r 5 1)a (@),
64
autls @/, 0 « aQu(ls ( )
"o | = 6 | By (ui)a + B3 <W>O‘ , (b)
5
% +iwud =0 onSg,,

satisfies the Fredholm alternativeiif> o*. Indeed, if we also consider the associated variationahfier
lation, findu$ € Vs such that

al(ud,v) = —/ iz’) Yo € Vs,
Qfsua;; Moo

where,

6 w2poo .
a(u,v):/ Vu- Vo — uv —Hw/ uv
QISUQ;J Hoo SRe

1 7 ™ Ou. v

55 ) W05 [ watel =85 [ (GatGgen

it is easily seen that® can be split into a compact part and and a coercive one.
We can now prove that probleifn{64) is well-posed and is stafifermly with respect td.
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Proposition 3.4. Assume that is such thatd§ > 0 andB5 < 0. Then, for any > 0, there existC,, > 0
andd, > 0 such that, for any < dq, for anyu € V,s.

5

a (u,v

lullv.s <Co  sup a(u,v),
VE V5,070 HUHVM

(65)

Proof. The proofis done by contradiction: & be a sequence which tendtavhenn tends to+oco. We
assume that there exists a sequegg,,cn such that:

On
||Un||Vmsn:1 and lim sup M

N=00 eV adn y£0 HUHVaan

=0. (66)

In order to work in a fix domain (independent®f we shall considef~ and F°*:

[0, Ro] — [0, Ry — ad], [Ro, Re] — [Ro + ad, Re],
P = - Ro—ad - P - Re—Ro—ad |4 SR i (67)
T URO z, T ( ERE—ORO |$| + Refﬁo) &l
Re*RQ*Oé(S R()*Oz(s

Since DF°* (1) = IandDF’= (%) = I, DF* uniformly tends to the identity

Re. — Ry 0
matrix whend tends to). The same is true qﬂet(DF5i)] which tends tal. Moreover there ar€': and
Cj independent of such that

o ’h‘ < ’DF&E‘ <c ‘h’ Vh € R?,
Cif < |det(DF°F)| < C5.
We also introduce three open sets independe#it of
Q" = B(0,R.) \ B(0, Ry), Q" = B(0, Ry), Q=0tuQ,
and the Hilbert spack,
Vo = {ve HYQN) N H Q7). ()55, € Hper(Smo)

equipped with the norm

1 21 5 27 9 (91)
lollvs = ol ey + 012 +—a/ [0(6)]a] defaBauoo/ )] +\<—>
H (Q+) H (Q ) 6140 o 2 0 89

Note thatF'*? transform€; into QF. Then we define,,

A { u, o FoH (&) if || < R,

Up(T) :=
(@) u, o FO~ (%) if | > Ro,
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and the bilinear forna®~

aon (lip, D) := a’» (un,v),

::/ (DF* ()" ) (DF™* (2) ") oo Vi - V0 ydet(DF5+)\+/ iWhoolindo
o+ She

—|—/7(DF5_(:ﬁ)_l)(DF‘s_(:%)_l*)uOO@an Vo |det(DF°™)|

- / poctiin® |det(DFOF)| - / poct it ® | det(DF*)|
Qt Q-

Qi O o
faBaum/ Flny 0Y d9+5B°‘uoo/ i) (0)d6
2 0 < 90 ><89> 1 0 < >< >

2m
Hoo ~ 1R N 0
+ —5148‘ | [G,][0]d8 YO € V. (69)

Using the properties af°* and [66), we can assert that there exist two constartsd B independent of
0 such that
e 0< A <|tn|lv, < B, (70)

@’ (T, 0)

=0. (71)

. sup —
DEVO, 540 1olve

Therefore, there is a sub-sequence (still denote@ihy) and a functionio € H'(Q"T) U H*(Q7) such
that

i, — g weakly in H(QT),
i, — Gy weaklyin H'(Q7),

i, — d weakly in H'/2(S ).

Lo I :
In addition, it follows from [ZD) thatm / |[@n] |2 df < B. Consequently, by uniqueness of the weak
0 JO

limit,
2m 2T
fim [ [l do = / o] d6 = 0.
n=eeJo 0
Soldg]sy,, = 0 andi isin H' ().
Moreover, since|v/d (i, ) | i, (j0,2x[) IS bounded, we also have

21 8An a— 2 _
Tim. faBguoo/ <%><6—2>d9 + 53?%0/ @)Y =0 Yo e V.
0 0

Therefore, letting: tends to+oo in the bilinear form[[BB) and using test functionsfift (Q) N Vj, yields
0= /Quoovao -V — w?pooliol +[S itoowlo®  Yv € HY(Q) N V5.
Re
By density of H(2) N V4 in H' (2), the previous equality also holds for ame H!(Q):
0= /Qumvao VT — w2 pooliot +/S itoowio®  Yv € HY(Q).
Re
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The previous formulation is the classical variational fafation associated to the homogeneous Helmholtz
equation with first order approximation of the Sommerfeldiation condition: hencé, = 0. So,
strongly tends td) in L2(QF) andv/di;, strongly tends t® in L2(]0, 2x[). To obtain a contradiction we
only need to check thati, ||, tends to0. But,this verified since the right side hand of the following
inequality tends t@.

lanli3o < C (

0’ (U @) | + 0nl|72 () + @l 720y + |\\/5<ﬁn>|\%2(]o,2ﬂ[))

A natural question now is to askdfy depends ow. The answer is unfortunately positive:

By

Proposition 3.5. Let B§ = —-
w

 The set of frequencies such tifg#l) is ill-posed is included iB = {kQ% + 5;%, ke N}
0

» Moreover, foré small enoughfed) has non trivial solutions.
Proof.

* Let us suppose thatverifies [64) withf = 0. Combining first order radiation condition and Rellich
lemma yields

u=0inQF. (72)
Moreover, we also know that can be written as a Fourier Seriesiyy

ui= Z Uy, (r)e™? (73)

Combining [ZR),[[ZB) and the transmission conditiohsl (@#4{b)) gives

X 04°1 [ (wn)a 0

a Ro, 2
. 2 B3 Biw

2
VTLEZ, T% — =
o(—n 5 + 5 ) 1 ar ). 0

Ouy, . . . .
Consequently(uy,,), and(rai); can be different from zero if the previous system is degdadra
T

which means that

B 4

2 222
w =k*== 5
By 0?Af

and the first part of the proposition is established.

We can also remark thatBiO; <0, By < 0andAg > 0, for anyw > 0, the problem is well-posed
if 6% <

o, 2"
Afw

» We now present a simple particular case whEre (64) hasiviatsolutions. We start from the exact
problem [AER) where

, andp® = u°.

<1 if1l-%<r<1+438
Rozl, M(S:{MO 2 2

1 elsewhere
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In this particular configuration, the constants, By and B are given by

1 —
Ag = ‘u—uo, BOZ(UQ(l—/LQ) andBQZ(l—uo).
0

To haveA§ > 0 andB§ < 0, we can study[{84) withx = 0.5,

1
Aé/Q =—, Bé/Q = —w?up and Bé/z = — .

Ho

Sinceu is solution of an homogeneous Helmholtz equatiofin it is clear that

u(r,0) = Z Cndn(wr)e™?.

nez

Moreover, from the first part of the prodi{[72) we also knowtthas zero inQ™. Consequently the
transmission condition&4((a) — (b))) give

%(Mlé)wM§2%<M1§>,

VneZ -
’ 5 By?w? L, By 5
—wJ — ) = 0 _ 22 _Z
wdy, (w(l 2)> 4] < 5 n— In (w(l 2)> .

Hence, the problem has a no-zero solution if

By/? 4
W=nt o h(w0-9) =0
In e Z, BO(S 0% Ay 5 9 (a) or 5
J 1— = I 1—=)] ———— =0 Jlw(l=2)) =0,
"(w( 2))+ (w( 2)) wsAY? Sl
Forn = 0, there existg.y such that (a) holds. Actually, in this case,
2 2\/1o
(ko) = 1/2 TS
5\ Ay ()
Using the fact that’;, = —.J; (see for instancé [22]), we are interested in the zeros ofithetion

9(10) in the domain of validation of our model (ik® < 0.1 = po < 0.025),

gln) = =1 (o)1 = 5)) + Vi (o)1 - 3)).

As we can see on the fig.6,0scillates and has zeros.Whé&tends to zero, it seems thahas more
and more zeros.
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0.4

——5=0.0314
0.3 3=0.0157
——58=0.0105
0.2 y=0

0.1
0
-0.1

-0.2

-0.3
-0.4
-05

~06 L L L L L L L . L ,
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Figure 6: Graph ofy with respect tqug

3.1.3 Uncentered Approximate Problem

It is nevertheless possible to restore the uniqueness jofdaw) € (R* )? using uncentered transmission
conditions. Let,s := H'(Q};) UH' (Q5) U H}.,.(Sry—as) and its associated norm

1 2m
~112 _1sn2 112 _ al|s2 v . 2
16, = 1600+ 190,y = B3 105y o+ 557 | 150 = a8, 0] .

We introduce the following problem: finiﬂ‘f € V,s such that

Al + w2220 = Mi in Q. UQ,,
) o O
[Uﬂa =04 (Ta—;);ra

(74)

oug wrose o 0%ag .
58] s (maha + ms G ).

ouy 5

— +iwuy =0 onSg_,

or + wuy Re

We also consider its variational formulation: fiiléi € V,s such that,

aé(a;&v):f/+ i L5 e,
Qfsua; Moo

where,

2
d‘%u,v):/ (VU~V1_)W poom‘)) +iw/ uv
Qtsuag; oo Sk,

b [ o [Cwzon o [T(5) (%) o9

Note that we have replaced the mean values by the exteriotasiar values. Of course these modifications
are consistent of order.
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Proposition 3.6. . Assume that is such thatd§ > 0 and B§ < 0. Then, for any > 0, for anyw > 0,
Problem(Z4) is well-posed. Moreover,

Voo >0, Vw >0, 3C% >0,V < by, Vit € Vos |

5
Vi < C2®  sup
Proof.

 Let us fixé andw. It easily seen thaf{T4) has a unique solution. It followsfrthe application
of the Rellich Lemma and the use of the uncentered transonissinditions. (Indeed, ifu)! =

Jr —
(r@) = 0, a trivial verification shows th&t.),, = <T@> — 0). Consequently,

or ), or
5 5 a° (i, )
V§ > 0,Yw > 0,3 C2 > 0 such that|ully,, < C°  sup — (77)
BEVs,57£0 15l Vs
« Moreover, the same method as in the proofaf (65) applies/aids
al (i, )
Yw>0,3C, >0, 3d(w) >0, V<, |iv,<C, sup : (78)

BE V5,570 [0 Vas
* It suffices now to prove tha, is independent ab ( inﬂ{ do(w) > 0): the proof is done by contra-
weR?

diction. The contradiction of{I6) implies that there dge> 0 andw > 0 such that,

d. é’én (ﬁénvb)
Vn € N,3 0, suchthad) < é,, < do,I s, |0°"[ysn > n  sup ——T—
BEVasn ,54£0 [

By (@d),Vn € N, C°" > n. Then lim C% = +o0.

n—oo

But, by [@8),3n0 € N, ¥n > ng,d(w) < é, < d. Consequently,, is bounded, and up to a sub-
sequencé,, is going tod, whenn is going to+oco. This implies tha’CfE* > +o00, which contradicts

(D).
O

3.1.4 Convergence Estimates

The proof of convergence is done for the uncentered proliféhn the same method applies for the cen-
tered problem{g@4).

The classical method to prove a convergence result is diiidevo main steps(see for examplel[16]) :

« The first step consists in doing an asymptotic expansioheapproximate solutioi according to
0. In this simple case, we do not need to do matched asymptqigmsion: the classical expansion

= Z 5™, is valid in the whole domai®2™ U 2~. We also can easily deduce optimal error

neN
estimate using the stability resUlf{65). Moreover, the fingi termsv, andw; coincide with the two

first termuy andu, of the far field expansion of the exact solution.

« Then, the convergence estimate follows from a triangulequality

5 _ w8 5 o6
[0’ — @1 l| gy, oy < llu® = (uo + 6un) |l g, () + 01 — (o + 6ur)|l g, (o)
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Assume thati{ = Z 0"0,. Then, the field®,, are uniquely defined by induction and are solution of the

neN
following problems: findu,, € H*(Q") N H'(Q~) such that,
2
Aiiy + S5 — o)L in ot U
fhoo T
oo ai}n + — Oél RO 8l+16n717l + alrbnflfl +
) = Aolr 1)+ 2 gy o <7< ) T () >

n al alﬁn_ alﬁn_ B
727 (( orl l)+ - (*1)l( Ol l) ) OnSRO,
(_a)l al’ljn—l—l _ al+2’ljn_1_l _
Bo(—57—)" + B 150 —)
— - Ly & % + _ (1) alJrlﬁ"—l — al{)n—l + 1\l al{)n—l _
;(l—l)! l ( Ori+l ARG O+l )7 )+« O )" = (=1 o ) -

Remark 3.7. Note thatig = ug andv, = u;.

