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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52695174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00394618v3


Brittle/quasi-brittle transition in dynamic fracture: An energetic signature
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3Facultad de Ingeniera Mecnica y Elctrica, Universidad Autnoma de Nuevo Len,

Ave. Universidad, S/N, Ciudad Universitaria, C.P. 66450, San Nicols de los Garza, NL, Mexico

Dynamic fracture experiments were performed in PMMA over a wide range of velocities and reveal
that the fracture energy exhibits an abrupt 3-folds increase from its value at crack initiation at a
well-defined critical velocity, below the one associated to the onset of micro-branching instability.
This transition is associated with the appearance of conics patterns on fracture surfaces that, in
many materials, are the signature of damage spreading through the nucleation and growth of micro-
cracks. A simple model allows to relate both the energetic and fractographic measurements. These
results suggest that dynamic fracture at low velocities in amorphous materials is controlled by the
brittle/quasi-brittle transition studied here.

PACS numbers: 46.50.+a, 62.20.M-, 61.43.-j

Dynamic fracture drives catastrophic material failures.
Over the last century, a coherent theoretical framework,
the so-called Linear Elastic Fracture Mechanics (LEFM)
has developed and provides a quantitative description of
the motion of a single smooth crack in a linear elastic
material [1]. LEFM assumes that all the mechanical en-
ergy released during fracturing is dissipated at the crack
tip. Defining the fracture energy Γ as the energy needed
to create two crack surfaces of a unit area, the instan-
taneous crack growth velocity v is then selected by the
balance between the energy flux and the dissipation rate
Γv. This yields [1]:

Γ ≃ (1− v/cR)K
2(c)/E, (1)

where cR and E are the Rayleigh wave speed and the
Young modulus of the material, respectively, and K(c) is
the Stress Intensity Factor (SIF) for a quasi-static crack
of length c. K depends only on the applied loading and
specimen geometry, and characterizes entirely the stress
field in the vicinity of the crack front.
Equation (1) describes quantitatively the experimental

results for dynamic brittle fracture at slow crack veloc-
ities [2]. However, large discrepancies are observed in
brittle amorphous materials at high velocities [3–6