We have the following consistency result

Proposition 3.8. For anyn € N, there isC,, independent of such that

@ = 6%l r, ) < Cud"™ . (79)
k=1

Proof. Sete,, = @S — Z 8%y. e, is the solution of the following problem: find, ¢ H*(QT)NH(Q ™)

k=1
such that

*,UooAsn - pocw25n = 07

en
or

len], = 0A%(r

Oey, 0%,
[TW agz + (),

whereg,, andh,, are inL>°(]0, 27[) satisfying the following estimates

+iwe, =0 onSkg,,

Gen

+
ar )Oz + gn(9)7

2 _—

] = 6BYc; + 6BS

||hn||L°°(]O,27r[ < Cn6n+1 and HgnHLf’C(]OQW[ < Cn5n+1-

Consequently,
1 2m _ 2 ~
a’(en,¥) = SA® : gn[ﬁ]d9+/0 hpt~,
C 1 2m 5 1/2
< —= | = v)|” df ol Loot0.21 4+ Cllhnll Loo 10,971 7
< (5 [N ®) lonlosn + Ol 51y

< Com2p

‘u/aé '
Combining the previous inequality with the stability reisafithe approximate problerfil{b5), we can assert
that

lenll o) < lenllv,, < C8™72

Using the triangular inequality gives an optimal errorrmastie and completes the proof. O
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We can now state our main result:

Proposition 3.9. We recall that,, is defined byd) and thatu’ is the solution of the exact proble@[{L-2).
For any~ > 0, there existg, such that, fol < Jp

[u® — || g1, < C62.
Proof. The proof is immediate. It follows from the triangular inedjty and the result§{%1) and(79).

Hu5 — ’lii;”Hl(Q,Y) < Hu5 — Ug — 5U1HH1(Q_Y) + HU() + dug — 'l\,/LllsHHl(Q_y) < Co2.

3.2 Second Order Approximate Problem in the Symmetric Case

The goal of this section is to find an approximate solutionroeos?: we look for a problem whose the
solution is close tau + du1 + 62us. We begin by reminding the transmission conditions@fu; andu,
across the interfacgg,:

o [ 8U()_ -
[UO] - 07 _T or | - 07
(’)uo [ (’)ul' (’)2u0
[Ul] = AO <7‘W>, _TW_ = BQ <u0) + Bg <W>,
(’)ul [ (’)ug' 82U1
[Ug] = AO <7‘W>, _TW_ = BQ <u1) + Bg( 892 >

Itis clear that we encounter the same difficulties as in tisédirder approximate conditions. Consequently,
we choose to use the same approach as in the previous sectbitain a well-posed problem: we shift
the jump fromad and we use uncentered transmission conditionsiiSet ug + dui + 62us. An easy
computation yields

or 06?

o e AN L[ 0u\ T L9 [ aud\ "
|:7’a—:|a = 5BO (u2)a +5B2 W . — 52A2 TW . — 52A1 w TW . y

S\ T 250\ F
@3] = 5A] <r%) + 6248 <8 “2) + 5248 (),

r

where,
2 AY B2 w2pooR0 B()
Af = A — A = 0 2 A = 2 Pt por 29
0 OJFRO’ ! a<Ro Ro)’ 2 a< Hoo O Ry)’
2aR0poow? 2
B(O)‘:BO—M, Bg:BQ__O‘_
Hoo Ry

In order to obtain a variational problem, we write the traission conditions in a convenient form

e a (182 ~6\— a 8’&/6 +
[(”2 Ja — (1 +52A2>1d+62A1w>(u3>a] = 044 (”a_f) ,

[e3%

9% [ oud\ " oud\ ~ I S
((1+52Ag)1d+52A?ﬁ) (ra—f) —(T—2) ]z&(Bg(ug)a—i—BQ(a—;Q)a).
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From now, we choose such thatdy, A and B§ are positive andB$' is negative. We first remark that

2
(1 +0%A5)Id + 6% A is not always positive. Nevertheless,

182)

2 2

-1
(14 62ATd + % AT — 0 )= (1+3%A%) (m 52A?§92) +0(6%).

L 562

2

0 by th .
AS 592 y the positive operator

If we neglect the rest id®, we can replace{(l + 62 A9)Id + 0% AS
1

(1+ 62A9) (Id 52A9 5"’9)

To shorten notation we introduce the operatérand7? :

Hy,(10,27]) — L?(]0, 2n),

§
T 9

u s (Id — 62AS 8892)

; { 12.,.(0,27]) — H2(J0, 2x]),
T°:
w (14 6%A8)T (u).

Note that sincd’ is self-adjoint positive7 is also self-adjoint and positive.
Finally, we propose the following second order approxinpatlem: findu3 € V,s, such that

2
Aud 4+ P2 — L inar uan,
Moo Moo

s\ T
)t - T = a5 (52 )

) (80)
ou ou 0%u
T 2 2 =5 B 5\ — B% 2\—
(v m) - (+52) = (mad+mepon).
ou .
8—7"2 +iwul =0, onSg,.
and its associated variational formulation: f'rm@e Vass
ag(ug,v):/ i@ Vv € Vs, (81)
Qus Moo
where,
2 21 —
) _ W Poo  _ . o ou. 0v.
as(u,v) = Vu -V — uv+/ iwut — B / —alm)a
2( ) Qus Lo Sn 2 0 (89) (89)
2m 5 2m
w5 [ =T (@) - T (03] +085 [ i
A ) 0
Proposition 3.10. Let us equip the spadé,; with the norm
o 1 27 B 9
el = el oz, + Nl sy + O1BS 1 el ey + 522 / (W =T [()3])]

For any frequencyw > 0 and for anys > 0, the problen(@0) is well-posed :

§
Wy > 0, ¥w>0,3C% >0, < 8o, Yu € Vag [ullvys <C®  sup 2209 gy
VE V5,070 ||UHVa5-,2
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Moreover, for anyy > 0,
||u5 — ug||H1(QW) < 063

Proof. The proofis by contradiction. The main steps of the prootleesame as in the proof of the propo-
sition[3:3 but small technical alterations are needed.

The proof start as in the propositibn3.4. lgtbe a sequence that tendsitevhenn tends to+oco. We
assume that there exists a sequegg,,cn such that

o lunllvis, . =1,

a® (U, v)

=0.

e lim sup ——
NP0 veVys,, ,v#£0 HU”Vaén,z

Using the transformationg® ", and definingi,, anda)" as in[33, we obtain

° O<A§ Han||v0,2 SB? (83)

/\6n ~ ~
e sup M:O. (84)
DEVH, 040 ||UHVo,z
where
N A 112 L2 Q=112 1 e + S Tran—1Y12
anllve.. = [allz @) + 1allz @) + n 1B @™ go2np + 542 ; (@) =T, [(@)])]"
n/lg

Therefore, as i34, there is a sub-sequence (still detytéd, )) and a functioriiy € H'(QTUH(Q7)
such that

@, — G weakly in H(Q1),

iy, — 1y weakly in H'(Q7),

i, — dy weakly inH'/*(Sp, +).

Now, as i34, we prove thaiy] = 0. However, itis less immediate than in the previous casésg(E3),
it is clear that

2w

im [ |((aa)t =T ()" ])[ = 0.

n—oo 0

Setw,, = 7° [(4,)~].By definition i, satisfies :

2 A _ 2 2
A?a,%/ ton D0 +/ WD = / (1+ 0, A8) ()" w Vw € H,,,.(]0,2n]).

Consequently, choosing = 1, — (1 + 62 A%)(a,)~ yields

27 Oy Aan)~\> 2 2
a2 n o 2 A n N 2 A ~ — —
Alé"/o (89 (1+0,45) =30 )+/0 (0 = (14 8,45)(@n)")
2% 3(in)” . 0w AT~
Ao g2 2 fa n n o 2 1a n
apa(1+ atag) [ (Hly (G — 1+ a2l
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Therefore we deduce that

0wy, o O(Tn) ™ o O(Tn) ™
I 20 — (1+6,A%) 20 I2qo,2xp < (1+02A3)|| 20 | 22q0,27])
O(iin)~
< Cl=gg—llz2q027-
and
- aN/s \— « 9 ﬁ’n -
i (14 02 A5) ) 020 < C A0 22,0, (85)
Moreover, since by assumptiol ||a(ﬂ")7||2 is bounded,we have
’ y PUoR| =2 22 (j0,2r() *

lim |y, — (14 67 A3) (@n) ™ || 22 0,24]) = 0.

n—-+4oo

Using the triangular inequality yields

l[n — ()~ 220,200 < |[n — (1 + 02 AS) (@)~ [ £20,200) + 02 AS | (6in) ™ [l L2(0,2])

—0 —0

and

lim [|7° [(@,) "] = (@n)~ | 220,20 = O-

n—oo

Using again the triangular inequality gives the desiredlteindeed, since,

(@)™ = (@)~ lz2qo,2an < I(@n)* = T [(@n) "] lz2qo,2ap + 17 [(@n) 7] = (@)~ lL2qo,2qp;

—0 —0

it follows that

lim[|(2)*

o - (Un) HLQ(]O,QW[) = 0.

By uniqueness of the weak limit,
)+

lim (@

i = (n)~ | £20,22)) = I(i0)™ = (o) "Il L2j0,24) = O-

Therefore,
liig] = 0.
Letd € H'(Q) such tha(d)~ € H,,,(]0,2x]). As in {88), we can prove that

L o o)~ stapio <

Consequently, by triangular inequality

ﬁAWU%WH—@ﬁf %(Aﬂﬁﬂ@ﬂ—u+ﬁ£mmf+ww%w@’
C.
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IN
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It follows that

’Ag}én /027r (@) =7 [(@n)7]) (0 =T [(ﬁ)])‘

< O = 7% (@) T iogoamy (55 [ 175 (0071 - ©)°T)

< Cl(an)™ =T [(@n) ] 220,27 -

—0
Then, lettingn — 400 we can assert that,
) 1 2T - s o . s o
HEIEOOF/ ()t — T [(@)"]) (0 — T [(8)]) = 0.
0 0

The rest of the proof exactly runs as in the proof of the prijpre3.4 : we prove that,, = 0. It follows
that lim |,]v,, = 0 which contradicts the initial assumption. The proof of cergence is standard and

is left to the reader. O
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4 Numerical Validation

4.1 Algorithm and Description of the Experiments
4.1.1 Algorithm
The numerical method is divided into three steps:
 Computation ofi’;! andW{¢ in order to determine;, Ag, By and BS,

» Solving the approximate problem with an unrefined comportal mesh that ignores the presence of
the periodic ring,

Figure 7: computational mesh

» Reconstruction of the solution in the periodic ring (op&d).

4.1.2 Description of the Experiment

« The geometry of the periodicity cell is described on therffil . andp are piecewise constants:

Moo = 17 H1 = 057 M2 = 2)
po =1, p1 =2, p2=4.

* The source is an incident plane wave.

» The frequencw is equal t®27 and Ry, the mean radius of the periodic ring in equalto

We also defingV, the number of periodic cells in the periodic ring,

27TRO
0

The numerical computations are done with the package Mierdgveloped by M.Duruflé[([23]).

N =

B, (P M)

(P, 1y)

(P, 1)

S=-1/2 S =1/2

Figure 8: the periodicity cell
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4.2 First Order Approximate Condition
We suppose that we have a sequence of finite-dimensiongiaces V"), (b > 0) of the Hilbert space

v

Vs such that:

-H1 Vo € Vs, 3(un)nso such that
Jim (HU = Ul g,y v = onll g gy +llv - ”hHHl(]O,%D) =0.
-H2 Vv € HY(Q),3(vn)n>0 € HY() such that

%li% (HU - Uh”Hl(Q:S) + v = Uh”Hl(Q;S) + v = ”hHHl(]O,%r[)) =0.

-H3 F? (defined by[[El) is a bijection from’; to V.

We are interesting in the following approximate problemdfirj in V% such that
Yo, € VI al(ul, vp) = / fon dx, (86)
of,ua;

whered’ is defined by[[75).
Itis possible to prove a uniform discrete inf-sup condition
Proposition 4.1. There existy > 0, hg > 0 and a constanf’ > 0 such that

)
a (up,v
V8 < 80,Yh < ho, inf  sup @ Cun, )]
uneVls woeve lunlly, llonlly,

> C. (87)

The proof is similar to the proof of propositibnB.4 and pretiee existence and uniquenesspfor § and
h small enough.
Using the discrete inf-sup conditiof{87), we obtain an amif result of approximation:

Proposition 4.2. Let V", be a finite dimensional subspacelf; such that (H1),(H2) and (H3) hold. Then,
there existy > 0 andhg > 0 and a constan€ > 1 such that

V6 < 8o, YVh < ho  |Jud —ul

. o5
vg, <O, Wb, & = onllg,. (88)

wherei is the solution of the continuous approximate problEm (74)ml« the solution of the discrete
problem [85).

Proof. By triangular inequality,
lu = upllyn < llu—wonllyn + lup = vnllyn — Von € V3. (89)

Moreover, sincei’ (v — ud, vy) = 0 Vo, € Vi,

a° (v — ud,wp) = a° (vy, — u, wy,) Ywy, € VIS Vo, € V.

Choosingw;, = v, — u$ and combining thé-uniform continuity ofa (for the normV/,, ;) with the discrete
inf-sup condition[[8I7) gives

l[on — uj,

Vs < Cllop —u Vs Yoy, € VOZ;. (90)

Combining [8D) with[[AD) gives the desired result. O
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Qualitative Results

First the results are qualitatively good. In the figurks 9[@@dwe can see that the approximate solution
is close to the exact solution: the relative error is equdl.05. The exact solution is computed with a
strongly refined mesh.

* Far field:

] 6

1
4 4 i

05
2 0.5
0 ' L Ul
-2 -0.5 g -0.5
4 -4

-1 1
-B -6

o

-6 -4 -2 0 2 4 6 -6 -4 -2 2z 4 6

(a) 'Exact solution’ (b) Approximate solution

Figure 9: Comparison between the 'exact’solution and th&édkd approximate solution (N= 160)

* Near field: As expected, the near field does not really @geilsince/, = (uq) does not depend on
S.

"N | N Nl |

! : \
/

- \ g i ” \ / i
4 5 ‘
-05 a 05 1 -05 il 05 1

-1 -1

(a) 'Exact solution’ (b) Approximate solution

Figure 10: Comparison between the 'exact’solution and @& field approximate solution (N=160)
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However, we can make visible the fast oscillations by plgtéU; ~ § ((6“(f Wi+ (%—ﬁ}W(?)

a6
(figurelI2).
1 A4 Ry, 1 0.4
- .. 0.03 \
08 . 08
0.3
06 e 0.02 06 // \
. \ 0.2
0.4 0.4 \
> 0.01 I 0.1
02 . 02
0 o 0 o
0.2 ¥ b or 0.27) i
-0.4 0.4 \ /
. 02
06 < -0.02 06
03
= ‘. .“’ 0.03 s //,
" e . e
- 05 [ 05 1 - 05 0 05 1
52y b) 6(2y WY
(@) 5(Z5 )1 (b) 6(Z-)Wo

Figure 11: Function¥}' andW

A . 0.05 -0.15
Pl 0.4 l
0

-1 05 o 0.5 1 09 09 1 105

@) 5T (b) 5U,

Figure 12: Reconstruction 61/,

4.2.1 Numerical Convergence Rates

Itis clear that

§_ .8 §_ x5 o5 5
v’ —uplleo,) < v’ —@7llm(o,) + 147 — upllm1a,)-
The total error can be divided into two parts:

« The model errofju® — i} | 1 (q,) which is predominant wheh < é. This error is expected to be
proportional tas?.

« The approximation errdfi — uj || 1 () which is predominant wheh > 6.

Using a strongly refined mesh, it is possible to study the rheder with respect ta. In the figurdIB, we
can see thé,> and H' norms of the error with respect &in a logarithmic scale: we obtain a line of mean
slope almost equal ®which is the expected convergence rate.

On the contrary, with a coarse mesh, we can study the appatiximerror. In the figurEZ14, we can see
that theZL? error with respect to the characteristic lengtbf the mesh is almost independentiofThere

is a priori no numerical locking.
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—+— L2 error. mean slope = 1.3432
—+— HI error. mean slope = 1.9322

—+—3=0.0628
—+—5=0.0314
—+—5=0.0157
—+—3=0.0078
5=0.039
5=0.0020

L error (In)
4

e

85 f . . . . . . .

33 32 -31 -3 -20 -28 -27 -26 -25 -24 -23
In(h)

Figure 14:L2 error according td (logarithmic scale)

A Proofs of Technical Results
A.1 Proof of Proposition[T.1

Proposition[L. Problem [¥) is well-posed. Moreover, there exists a cortstaindependent of such that,

5(,,0
Wl <0 sp WO g e gy @
vEH(Q),v#£0 ||UHH1(Q)

Proof. Direct proof of existence and uniqueness of the solutionbmafound in [24]. We only prove by
contradiction the stability result (the proof is classjciinilar kind of proof can be found if][7]). Assume
that [B) is false. Then we could find a sequenésuch that

(b)-

= Lo
Hu5HH1 Q 1 (a) and lim sup M
(@)

0=0 ye H1(Q),0#£0 ||UHH1(Q)

Sinceu’ is bounded inff; (2), there exist: € H,(Q) and a sub-sequence (we also denoté )tsuch that,
u® weakly tends ta: in H'(£2) whend tends taD.
To be more precise, we also have

u® —u  (strongly) inL%(Q) and u’ —u (weakly) inH%(SR).

Furthermore, for any € H' (),
1OVv — pso Vo (strongly) in L2(€), and  p°v — poov  (strongly) inL%(Q).
It follows that
lim a®(u®,v) = ao(u,v), (91)

6—0
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where

ap(u,v) = / (oo Vu - VU — w2pooU5) +/ oo twud.
Q

SR

But combining[[@Il) with the assumption (b) gives
ap(u,v) =0 Yo e HY(Q).

The last assertion is nothing but the statementihisithe variational solution of an homogeneous Helmholtz
problem. Therefore = 0 and}ing) [ || 120y = 0.

Moreover, since:’ is solution of the Helmholtz equation,
5 6(,6 .0 §
pm [Vl 12y < la® (u,u®)| +w?pnrl|u’ |72 (g
Letting ¢ tends to0 contradicts the assumption (a):

li g =0.
5%”” HHl(Q)

A.2 Proof of Proposition[Z.1

Proposition[Z]. Let U,, be a function irC* (]0, 27[) x C*° ({(V, S) € R? such thatV| > %}) which

satisfies[[I9), which is 1-periodic ifi and which is non-exponentially increasing for larye The be-
haviour ofU,, for largeV is given by

n+1

. 1
+ k —27r\l|V 2imlS -
(Y, 5,0) chk )VE A+ Y ZBMk e forv>c, @)
1€Z,1#£0 k=0
n+1 1
_ k 27r\l|V 2ilS -
Un(V,8,0) =>_ Crp(@)VF + > ZBHM forv<-—z, @
k=0 1€Z,1#£0 k=0

whereB:, , () denote some constants that only depend.on
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Proof. To shorten notation, it is useful to introduce the operatbfs (which are the Fourier transform of

1
the operatorsd; for |V| > 5): vl e Z,

82
Ag,z = Rt <8—VQ - (27Tl)2fd) ;
9
0
A% = 2iml Ry oo I,

)

0, 0,
Al = AV (=) + AV,

>

0.f , 02 0
A1l = = | 2RoptecV a—WﬁLV@ s

0? 0
Ag:{ = Uo (V28—V2 + ROVW) + w2pooR(2)Id,

Al = V(W poo) L. (92)

L . . 1 - 1
The proposition is proved by induction for > 3 and similarly works fo) < —3
1. Initialization of the induction for = 0. Sincelj is 1-periodic inS and verifies an homogeneous
L 1 . . .
Helmholtz equation i > > Uy can be written as a Fourier Series

Uy = Z(Ug)f(v,e) €2i7rlZ.
I €L

Then, we substitute this modal expansion in the near fieldatazn [I9).
» Forl # 0, we obtain

A2(Uy) "
0=A},(Uo) = Ripoo (% - ZQ(UO);F) -

It follows that
(Uo);" = By, (0) e 2 Dy, (0) e,
Since(Uo)l’L is no-exponentially increasing) = 0. Finally we have
(Uo) = B, () e ™V,

e Forl =0, we have

202(Uo)¢

0=AJ,(Uo)§ = P o555

Therefore,
(UO)Sr = COJF,O(G) + chfl(e)-
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So, we have established the desired formlulh (20)fer 0 and the modal expansion bf, is given
by:
Uo(V, 8,0) = Cgy(0) + V Cd1(0) Z By Je 2V 4 o(vy=o0)
lez~

2. Induction: assume the propertiEsl(20) (21) hold:far n; we shall prove it fom + 1. First, as
forn = 0, it possible to decompogé, ., as a Fourier series:

Unt1:= Z( n+1) (V. 0) e*m .

L €Z
Then again, we substitute this modal expansion in the ndds feguation[{T19).
» Forl # 0, U, +1, satisfies the following equation

4

AL Uns) ==Y AL (Unga))]

j=1

where the termsl'ij.il(Un“_j)jr are polynomials inV and their degrees are smaller than

Moreover(U,11);" (like (Up);") is not allowed to have an exponential increasing. It fodow

that
n+1

(Un-i—l)?_ = ZBn,l,k((g)-’_Vke_%r‘llv.

Note thatB,, ; ;, is determined for alk > 0 but is undetermined fat = 0.
* Forl =0, (U,41)g satisfies the following equation

4

Al o(Unin)g == AL (Unia-j)d -

j=1

Since(U,+1—;)¢ is a polynomial of degree+2—j, AJO( wt1—;)a is a polynomial of degree

n (indeed, we use the fact thatif is a polynomial of degree, thusA]f P is a polynomial of
degree; + j — 2 (see RemarkBI2 and PropositlonB.1 for more details)). €quently,

n+1

(Un-kl)ar = Z Cn+1,k(9)+vka
k=0

and the proof is complete.

A.3 Proof of Proposition[Z.3

1/2
Proposition[Z3. W(RR?) is a Hilbert space. Moreover the semi-notm-— (/ |VU|2) is an equiv-
B

0

alent norm onV(RR?).

Proof. Let V be a function ofi¥’*(R?) andxy be a smooth truncated function which depends onlyon

such that
1oif v <1,
0 if |[V|>2.
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We also consideB; = {(V, S) € By, |V| < 2} and< V > the mean value of in B]
1/2
<V >:i= / / Vds ay.
1/2

VV,S)—<V>= 11—y )W) (VV,S)— <V >) + xV)(V(V,9)— <V >).

We have

. . . V—<V 1—-x)(V-<V
The main |deaoftheprooflstoseparatelydomlrf <2 1/2>) and’( ) 2?2 >) .
1+V?) L2(By) (1+V?) L2(By)
For the first upper bound, we can use the Poincare-Wirtingguality (se€[25]) irB3 to obtain
V-<V>
H 1+ V2)1/2 L252) <||V-<V >HL2(33) < CHVV”N(Bg)-
Consequently, we deduce that
x(V—<V>) HV <V >
— — <C|VV .
H (1+V2)1/2 L2(Bo) 1+V2)1/2 L2(82) = || HLz(Bo)
For the second estimate, we introddcey, 5) = (1 —x)(V) (V(V,8)— <V >). We remark that
V(2,S5) = 0. Then we can use the Hardy Inequality
+oo |V|2 +oo -1
d V3(—)d
| Sew= [ .
</+°° LoV GV,
—Ji Vov av
Tl 9V s
<2 —R V)d
< /1 e(av )dV,
+o0 V2 1/2 o0 - 1/2
<2 / | ~|dV (/ |VV|2dV)
1 1
Moreover,
+oo +oo| |2
I
It follows that
1/2 “+o00 7 2 1/2 “+o00
/ / dVdS < 4/ / |VV[2dVds.
1/2 1/2
Therefore,
1= V=<V >)
| < C(I9Vllisq) + I ey V= <V )l )
L2(By)
< ClVVIlp2py
To end the prove, it suffices to observe that
V—-c V-<V>
inf || ———=— —_— <C|VV .
cec (1+V2)1/2 L2(Bo) H (1+V2)1/2 L2Bg) I ||L2(Bo)
o

INRIA



Approximate models for wave propagation across thin peécioderfaces

51

A.4  Proof of Proposition[Z10
Proposition[ZT0. There is a constan® independent of such that

ja®(0, o)l < CO" 2+ 8" ol &8
Proof. Our proof starts with the observation that

a’(e2,v) = a®(u’,v) — a®((1 — Xn)Up, V) — a‘s(xnUZ—",U).

Moreover, an immediate verification shows that

/Q u‘s(V(l —xp)uy) - Vi = /Qu‘sVuZ -V((1 = xy)0) — /Q M5Vu2 V(1 —xy)0

Jr/u‘suZV(lfxn)-V@.
Q

Therefore

a¥(ed,v) = / 1O — UMYV - V8 — 1 (Tl — UP) - V)04 a(U2 xq0) -
Q N———

equation error

matching error
The consistency errdu’ (<2, v)] is divided into two distinct parts, that we have to bound safay :
« afirst term due to the matching error

L) = A 1O — UPYVxg - V5 — 8 (Tl — UT) - V)T,

» asecond term due to the error on Helmholtz equation for &z fields
LY p(v) = a(U}", xv).

1. Estimate of the matching error:
Le us denote bﬁ‘; the support oV,

C’,‘; = {(r,0) € R* x[0,27] suchthat n < |r— Ro| <2n}.

Note thatcg is included in the overlapping zones. The matching erroraeawritten as

L7,(0) = /C WO — UF)Vxy - Vo — i (V(u — UF) - V).

S
n

By regularity of far and near fields, we bounfl andU;* by their L> norm,

L5 @) < (Il = U2y + IV (@2 = Uz~ cg)) 1Vxll e 1l ooy

(ol o) + Vol egy)) - (©3)

Moreover, taking into account thtﬁi‘qS is bounded (the measure (If’s) is proportional ton), we

have

(1ol o) + IVollzies) < Cn' 2ol es)
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and
IVxsll(0p < IVXmqe (95)
Combining [@B)[[4) and{®5) yields
L3 ()] < O (Ilul = U2 gy + 190 = UP)z=eg ) 0y (96)

Whatis leftis to evaluatgu! — U || 1~ () and||V(ug —U]")[| oo c:) using of course the matching
conditions. For convenience we use the folimd (24) of theselmons

By the integral form of Taylor’s formula, we obtain

n n—k i ai,,+ r an—k+1, %+ n—=k
n,+ _ k (T B RO) 0 Uy (RO, 9) / 0 Up, (ta 9) (’I“ — ﬁ)
2 0) =35 (Z : d) [0 60 )

k=0 i=0
1)
)

Moreover, sincdim

—0

nt k 7"—Ro) d'ui (Ro,0) T
U (r,0) Z(s (Z 5 + R (1,0),

=0

= +o0, we can use modal expansiohsl(20) dnd (21) for the near fields,

whereRE (r, §) is an evanescent term, i.e
VN eN, 4 Cyn > 0, ||Rn||Loo(C§]) < CN(SN.
Consequently,

n r nkarlu r— n—Fk
ul(r,0) = UP(r,0) =) o </R 0 arn_k’ff’e) ((n _t)k)! ) + R (r,0).

k=0 0

n=kHLE (¢, )
Using again the regularity af,,, it is possible to directly dommate— by a constant.

a —k+1
We can now conclude

02 (7,6) — U, ) ey < G 32 R0 < G, (97)
k=0
In the same manner, we obtain an estimate on the gradient
IV (2 = U)o () < Cort™ (98)
Combining [@6)[[A17) and1®8) we have the matching error edtm
Lk (0)] < O 2V 0 . (99)

. Estimate of the Helmholtz equation error

SetC" .= {(x,y) € R* Ro—2n(0) <+v/x2+y2 < Ry+ 217(6)} . The Helmholtz equation error

L7 - (v) is given by (note that the notatioﬁc is improper and should be replaced by duality),

L?VF(U) = a(Uiannv)v

= / pOVU - Vg do — / PP WU oxy da,
Q Q

= - /C (V- (OVUP) + p°w?Ul)ox, dr.
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In addition, near field equatioris{19) give (with= = RO andsS = ? )

r? (V- (uVUP) + p°w?Ul) (v, S,6) Z Z(sﬁ Aja (U3) (V,8,0)

j=—21=0
n—2 min(,2) n+2 min(z,2)
- S AU )W,8,0) |+ > 6 | D] AjaUi)(V,S,0) | .
=0 j=—2 i=n—1 j=i—n
=0
Therefore,
n+2
L) = Z 5 ‘AJ+2 i—j)UXn dx |,
i=n—1
n+2
< Z 5t AJ+2 i—;)0 dx| .
1=n—1
n+2
We shall dominaté Z 61/ A;+2(U;—;)0| by separating it into two distinct parts:
1=n—1
n+2
(2 [ ApsaUiolds <
1=n—1

n+2 ] 27 +2n n+2 ) 2w Ro+6
| Z 61/ .Aj.,.g(Ui_j)’D rdr d9| + | Z 61/ / .Aj.,.g(Ui_j)’D rdr d9| .
0 0 Ro—0

i=n—1 Ro+d i=n—1

A
(100)

e Estimate of A

Whenr €]Ry + 6, 2n], U;—; and its derivatives of any order are bounded &nd; has a polynomial
behaviour of degree— j (Propositiof.Z11). Moreoved, ;- is an homogeneous operator of order
(see @), RemalkB.2 and PropositioniB.1), which meansiiticpdar that if U = V¥ 4 o(V =),
thenA;,»(U) = CVI*T* 1 o(V=>°). Therefore A, »(U;_;) are inL>°(| Ry + 8, Ro + 21[x]0, 2]

and
_ . AENEAY n\*
A 12(Ui—j) | Lo Ro+6,Ro+2n[x]0,2x]) < C 5 5 <C 5)
Finally,
27 Ro+6 n+2 ) 77 i
/ / Aja(Ui—j)vrdrdd < Z 5Z<5) 101 L1 Ro+5, Ro+2n[x]0,27])>
1=n—1
n+2 .
< C Y gl
1=n—1
< 077"7%||UHL2(9)- (101)
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o Estimate of B:
To shorten notation it is useful to consider truncated pgcity cell

0 = {(V,S) € R? suchthat-1 <V <1and —

We remind that

Un(V, S, 0) . i wwk(u& + nii <8k+1“"‘1‘j(R0’9)>Wf(v,S).

k J k
=0 k=0 JQ—/H/—’ =0 k=0 9% ar —
cze,.(10,2x) () cze,(10,2x) H($4)

Therefore, to estimatB, it is sufficient to estimate the following generic quasetitforj € {1, 2, 3,4}:

27 R0+5

U(VSH))| _r=Rg g_Rgt vrdrdf|,
5 0=

where,
U=g0)V(S,V), g0 €Cr.(0,2r]) and Vis1— periodicinS.

per

We now explain in details the previous estimatejfet 1.

2 R0+6 2 R0+6
U(VSG))lT Ro ROQUTdee .Ae V(VS))T Ro ROQUTdee
By
27 R0+6
/ / 0).A9 ( (V(v.5)) r=ra rgo 0 7 dr df)].
BY
« Estimate of BY
Sincelg'(0)] < C' (g € Cpe, (10, 27)) ,
27 Ro+6 av
B! <C / / < —(uV) + pRo—== > U(r,0) T dr db)| .
oS —Bgb y,_r—Rg
5 5
. . 2
We cut the angular integral inth = W(SRO even parts:
27 Rg (k+1)6
[ R [Rotd o v
Bf <C Z / ° / Ro—=(uV) + pRo—= U(r,0) T dr df| .
ks Ro—46 8S 85 _ Rgf V:ﬂ
k=0 Y Rg 0 5 5
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Applying the change of scalé = R—Oe, p o r—fo

. o )
constant give

and dominating = Ry + ¢V by a

27rRU
k41
B! < 252/ / (ROQS uV) +uROgS> V(Ro+ov,£2) dV dS]|,
@ k+1 1 8
< C Z 62/ / (RO%(MV)) (V.S,£2) U(Ro+6V,£2) dV dS
st k -1

a

g k1
Z 62/ / (uRo 85) (V.5.£2) D(Ro+6v,£2) dV dS

b

Again, we separately estimaieandb.

By integration by part and using the fact tfgaé V(Ro+6V, 3 )) (R0+6V £2), we have

Ro 06

1
a < 262/ (Y (V.k4+1) D(Ro+5v, L) — uV (V) D(Ro+5V, 422))

=0

27rR

k+1
Z 52/ / Rouvas (Ro+6v,52)) dV dS| .

But, by Cauchy-Schwarz inequality,

k41 PE

00

RouV V(Ro+6V,53)) dV dS

1
dvd
85 v S) ’

k+1 1
<OVl ) (52/ /

k -1
< OV a1 @) </ ; / r drd@) ,

Ro—9

ov

00

kS
Ro
< CIWV e @nyllvll e @)

Therefore, we obtain an upper bound for

27 Rg
5

a < CY EIVim@nlvlm @,
k=0
< Collla -
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In the same way,

27 Rg

1
2

k1
b < CZélvmm(/ / |v|2dVdS> ,
2
2nRy
5
< C Z S|V ol ()
k=0
< Clvlla o)

Finally,

Bf < C HUHHl(Q).
« Estimate of B}

: ) . . : 2
As previously, we first divide the angular integral ind = mHo

change of scalé = TOH y=" _5R0:

27 Rg

> kAl el ) av v
B < C 52/ / 2RyV — R o+ov,£5) dV dS|,
1= ];0 ) BRVay \Hgy ) TRV | vtrerevgy dY
27 Rg k+1 1
d ’ o [ oV
< 52/ / 2RV — [ p— 0 dy ds
S P3Lay 1( oy (“8V)) DUttt V)

a

k+1 v
/ /_1 ROV/LW V(Ro+6V, Igo) dy dS

27 Rg
5
+ )8
k=0

b

To estimates, it is useful to first dominate the following integral:

s () < [
L
e

k+1
dy ds

oV
2ROHW @(RoJrzYV.,%g)

ay

QVRou 3y 8(?) (6 Ro+6V, 58 )‘ dy dS

a2

(S, 1) D(Ro+6,£2) ‘dS

oy
k41 v
+/ p—== (9, —1) D(Ro—4,82) ‘dS
: oy )
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The termsz; anda, are classical and can be treated as previously:

ai

ag

A

IN

IN

IN

IN

k1 p1 1
CHV”Hl(Ql) </ / |’U|2deV> )
k —1

C

gHVHHl(Ql)||UHH1(Q),
C
EHU”Hl(Q)-
B pL o g,12 3
ClIVI () 52/ / 3 asdy
k -1 |07

CHU”Hl(Q)-

To estimatez; we first remark thapg—]‘j(s,ﬂ) are inL*>°(]k, k + 1[). Then we use the trace

theorem,
as
Finally,
In the same way,
b

Therefore,

and

/27\'
0

IN

IN

IN

IN

k1 2
C / (R 0,22y as? ]
k Ry

C
7g||v|\H1(Q)-

27 Rg
5

> (a1 +az +af +a3),
k=0

IN

IN

CH’UHHl(Q).

1
¢ & (5ol |V,

CHU”Hl(Q)

BY < Clvllg (e,

Ro+6
/ A1(U)5 rdrdd < C HUHHl(Q).
Ro—9
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e We can now proceed analogously to prove:

27 Ro+6
/ / .AQ(U)’L_)TdT do < C H’UHHl(Q),
0 Ro—46

2 Ro+6
/ / Az(U)v rdr df < C |[v]|g1(q),
0 JRo—s

27 Ro+6
/ / .A4(U)’U7‘d7‘ do < C H’UHHl(Q).
0 Ro—46

Finally,
n+2 27 pRo+6 B
B = i_;_l/o s Ajro(Ui—;)0 r dr df),
< C8"H ollme)- (102)
Combining [I0I1) and{I02) with inequalify{100) we obtairestimate of the error on the Helmholtz
equation:
@ o)l <€ (0" 6" ol ),
< O™ ol e- (103)
Adding (I03) and[[d9) gives the desired conclus[an (58). O

A.5 Proof of Estimates [62) of Propositiod 2111

v oot
AS5.1 / /
- /i

N[=

n
W (Rotov, §5) = > FUK(v.s, 52)

2
ds dV) < contt

k=0
Let us defined by
v it n ?
A:/ / u® (Ro+ov,£8) = Y 6FUkv.s.58)| dS dV.
v/ k=0
Itis clear thatVP € N
v it ntP : ntP Y it ,
A<C / / ul(Rotov,§8) = Y U s8] dSdV+ Y 5%/ / \Ukv.s,88)|" dS dV
- k=0 k=n+1 A
But,
v oopitl 9
/ / \Uk(v.s.80)|"dS dV < C.
=/
Consequently,
nth v pitl )
> o / / Uk(v.s,£2)|"dS dv < C5*" . (104)
k=n+1 - JJ

INRIA



Approximate models for wave propagation across thin peécioderfaces 59

Moreover,

[

2
ds dy <

n+P
(Ro+6V,58) — Z 5 U (v,5,52)

Ro+~6 /““;;)5
R() ’)/6 ko
n+P

Ford small enough,ifRy — 4, Ro+~6[x]0, 27[), u® (Ro+5v, 52 52) Z SFULv,5,88) = 5n+P Therefore,

n+P 2

ud(ro) — Z SFUL (= r=Fo Rl )| r dr df.

2

Ro+~9d (k+1)6 n+P
/ / WBo)— 3 U B0 ) 1 dr df < Ol pl3 gy < 2D
Ro—v3 J 4% k=0
an
v i n+P ?
/ / u’ (Ro+ov,58) — Y FURw.s.58)| dS dV < CrP P2,
Vi k=0
ChoosingP = 4, andn = itz gives
. 2
Y Jj+1 n+P
/ / ul(Rotov,$8) = Y FURw.s.88)| dS dV < C8* Y, (105)
- k=0

Summing [[I0KW) and{ID5) gives the desired estimate

A
A5.2 /_ 1 /J "

Let us defineB by

¥ j+1 9
B:/ / £, u‘S(RO+6v,g—3 — E 5kUk(VS,R0
-7

Using the triangular inequality,P € N,

2

®(Ro+ov,58) — Z FUw.s.55)| dS dv < €52,

k=0

2 2

dsdy| <cert?

a n
3 <u5(R0+5v,1§—g) — Y MUk g )
k=0

2
as dy.

2

al & ’ ntP BV ES NI 5
k 2%k R(V,5,52)
S A ) R g W e
k=0 k=n+1 v Jj
Itis clear that
I+l U 2
/ / ﬂ ds < C.
—y ] aV
Consequently,
n+P J+1 oU " ss
52k/ / k( 7R0 dS dy < 052(714—1). (106)
k=n+1 -7
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Moreover,applying the change of scale= =10 RO , S = eﬁ
n+P
/ / — <u (Ro+6V,§8) — Z S* U (v.5.58) ) ds dv
v J; oV
1 2
52 Ro+'y5 (H )8 n+P
<¢ / aﬁ u®(r,0) — ZékU(T o R0 gy || dr df.
0775 kS

n+P
Since ford small enough,inRy — 73, Ro + v3[x]0, 27[), u’ (Ro+6v.£8) — > 6 Uk(v.s.58) = €5, p,

k=0
/7/ /j+1
- JJ

ChoosingP = 3, andn = iz gives

v i+l o n+P
/’Y/j B u5(30+5v,]§;—g - Z 6’“Uk(v,s,§—g
- k=0

Summing [I0b) and{I07) gives the desired result.

s

Let D be defined by

o[ )

2
ds dy < Cp?n+P=1),

5 n+P
= <u5(Ro+5V71§.g) - 5kU’“(V’S’§g)>
k=0

2
ds dy. < ¢§*(n+b) (107)

0
35 ( (Ro+5V, 82) — Z(SkUk(v,s,g—g)>

k=0

2 2
ds dV) < Qontt

2
ds dv.

9 !
35 (u (Ro+6V,52) 25 Urv,s, S“))

k=0

By the triangular inequality, and usingtha% (Uk(V,S, %)) = %(V,S ;S)Jr}%%(v S, %i),
n+P
Uk 65 0 OUy 08
orov, 55y — 35k =y — 2,8, —) )| dSd
/_W/J (R +6V,£8) Z ( 95 RO)-i-RO 50 W% Ro)) %
n+P 41 n+P j+1 2
+ > 5%/ / / aU’“ o (V:5.45) Casav+ > 52k+2/ / aU’“ (v.5,45)| dS dV.
k=n+1 —rYJ k=n+1 )
<c
Moreover, since = - &

n+P 2
59 5 5
—(RoJrzW Z o <3U" %) 2k 5,95 > ds dv

"Ry ) Ry 00 RO)
Rotvs Ut
<c / /
Ro—~0d k3

< CHEfrserPHHl(Q)’

WA

n+P 2

Z 5kaUk r=Ro Rof g

r dr df,

< Cn2(n+P71) )
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ChoosingP = 3, andn = iz gives

2

i+l o rou 5S. 80U 5S
. - 5’* TEy s 2y = Ey 5 22 )| dS dy < ¢8Rt
Finally,
D < 082t
on 2 3
/ / u’ (Ro+6V,0) — Z S Uk (v, 200 gy| d6 dV < Contl
- k=0
Let

U0 (Ro+6V,0) — Z&kUk(v Eq0 gy
k=0

do dy.

N

Again, by triangular inequality,

E<c / /

n+P 2

n+P 2
U (Ro+6V,0) — Z SFUL v, 582 0)| dB dV + 5”*/ / U (v, %% 0)|* dO dV

k=n-+1

Applying the change of scalg = T*JR“ , it is easily seen that
5 27 n+PpP 27 pRo+76 n+P 2
/ / ud (Ro+6Vv,6) — Z SFUL (v, R0l g)| df dV < —/ / ud(r0) — Z SR U, (z=fo R g rdrdf),
-7 /0 k=0 Ro—v6 k=0
< 772(n+P—1)—1.
n+1
ChoosingP = 4, andn = §"*3 yields
2 n+P 2
/ / u® (Ry+6V,0) — Z FUL v, 2 g)| db dV < CH2(nHD), (108)
-
Moreover,
27 Rg
¥ 2m 5 5 J+1 vy 5
/ / Ukv, 5% 0)?dodv < C > 5/ / |Up (v, 292 0)|* dS dV,
- /0 =0 J -y
< C.
Consequently,
n+P 21
> s / / Uk (v, 202 0)]* dO dV < CO"F. (109)
k= n+1 -

It suffices to combine the estimat€s{IL08) dnd109) to ot mesired conclusion.
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s ([

Let us introduce

£, < (Ro+6V,0) — ZékUk(v,Wgeﬁ)>

k=0

2 3
do dV) <comtt

2
0% 27 n
-7 70 k=0
It is easily seen thatP € N,
y o ) n+P n+P 27 ol
s k k(V, 592, )
F< /_7/0 BN <u (Ro+6V,0) — Z 0" Uy (v, 208 9)) df dy + Z /_ / 75 df dy.
k=n+1 v
Again, applying the change of scak= %
ot 27 9 5 n+P . 2
u° (Ro+6V,0) — 0" Uk (v, %2 ) df dV
[ Z a
062 27 pRo+v9 nt+P 2
/ / — [ w’(rotsv.0) — Z SFUL v, 2 0) || 7 dr db,
Ro—~v4 k=0
n+P
< C8llw’ = Ukl
0
< CnQ(n+P71)71'
n+1
ChoosingP = 4, andn = §"*3 yields
27 n+P 2
/ / 5 ( (Ro+8V,8) — ;;) 5’€Uk<v,“*ge,e>> do dy < 5™t (110)
Moreover,
) ) 27 Rg - 5
v ™ Rq 6 s J ol Rg8
/ / W 50 gg gy < ¢S 5/ / OUv:S 2 | g,
—~Jo oV = Ji —y oV
< C.
So,
n+P 2m
3 / / aU’“ L SO < O D). (111)
k=n-+1

Adding (II0) and[[T11) establishes the desired conclusion.

Note that we only have

-

5 < % (Ro+6V,0) — ZékUk Ego 0))

k=0

2 2
do dV) < oo
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A.6 Proof of Proposition[4.1

Proposition[4. There existy > 0, hy > 0 and a constan€ > 0 such that

o5
Vo < bg,Vh < hy, inf sup ’a (uh’vh)‘

uneVly wpeve lunllyllvnlly,,

> C (7))

Proof. The proof is done by contradiction. Suppose tHafl((87))lsefarhenydy > 0,Vho > 0,VC > 0,
there exist < &y, h < ho andu! € VA such that

1 |a@° (wn, vn)|
luplly,, > = sup =
Mivas = ¢ weevn lonlly,

Therefore, there exist 3 sequen¢&s),cn, (hn)nen and(uy,)nen such that

e 0, >0VneNand lim 6, =0,

n—-+4oo

e h,>0VneNand lim h, =0,

n—-+o0o
* u, € V2 ¥n e Nand
lunlly,, =1 ¥neN, (a)

. ‘dén(unavn”
lim sup —_—
n—-+00 vnEV;é"n ||’UnH‘7a6n

0. (b)

As in the continuous case, we defifag

u, o F°H (&) if |2| < Ry,
un 0 FO=(#) i 2| > Ro.
and the bilinear forna’»

a’r (i, D) = a’ (tn,v),

;:/ (DF™ (2)" ) (DF™ (&)™) oo Vit - V6 ydet(DF‘”)\Jr/ iWhoolinddo
Q+ SRe

+/ (DFY=(2)")(DF~ (&)™) pioo Viin - Vo |det(DF°™)|
o

—/ Poowlin ‘det(DF‘$+)| 7/ Poow>lin |det(DF57)|
Qt Q-

00, \ T (00 2 I
—6B“uoo/ (—”) (—) d9+6B°‘uoo/ )" (0)” df
2 0 89 89 1 0 ( ) ( )

2m B

Hoo MG
5z |, [anllolde.

Using (a) and the uniform continuity of it is clear that there exist two positive constadtand B such
that

0< A< |y,

‘70 S Ba (a/)
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where the norm oV} is defined by[[B8). Moreover, combining the uniform contipuf F° with the
assumptions (H3) and (b), we obtain

|07 (din, v0) | A

lim  sup
et G|

Vo

Therefore, there is a sub-sequence (still denote¢ihy) and a functioniy, € H'(Q") U H'(Q™) such
that:

i, — g weakly in H'(Q1),
i, — Gy weaklyin H'(Q7),

iy — ay weakly in H'/2(S ).

Moreover, it is clear that

2
/ |[di0])* d6 = 0.
0

Letv € Vo N H'(Q). Using the assumption (H2), it is clear that there existsgeace v,, ), e such that
VneN v, € Vohn n Hl(Q) and nlL}H;o ||’U — vn||H1(Q+) + ||’U — ’Un”Hl(Q—) + ||(’U — Un)7|‘H1(]0,27r[) =0.

Moreover, there exist’ > 0 and NV € N such that

Vn >N loglly, < Cllvlly, - (112)
In addition,
a0 (T, v) = @ (Tig, v — V) + a2 (T, vp).
Itis clear that
lim &% (lip,v) = / Loo Vo - VU — w? poslio + / T oowToD. (113)
n—-+oo Q SRE
Using the assumption (H3) gives
lim a% (i, v — v,) = 0. (114)
Moreover, usingl{112) we obtain
A(s A
~ ~ a’m Un; wn
@ (i, v,) < C sup MHDH%.

oo, Twally,

Therefore,

Combining [TTH),[[T13) witH{T13) yields

Yo e Vo N HY(), / fioo Viig - VT — w? pogtio® + / oowToT = 0.
Q Re
By density ofl, N H'(Q) in H'(Q),
Vv € H'(Q), / oo Vg - VI — w? paolioD +/ Ioowlot = 0.
Q SRe
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It follows thatdg = 0.
We end the proof by proving thattim || |y, = 0.

[

‘270 <C (WSTL (U )| + |Unl 2ty + nll L2y + ||\/g(ﬂn)7”L2(]O,27r[))

Since the right side hand of the previous inequality tends, t,, v, tends to0. It contradicts the
assumption (a’) and proves the stability resiulll (87). O
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B The Whole Expansion

In this part we prove the propositi@nP.8: for eacte N, u,, andU,, exist and are unique. To do that, we
extend the results of the subsectibns2.2.2[and]2.2.3 toretch.

* In afirst step, we write the matching conditions in a new foifihis new form is optimal in the sense
that we only match the coefficients that have to be matcheslretttundant conditions are eliminated.

 In a second step (which is completely independent of the ding) we introduce two families of
functions(Vn’“)(neNﬁkSn) and(W,’f)(neNykgn): as forU,, U; andU,, these functions allow us to

separate microscopic variables from macroscopictoatethe time of the building of/,,.

« Finally, using the results of the two previous steps, weadte to build recursively,, andU,,.

B.1 A New Version of the Matching Conditions

This part is directly inspired by the second chapter of thB Btesis of X. Claeys[[11]). Our objective is
to obtain an optimal version of the matching conditions: waild like to eliminate redundant data. The
following figures illustrates the setting of the problems.

P
n[G]--[et---- o o O it ~
1
| |
o] [o o O k
| 1
1
w [0] [0 o o Us B
| |
u [O o o o) |
1
| |
uw [O—0 h—O—O— vk Uo / ! vk
k
_ 0ME(Ro,0) 1 Cor

Un,k

ark k!

Figure 15: Schematic figure of far fields (left) and near fieight) expansion in the overlapping zones

Vk

9*un_(Ro,0) 1
ork k!

Cok =

Figure 16: Schematic figure of the matching conditions
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« In the left side of the figurE_15, the expansion of far fieldhie bverlapping zone is represented in
the plan(v*, 6"):

u6 — Z Zéndun,k = Z Zénl/kw.

neN keN neNkeN

In the linen, you can see the different terms of the expansion,oéccording ta/*.

Sinceu,, is solution of the homogeneous Helmholtz equation (secoter@artial differential equa-

tion), we will see that the expansion of, according tor only depends on the two first terms
+

0 -
uF(Ry,6) and ﬁ(RO,Q). Consequently there are only two coefficients that can becimedt
That is why the two first terms of each line are twice surrouhde

« In the right side of the figule_15, you can see the expansitimeofiear field in the overlapping zone
represented in the plgiv®, 6"):
n+1
W =303 Ve,

neN k=0

In the linen, you can see the different terms of the expansioli,pficcording toV*.

« In the figure[TB, the far field and near field expansion are beghesented in the plafV*, 7).
Note that the far field expansion in the pl@*, 6") is obtained by a rotation o% of the far field

expansion representation in the plasf, 6™).

In the figurdIB, we immediately recognize the first versiothefmatching conditions

1 akui:_k .
Vn € N, Cn,k = E ar if k <n,

0 if £k =n.

However, in the figurEZl6, the only terms that can be matchethartwice surrounded terms: these terms
correspond to the fundamental matching conditions

dur

vneN, Ci,=uf and CFf = 8"—1. (115)
; ; ,
. L. 1 8kun_k .
That means that the others matching conditianis { = T k > 2) have to be redundant (if they

are not, we cannot match the far field expansion and near fiplrsion): indeed, assume th&f; ) x<n—1

) 1 0% upy_
and(ux)k<n—2 are known. Then, ik > 2, — Un—k

. ) k' oOr
Cy i is also completely determined.

is always completely determined and consequently

The purpose of this part is to understand why, for a fixgtheses redundant conditions hold if the funda-
mental matching conditionE{I115) hold fbr< n — 1.

To do that, we are going to study the operatfii.. A + w?p..) according tas: indeed, the matching of
the expansion hold because the far field expansion and thdialgiexpansion are solutions of the same
homogeneous Helmholtz equation.

Decomposition of the operatorn? (1., A + w?ps.) in term of v
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Using the expression of the Laplace operator in the polardinates, we can decompose the operator
(oo A + w? poso ) according tas

4
At = 1% (fioo A + w?poo)u = Z jAfu, (116)

7=0

0 0 :
f i=0---
whereA’ (Vc’) 89) (j =0---4), are given by

0? 0 0
£, _ 2 2 2 2_, =
Alu = <R0uoo v 81/2’> u= Rjpoo <(V81/) V@V) U,
0? 0 0 0
f_ 2 2y, _ 2
Al = Ropio (v 5 + (Vaz/> Ju = Rofico (2(1/a ) V@V) u,

14
0 0?
AQU = ( ((VE) 892) + pooWQRO)

Afu = 2w? oo Rou,
Afu = w?psu.
The operatorscl]f. has the following interesting properties:
Proposition B.1. The operatorszlf are homogeneous for two reasons:

» They are unchanged by the scale chaige %

o If u(v,0) = v*ur(0), there exists a functioi, which only depends ohsuch thatAfu = vk u,(6).

Remark B.2. We can compare these operators with the operators (of ndd} f,rejfl defined in[@3).
c Af,=AL AL =vAl, and A, =V2A]

* Itis also possible to compal;égyo andA{O with A7 and A7
ro_ Loy oL
A070 - WAO and Al,() - EAl .

Modal expansion of the far field terms
We remind that in the vicinity of the interfac®z,,, u., is regular: its expansion accordingutas given by

1 8kui(Ro 9)
= 3" vkuE(6) where uF,(g) = — LU0 (117)
= k! or

Moreoveru,, satisfies the homogeneous Helmholtz equation.

The goal of this paragraph is to prove that the expansion,0bnly depends on the two Cauchy data
Up, (RO, ) (R07 9)

8

To shorten notation, we define the space of formal séfjea subset ot calledVO"”’ and two linear forms
lp andl; onVj:
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Vo = {v(v,0) such thatv(v, 6) Z Vo (0
keN

Vo' = {v/v(v,0) = v*vi(6), vr(0) € C([0,27]) },

V() HCOO([O 27T])
lo : v—Zvap ) = lo(v) = vo(0),
pEN
Vo —>C°o([0 271'])
I v=Y" vPu,(0) — i (v) = vi(9).

pEN

For any formal series € V, [, (respectivelyi;) associated it its coefficient of degrééresp.1).

The definition of the convergence of the formal series is tilewing one:

= Zykvk(é’) & dyy >0, Vv > 1y, Zz/ vp(0)] < Cplv|™ . (118)
keN

Let us introduceu, such thatu € V andw is solution of the homogeneous Helmholtz equation in the
vicinity of Sg,:

u=Y vFup(0) and Au=0.

Inserting the formal series in the decomposition of the afmetd (TI8) yields

4
ZZV’“Ai (Vjuj) =0,

k=0 jeN

which after rearrangements gives

ZV ( Z l/_j.Aij(VjUj(tg))> =0.

keN j=k—4

independent of,

Using the homogeneity of the operat04t§ it is clear that/™ JAf (y un,;(6)) does not depend on.
Separating the powers ofgives

VE € N, Z _i(Wu;(9) = 0.

j=k—4

(we use the convention that, ; = 0 if j < 0). Consequently,

k—1

A({ (Vruy) = —vF Z (Ak j(l/]u])) . (119)

j=k—4

independent of

Therefore, ifA{; is bijective on the spac®y, u; is uniquely determined and only dependswnwith
j < k. We need the following obvious propertyg%‘
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Proposition B.3.
« Al is an isomorphism fronv to V¥ if p > 2.
« A/ restricted toV? or V] is equal to0 (A} restricted toV? or V' is neither injective nor surjective).
SinceA{c restricted tol/;' is equal tad,
Ab(up) =0 and A5(vuy) = 0.

Using Propositioi. BI3, we obtain tha = lo(u) andu; = [;(u) are undetermined. Then, using again
Propositio BB, the formul&{IIL9) entirely defines (by iation) . for anyk > 2.

Sinceuy, only depends on;, (j < k), we have proved that, only depends ofy(u) andiy (u).

To explicitly know the dependence ig(u,,) andl; (u,,) it is useful to consider the operatory s;,

€*(10,2x]) — €>([0, 21))
sh=0, k<O,
58 =1Id,
940 g (120)
k—1
st= v RAD TS L YD v AL | Rz,
N—— )\ ——’
independent of, \’~" 4independentot/

C*([0,27]) — C*(]0, 27)),

sllc =0,k <0,
1
s; = 1d,
skt (121)
k—1
sh= vRAD W Z Vﬁinij(VjS}) , k>2,
—_——— R ,

. j=k—4
independent of, \” independent of,
and the operatore’, s'

sV ¢ ([0,27]) — Vo

Va € C*°([0,27]) s%[a] = Z vFs?al, (122)
keN
st:C>([0,27]) — WV
Va € €®(0,27]) s'la] = 3 vFsilal]. (123)
keN~
Finally we can prove the following result:
Proposition B.4. In the vicinity ofSg,, the expansion af is given by
ut(r,0) = s"[10(uh)] + st (u)). (124)
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Proof. To prove [I2ZK), we prove by induction that
up(0)F = sL(1°(u®)) + st(I*(uF)) Vk. €N (125)

The initialization is immediate. We assume that for any & (IZ3) holds.
By (II39), we know that

k+1
Al (V) = =81 Z v (A£+17j(ujuj)) .
j=k—3
By assumption, we can replagg by s9(1°(u™)) + s} (I°(u™))). It follows that
c+1

AL (V) = = ( v (A£+1_j(ujs?(lo(ui))))>

j=k—3

o~
+

Il
=

j=k—3

k+1
e ( Z v (.A£+1j(VjS}(ll(ui))))) )
This previous formula exactly proves thRI{l25) holdsker 1

“211(9) = 52+1(10(“i)) + 511c+1(ll(“i))-

O
Consequently the expansion®f according tav in the overlapping zones can be written as:
= 0, 0) = O] + 511 )] = 0 (R 0)] + 51 2By )
which means in particular that
L0 F0.0) _ 0 (o, ) + s (P00 s

k! ork or

In the formula[IZB), it is easily seen that, for amy= N, the only coefficients that can be matched are
lo(un) andll(un).

Modal expansion of the near field terms

We remind that we have prove thd}, has the following behaviour for larg&(@0) and [21L))

fory >

|~

n+1
Un(V,S,0) = CFL(O)VF +o(V™>),
k=0

fory < !
-2
n+1
Un(V,S,0) = C  (O)VF +o(V™).
k=0

Using the new expansion af, (IZ8) and looking at the figuf€1l6 we can visualize the foltayyroposi-
tion:
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Proposition B.5.

Ciky=s0(CEy)  (CE, undeterminey]
CjE = S%(C,fl) (Cf;l undetermineyl (127)
Ci[k SP(Cr—0) + Sp(Crig1,1)-

Proof. The proof is done by induction an The initialization is trivial. We know thal/,,,; verifies
4
AoUnq1 = — Z ArUpg1-k-
Consequently the constant (in S) Fourier coeffici@nt, ), satisfies
Aoo( n+1)o ZAkO ntl-—k)

Using the remarKBJ2, we can repladg , by V* A/

n+2 4 n+2—j
S ALCH OV =D > VALV (U(Cnjk1.0)) + 5H(Cn ki),
k=0 j=1 k=0
n+2—j
=30 > VI (VA OV ((Camgor1.0) + 5H(Com i)
j=1 k=0
n+2 )
=> Vi Z VAL (VE(sR(Crji10)) + 5(Cujian)) |- (128)
j=0 k=j—4
independent ofx
We can also remark that
n+1 n+1 .
ZAO 77,+1 k ZV 7 ( jAf n—‘,—l](o)vj)) :

Since the operatorzij-c are homogeneous, we can formally identify the powers of (I28).

e Ifj=0, AO( 1.0) = 0. ConsequentlyC,, ., o is undetermined and{IP7) holds.

« If j = 1, we remark thatd! (C,,;1,0) = 0 andsi = 0. It follows that
VLA (VChia 1) = 0.

ConsequentlyC,, 11 ; is undetermined anf[{IP8) is proved in this case.

« if 2 < j <n+ 1, the identification yields,

Cy(0) =V ((Ag)_l (Vj i: V_kAffk(Vk(Sg(Cnﬂ—j,o)) + Si(cn—j+2,1)))) :

k=j—4

It exactly proves that
Chy;(0) = 53(Conti—y) + 55 (Cryr-jy11)-
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s Finally if j = n + 2, we remark that? (Lo(U_;)) = 0. So

n+1
Crfy1nga(0) = V=D <(«4§)1 (Vj > VkA£+2_k(V’“Si(Co,1)>>>> :

k=n—2

Therefore,

C7j+1,n+2 (0) = 5711+1 (00,1)-

Remark B.6.

* The propositior BI5 means that if we kn@, and Cy ; for any k < n, we know entirely the
behaviour ofU}, for anyk < n and we also know, 1 ;, for anyk > 2. That is why the only two
coefficients to match at each step &g, andC;, ;.

+ The functions) ands;. appear as in the far field term expansion but there is now alshifa in .
It is of course reasonable to also obtain the same recursiuetions as in the far field. The shift in
n can be visualize on the figurel16 and directly follows fromstale change: indeed,

2 (oo A + proo)U(%) = 532 (Z SIVI(A — jfU))
=

J=0 v

B

A new version of the matching conditions

We are now in a position to derive a new form of the matchingl@oons: it is now clear that the coefficients
which have to be match at each step @fg), C*, for the near fields terms arigl(u,,) andl; (u,,) for the
near fields. But, '

oy RoO v Row: i
25 Un(H,TO,g) - 25 Z(g_k (Sg(cn*k’yo) +5]1€(Cn—k+1,1)) + O(51),
neN neN k=0

= ZZényk (S%(Cnﬂo) +5116(Cn+171)) +O(5+00)7
n>1keN

and

S 5 = 33 6k (s(,;(un) + s';’(a?g;jl)) _

neN neN keN
Consequently, we have proved these following optimal magcbonditions:

Proposition B.7.
The matching condition24) are equivalent to the following ones.

Ou, 1 (RE, 0
CEy = un(RT,0), c*, = %_ (129)
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B.2 The Families(V}*) and (W})

In the subsection2a.2, we have build step by &fgepl/; andU,. In each step it was possible to separate
the variable from the variable$’ andS introducing functions which do not depend énfor instance, to
build U; we have introduc&?’, V' andW).

In the same way, the functior@ﬂ/,’f_l)kgn_l and(V,f)kgn are the functions we need to introduce at step

n to to separat@ form the microscopic variables at the time of the building®f These functions are
aun—l

or |’

The introduction of these two families of functions is matied by two observations:

also convenient to obtain semi-explicit formulas foy] and {

« First, in the near fields equations, the source terms coome fine matching conditions: a behaviour
for largeV is imposed. For any € N, there are only 4 coefficients to matdh(U,,)* andl, (U,,)*
(or C’f;o andC’f;l). That is why, for anyh € NN, the new terms which can appear are combinations
of the two following functions:

RV - (uVV) =0 inBy
e VY=1%

Ve = Ao(Vy) +0o(V™>=) when £V >

N | =

e W{ such thatV) — x(V)V — x(=V)V € W' (R?) and
{Rgv (uVW) =0 in By,

WY =£Ag(W)+V +0o(V™>) when +V >

|~

wherey is a truncation function which satisfids141).

» The terms which appear in the stejre 'propagated’ by the embedded equatibnk (19): for ikstan
if Uy = ao(Q)V(S, V), then,

8a0(9)
00

Ao(Uh) = —A1(Up) = —ao(0)AY(V(S,V)) — AL(V(S,V)).

6@0 (9)
00

ThereforelU; linearly depends ong(#) and , and it is possible to separafegrom the fast

variables.

Definition B.8. Let (Vf)neN,ogkgn be the following family of functions defined by induction:

V¥ such that V¥ — x(V)PH(VF) — x(=V)P~(V,F) € W1(R?) and

V- (uVVy) = f¥ in By
(130)

, 1
VE = AZ(VF) + PE(VF) +0(V™=) when £V > 3

where,

PE(VE) = ZA%(VJ“)T
j=1
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and

Ag(vnk) = —AE (Vk)7

n

AT (VFY = —AT(VF) = < fF Lo im zn: Vo AT(VE) +zn: MA.*(V’C) Wo > &
1 n 1 n 2 no’ Lo VO—’+OOj:2 (] B 1)| J n . 1 J n

1 . . _
i = e ((ARVEL, + ADVES) 4 (AQVEy + ABVEED) + (VS + AVE).
0

Remark B.9. :

« AF (V) are given by

V! _ 1% _ V2 _ ;
TTAT V) = —(AD) ™! ((l AL VDAL (VD) + g A (VYT A (Vi)
V20,6052 k-2 V3 i3
+ (i— 2)!-’42,0 % )Al—2(Vn—2 ) + MA3 (V )
V! fpl—4 k
+mv44 V- )Al4(vn—4)> :
+ The conditiond] (V;¥) = — Ay (V;F) allows us to have the uniqueness of the solution.

+ The constantsly (V;¥) is unknown.
+ The condition ) aboutAf (V) is a compatibility condition.
Proposition B.10. Vn € N, 0 < k < n, Problem[I3D) is well posed.

Proof. The proof is done by induction an SinceVy is given, the initialization is immediate.

Suppose that for any < n andp < n V/ is uniquely defined. We will prove that for apy < n, V;
exists and is unique. The proof falls naturally into two paMVe first prove the uniqueness and then the
existence.

1. Uniqueness: let us suppose tht andf/f are two different solutions o {IB0). We considef =
V¥ — vk DF is solution of the following homogeneous problem: find € W, (R?),

{V (nVDy) =0 € D'(R?),

DE =+C+0o(V™>) when+V >

N | —

DF is solution of an homogeneous problem. Since the compiatibdndition holds, Propositidi 2.4
applies:D¥ is a constant. It follows thaf’ = 0 and D* = 0.

2. Existence: let us defing™ andy~ two smooth truncation functions such that:
N 1ify>1
X W) =9
0ifv<i
XV =x"(-V)
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We also introduc#* = V¥ — x= P~ — x* PT where,

- E —(vk + . E + 1k
J= J=

V¥isin W, (R?) and
V.(uVVE) = f¥,
f;l: = fyli - MoonAV* - MwXJrAVJr + ¢C7
be=—2Vx" -VVT —Ax V™ —2VxT - VVT — ATV,

#. comes from of the cut-off: its support is containedigp(x ™) U supp(x ™).

It is easy to check that® — ;o x AV~ — ueoxTAV™T is exponentially decreasing. Moreover,
combining the properties od; with the fact that/* € H} (B, N {|V| < 1}), we obtain thaif” is
in (W1 (R?))*.

To complete the proof it suffices to prove that the compatybdondition < f,’f, 1 >= 0 holds.
Indeed, in this case, Propositidii{2.4) applies and yidldskistence oV

n,var*

AR
<fis=<fi1>— lm / (V- uV (V) + V- 1V V).
Vo—+too J_y Jo

The compatibility condition«) gives the desired conclusion:

Voo o
i [ [ vty v
Vo—+00 —V Jo

_ +(1k S A 02 R G V')
= Moo 2A1(Vn)+/0 ;(Aj(vn)(j—l)! A7 V) (jfl)!) ’

=< fF1>.

Consequentlﬂf exists and is unique. By uniquenes¥; exists and is unique.

O
We now introduce a second family of functiofi&’”).
Definition B.11. : let (W,’j)neN,OSkgn be the following family of functions defined by induction:
W € W1(R?) such that
RV - (uVWE) =0 in By,
1 (131)
WY =+£A(W)+V +0o(V">) when £V > 3
WPk such that WF — x(V)PH(W}) — x(-=V)P~(WF) € W1(R?) and
V- (uVWY) =g in By
1 (132)
WE = AZ(WF) + PE(WE) + o(V™°) when +V > 3
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where,
PEWY) = %Ai(wk)v—j
n — J n _7 ?
7=0
and
AFWE) = —ar W) = £ [ < gt > = tim i L AT (WY +imAf(W’c) YV > 2(%)
1 n 1 n 9 ™ oo Vo— 400 = (-1 n = (G—1) 7 n 0= 5%

1 , - _ :
G =~z (AIWA_1 + A Wimh) o (AoWi_y + ASWLEE) 4 (As W23+ AaWiy)) -
0

In the same manner than in Proposition B.10, we can also ghavexistence and the unigueness of this
family of functions.

Proposition B.12. Vn € N, Vp < n, Problem [I3P) is well-posed.

B.3 Existence and Uniqueness

We can now generalize the approach used in Subse£ilonke2dIZ2Z.B to each and prove the proposition
3.

Proposition[2Z.8. The system of equations made BII(17)1(19) dnd (24) has usiguéions(u,,, U, ) such
thatu,, € HY(QY) U HY(Q7), U,(-,-,0) € H. (R*) and is non-exponentially increasing with respect to
V. Moreover,

2
Aup + P20 — 50 L inorua-,
Hoo Hoo

&Y (133)

n J & ] ] k+1 )
TR 9) e LRI Sh Wi T - JCEY)

Proof. : the proof is done by induction anThe hypothesis of induction is:

Vi > 2, U,_; exists and is unique

Vi > 2, u,_; exists and is unique. it verifieg{55)

if wu,_1 exists,U, _1 exists, is unique and is defined thy156)
if w,_1 exists,[u,_1] is given by [Bb-(a))

(Hn) :

1. The initialization of the induction have been done in thiesectionE 2212 afid2.P.3: we have proved
the three following propositions:

e Uy andug exist and are unique.
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o if u; exists,U; exists and is unique.
o if uy exists,[uq] verifies [B5-(a)) .
2. Induction: we assume thék(,,) is true. We shall construéf,, solution to the following P.D.E
V- (uVU,) = (A1Un 1+ AU 2 + A3Up 3 + AgUy,—4), (135)
0
and which satisfies the following asymptotic behaviour

1 OFut 1
k — —o00
Un = u(Ro,0) + § T o(VT®) for £V > o (136)

As for Uy andU; it is natural to construdt,, as

8 Unp, R(), J 8""* Up—1 Ro,@) N
U, = aVQ + WY +ZZ ajek Vk+zz 89’€(’)Jr YW,
k=0

j=1 k=0 Jj=1

wherea and3 are two functions of that have to be determined. By constructidh,satisfie§135.
To computer and3 we have to identify the terms of ordérand1 of the polynomial expansion of
U,, with (as explained inBL1, the terms of degree larger thanin the polynomial behaviour
of U,, automatically matches).

» The identification of the polynomial term of degree 1 gives

o 8’[14”71
6 - < ar >5
and

dun—1] _ < : Mun—j\ ik L N % 5k+1“n—1—j +(k
{ 5 } > o g AT (V) +Zzoz oo AT (W),

=2 k=0 =1k

* In the same way, the identification of the polynomial terndefiree 1 gives
o = (up),
and

n—1 J
(’)’” Un—1—j

n J ku ]
fual = 3 Y 2T (V) + 303 2T g (),

So, if U, exists,[u,] and {% are given by[[@5 (a)(b)). Since,_; verifies the well-posed
problem [B5)u,,—1 exists. This implies the two following propositions ahig ;1 is proved:
if wu, exists,U,, exists, is unique and is defined Iiy}56)

if w, exists,[u,] is given by [Bb-(a))
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C Approximate conditions in the general case

In this part, we do not assume thaandy are symmetric. The jump conditions of the far fieldsandu,
are given by

— auo —
- (’)uo (’)uo (’)ul o 82’[10 82’[10
bua] = Ao(r57) + Aul5g0) [a_} = Bofuo) + Ba(Zg) + Bilrg55)
where
240(V}H) 1 / owQ
A= —"—"—F— == Bl =—-—=
L R YR iy 08

Applying the reciprocity principle, we can see that
Bl = Al

Actually, sinceV;' andWW]) are real,
0= [ Vv = 2 - [ g
=332 ]

Therefore,

Moreover,

240(V})

Ry
= A

Consequently, the 'natural’ transmission conditions Far first order approximate conditions are

Uls ’Ué
o] = o (4ot + ar(Gh)

o] 5 0*vf 0%
PW} - 5<B0<U1> + Bl + Alrggg)

As in the symmetric case, these conditions associated hdtlslassical Helmholtz equation do not define
a well-posed problem. So, in the same manner as in the symrease, we shift the jump and we use
uncentered approximate conditions.
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We propose the following first order approximate problemd firf € Vs,

Poo I _
Av(ls+w2'u/:’l)(1s:’u: n QI(;UQO[(;
0 g
of],, = 545 20yt 1 o 20
"or 00
(A1)? . 0% Ay [ovd (137)
1 B B — 1 1\— A1 | ovy
|: or :| (O(UI) +( 2 Ag )(892)a)+A8|:89 N
o0
8_1 +iwv =0 onSg,
Remark C.1. :
— Replacing 89> (%v;) allows us to work in the same variational framework as in yrametric
case.

2,8 5 2,0 A4
— The normal derivative jump is obtained repIacihg%) byﬁ[%] — (88;21 );A—i
0 0

The variational formulation associated [a{IL37) is givenfind v € V5

aG(vl,v):—/ i’l_) Vv € Vs
Qfsua;, Heo

where

o W2poc .
ax(u,v) = / Vu-Vo— uv | + zw/ uv
Qfsua; Hoo SR

e

1 2w _

o G /:W(uh(@)a — (B3 - %)/jﬂ (%)a <%>a

2 [T (G v

Proposition C.2. :

* For « large enough such tha$ < 0 and A5 > 0, the problen{I31)is well-posed. Moreover there
exists a constant’', independent of such that:

5
Vu € Vs lullv,, <Co  sup a1, v) (138)
VEVL5,v7#£0 HUHVQJ

« For any~y > 0, there exist9, such that, for < d

| w® =) || (o, < CO (139)

Proof. :
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» The proof starts with the observation thfai; can be split into a coercive sesquilinear form and a
compact sesquilinear form:

5 2 w?poo 2 . 2
ag(u, u) :/ |[Vu|* = ——=|u| + zw/ |
0500, Hoo SRe

1 o 2 o o -2 o (Ar)? o (Ou 2
w s [ we o [iose = e - S0 [T1(5) |

2141 2w ou -
- A—(C)Y?R (/0 (@)a [U])
But, Ve > 0,

iy (/:Q%)a[a]) > 225 /02ﬂ|[u1|2+55/02ﬂ|<%>a|2)

(A1)2 + 2|A1|E
A A

Let us choose a particularsuch that B — ) is negative and let us introduce the

compact bilinear forng.:

1.1 24 /2“ ~ 2w2/ . / ~
Ce(u,v) = =(— — ul[v] — — uv — iw uv
( ) 5(A8 Afe ) 0 Llfe] Hoo Jat ua s SR

73

Itis clear thaia, (u, v) — C.(u, v) is coercive:

2 2 2m -
5 5 Whso 19 o A7 2|A44e / (8u) 9
al,(u,u) — Ce(u,u) > / (Vu +—u)—6B _ 4y gu
G( ) ( ) stuszgé | | L | | ( 2 48 48 ) 0 | 96 N |

21T
1B / ()32

Therefore[[137) satisfies the Fredholm Alternative. We adeiced to proving the uniqueness. In the
same manner as in the symmetric cas¢, # 0, v = 0in Q. Finally, the problem does not have
no-trivial solutions since for any € Z the determinant of the following matrix cannot be zero:

14+ inAid 0

A2 A

ZLy it 1
)

5 « «
5(30 *”2(32 -

» The proofs of stability and convergence are the same agisytimmetric case.
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D Dirichlet Case

It is interesting to study a problem close [@[{1-2) but whéxe periodic heterogeneities are replaced by
periodic holes: more precisely, we study the following peot:

V- (u0Vu0) + w?p’u’ = f in Q°,
«=0 ondB’
dul

(140)

+iwu® = 0onSg,

or

/

dB

-~ Periodicity ——

S=-1/2 S =1/2
(a) @° (b) Bo

Figure 17: Definition domain and periodic cell

We still assume that the support pidoes not intersect the ring and thdtandp® are periodic and verify
@) and [®).0B° = 0B(S, V)g_p,o y_r-re, WheredB is a closed curve contained in the sbr1[xR
o R 5

(see fig {T7)) and fig(I7{b)))

As for the probleml[{{d2), we want to build approximate coiodis. The same method of analysis applies.
We first do an asymptotic expansion and we deduce from it aroajppate model.

D.1 Asymptotic expansion

We start from the classical ansatz:

> 6" far from the periodic ring,

(RO =EN o
Z 0"au; inthe vicinity of the periodic ring.
neN

The far and near fields, andu,, verify the following equations:

4
1 .

V- (uV(un)) = 7] E ApUpn— in By
0 k=1

U, =0 ondB

{BochuE + et = 6,(0)f i 0*

where Ay, are defined by[{19).
In addition, the matching conditions do not change, theystilegiven by [23) ( olZIZD).
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We need a suitable framework to prove the existence and tiggemess of near fields. This is the object
of the following proposition whose proof is based on a Hartgqguality (se€ [18] (chapter 2) details).

Proposition D.1.

LetV = {q/ € D(By),V 1 — S — periodic Vg5 = 0,Vv € L*(By), ﬁ € LQ(BO)} and its asso-
ciated norm:

(
[0l = Vol Z2(gy) + ”WH%Q(BO)
* Vis an Hilbert and the semi-norrrthH%Q(Bo) isanorminV.

o If V1+V2f € L?(By), the problem

look foru € V
/ Wu-vrﬁz/ Fv Yv eV (141)
Bo

Bo
is well-posed. Moreover if is compact supported, there are two constafitsandC~ such that

lim «=C*
V—+oo

Applying the previous theorem, we can assert that foramyN, (u.F, ,,) is well-defined:

Proposition D.2.

 Foranyn € N, («F, u,) exists and is unique. It is given by:

2
W Poo
Aug + /Lp w = f
Uy = 0, llg_ _ llO_ —0 on SRO (142)
dug

52 +iwug =0 0OnSg,

-1J ak+1u -1 i 8k+1u -1 A
= — T \yF — i : 14
w20 (it + [P ) asd
Aun+wpooun—0
:u’ool ;
(S Ot uy Oty
== 23 (gl + [ 4ty ) onsm 049
=0 k=0

9 4 jwu, =0 0N Sp,

where fo and wj’C are functions that depend only on the fast variablesand .S. They are the
solutions of the following well-posed cell problems:

V- (uVyd) =0, inBy

vy =0 ondB,

VY ~ A;ré, +V forlargeV,V >0,
vy ~ Ajo +V forlargeV,V <0.
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Vj>1,and0 < k < j, (145)
V- (uVf) = fors inBo
vF=0 ondB,

1 Ve

k + +

vE~ Aryjk + ;Cryﬁq? for large V, V > 0,

1 Ve
v~ ALY C, o forlarge V, V < 0,

J q=2 J? .

For = =gz (AYwfy + Af VI (AW + AJv SR+ (AsVET + Awv) )

(146)

V- (uVwd) =0, inB
wy =0 ondB,

WY ~ A;g + v for large V,V > 0, (47)

W ~ Ao — 7 forlargeV,V <0.

2
Vj>1,and0 < k < j,

V- (uVw)) = Fvrs inBy
wf =0 ondB,
1 Ve
ko4t +
wh~ ijk + ,]:ZQOWJ"C"JE for large V, V > 0,
1 Ve
k — -
wh ~ ijk + ;C%’“-ﬂﬁ for large V, V < 0,
1 ) _ . _ _
fw;“ = _ﬁ (('A(l)wjk—l + ‘Aﬁwjkfll) + (A(Q)wjk—Q + Agw;ﬁ;) + (A3‘/j]i$3 + A4ij—4)) :
0
(148)

< Moreover, we have the following error estimate: for any 0, for any~ > 0, there are a constant
C independent of and a constand, > 0 such that for any < 0,

18 =378 sy + 1?37 6 gy < €™ (149)
=0 =0

Remark D.3.

» An important point to note here is that the limit problemis not the the problem without periodic
ring, but the problem with homogeneous Dirichlet conditionSr,. More generally, the problems
defining.,;" and«,; are uncoupled. However," and«,, depend on both,” and«, fork <n — 1.

* In the problem¢IZd)and ([IZ8), the constanté‘jk_q andcjgk , are known. They are determined by
forandf,, . J J

 The proof runs as in the sectigh 2.
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D.2 Approximate Condition

In this section we build a first order approximate conditiarthie symmetric case, using the previous
asymptotique extension. Combinidg (142}, {144) 4ndl(143)g

[uo] = (uo) =0
[MAW%%+&P§ﬂ
(u1) = By [r%] +Bl<r%>
where
Ay = RLO(Ajoo Ayo)  Bo =g (ALo +ALo)
Ay = RLO(A;:Q —Aue) Br= g (47 — AR

By the reciprocity principle, it easily to check th&; = A;. Moreover, since: the periodic cell is
symmetric {1 andoB are symmetric ir6), A; = B; = 0.
We now assume thdt, A, # 0. We propose this first order approximate problem

look for 20 € HY(Q*) N H'(Q™) such that
2 00
A+ 2L 55— f inatuQ-
[ioo
079 1 s
(r E )= oA, [7/1} (150)
5 - L
"or | T 9B !
8wt L s
or Tiwey =0 onSg,

and its associated variationnal formulation:

u5(;f,;):;1/ fo VYoe HY(QY)NnHY Q)
QtuQ—

{Iookfor 29 e HY(QT) N H'(Q7) such that
oo

where:

= [ (v Zmnm) i [ e [WEs [ @6
a \u,v) = ot Lo u v lloo uv 1w Sn uv 5A0 A ul|lv 5B() o u)v

It is easily seen that for any > 0 the previous probleni.{I50) is well-posed. Nevertheless, bt clear
that it is possible to prove a stability estimate similaf@8)( with a constant’,, independant of.

Again, similarly to to Sectiof3.7l. 1 we shift the mean andguarms ofxd (o« > 0) using Taylor expansion.
We obtain the following problem:

look for o) € H*(5) N H'(Q;) such that
2 o0
A+ 2L 85— f inotUQ-
a0d. 1
) = 5ag L1l (151)
81;{5 1 s
[7" or ] = ﬁ(”ﬁ
‘95’5 +iws) =0 onSg,
where:
Ag = A() + 2«
Bg = BQ + 2«
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and it associated variationnal formulation:

look for o0 € H*(Q*) N H'(Q2~) such that

-1
u(s(vf,v):u— - fo VYoe HY(QY)NHY Q)
[e'e] uQ—

= [ (Fe v 22) v [ i [TBlt g [ 0l
a \u,v) = 0t U u 14 lioo uv 1w SReu'z/ 514() o Ula|? | 5BO o U)a\?)«a

We define a convenient norm to prove the stability:

1 27 1 2
nwwwm%ﬁmeq@Awwm%Awm

Proposition D.4.

 Foranyé > 0, for anyw > 0, @I&1)is well-posed: Moreover,

V6o > 0, Yw > 0, 3CP > 0,6 < 6o, Vu € H(Q5) N HY (),

u]ly—as < C sup (s, v) (152)
vEHL(Q)NHL(Q5),0#40 21l vs

« For any~y > 0, there exist9, such that, for < §

| w® = u] |10, < CO° (153)
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E Properties of V¥ and W* functions for n < 2
E.1 V/Ffamily
en=1

« VQ: itis clear that
VP =0

V' An easy computation shows that,. ; = 0. The functionV}! is given by:
RV
Ry 0S
Vit = £A40(VH) +0o(V™>°) when £V >

V- (uVV) =~

| =

— if p is an even function in the S variabl®]! is an odd function in theS variable and so
Ao(V') =0

— if w is an even function in th& variable,V}! is an even function in th& variable, which
implies thatAo(V}!) =

on=2
 V: an easy computation shows that
2 12 172
() =20 apap - [ eleesr)
Hoo 1/2J-1/2

V7 is the solution of the following problem:

V- (uVVy) = —w?p

V2
V' =+ Ao(Vy) + (V)AL (V) + Ax(Va) - +0(V7)  when £V >

N~

— if uandp are even function in the S variablg is an even function in thé variable.

— if 4 andp are even function in th& variable,V; is an even function in th¥ variable, which
implies thatAq (V3) = 0.

« V! according to the properties &f', we see that
A (V) =0 AF(Vy) =0
So,

1 o oV} oVl
V- (uVVy) = “® <2R0V —1)+ L )

vy TRy
Vi = +A0(Vy) +0o(V o) when +V >

N | —

— if pis an even function in the S variablé}' is an odd function in thé variable. Sad, (V3') =
0.

— if p is an even function in th¥ variable,V4 is an odd function in the’ variable.
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* V2: according to the properties df!, we see that

1 1/2 1/2 1 oV,
AZ(V5) = —= AT (VS / / <—+—1>de1/
2 ( 2 ) Rg ( 2 ) 2Moo < 12 12 a8
So,
o(uVi) oV}
. 2 ass
V(1Y) =~ (RO o5 T HRoog + )

2
2R2

— if 1 is an even function in the S variablé? is an even function in thé variable.

— if u is an even function in th& variable, V3 is an even function in th& variable, which
implies thatAo (V) = 0.

1
Vi = +Ao(VE) + AT (VH)(£V) — +o(V™™) when +V> o

E.2 Wk family
en=20
We remind thatV) is the solution of the following problem

RV - (uWWY) = 0

WY = Ag(W)+V+o(V™>) when V>

N | —

1

Wg = —Ag(Wg)+V+0o(V™>=) when V< —3
- if pis an even function in the S variablé}{ is an even function in th§ variable.
- if pis an even function in th¥ variable,W{ is an odd function in th&’ variable.

en—1

« W7 is defined by the following problem

1 o, oWy oW, .
V- (uVWY) = — (VW( avOH 8]/0) in By

1?2 1

WP = +Ag(W) — —V— +o(V™>™°) when £V > -

Ry 2 2
- if ;1 is an even function in the S variablé{ is an even function in th& variable.
- if 1 is an even function in th¥ variable,W] is an odd function in th&’ variable.

« W is defined by the following problem

{V(wwll)L <8(“W8)+ 8W0> in By

Ry o8 oS
Wi =£A4,(W}) + (V) A (W) +0o(V™>°) when £V >1

where

1/2 1/2 aWo
A (Wy) = / / K
2R J i) apn” 08
- if u is an even function in the S variabl/! is an odd function in the variable.This implies
that Ag(Wi) =0
- if p is an even function in th& variable, W} is an even function in th& variable and so
Ao(Wi) =0
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E.3 Summary

The following tables summarize the previous remarks:

(u,p) S —even| (u,p) V —even
Vi odd even
vy even even
Vi odd odd
V$ even even
we even odd
w? even even
Wi odd odd

Table 1: Parity of,* andWW} according to the parity ofi(,p)

(1, p) S —even (k,p) V —even
Ao(V) 0 0
1/2 1 1 1
A9 | [ VI8 - SAT(VE) - AT (V) 0
,1/2 2 2 8
"1/2 1
Ao(V3) 0 | v ss
—12 2
1/2 1 1 1 1/2 1 1 1
A0(V2) V(58S - SAT(Z) - SAT02) | [ VRG50S - S AT (08) - SAF ()
71/2 2 2 8 71/2 2 8
1/2 1/2 1
—1/2 —1/2 2
0 1/2 0 1 1 1/2 0 1 1
Ag(W. WO(=,8)dS — — WO(=,8)dS — —
0( 1) 12 1(27 ) 8Ro 12 1(2a ) 8R0
Aog(WY) 0 0

Table 2: Parity ofd,(V,*) and Ay (V,*) with respect to the parity of,p)
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general case (1, p) S —even| (u,p) R —even
A (V) 0 0 0
1/2  f1/2 , 2 .
A(V3) %/1/2/1/2 %ds A (V) A(V3)
Ar(Vy) 0 0 0
12 p1/2 1 oVl
2y | = - 9 2 2
A4V 2fi00 ( /1/2/ 1/2 (Ro "8 ) deV) A0%) Az)
A (W) 1 1
A (WD) 0 0 0
1/2  ,1/2 8W0
Al(Wll) / 1/2/ 1/2 0 Al(Wll)

Table 3: Parity ofd; (W*) and A, (W) with respect to the parity ofif,p)
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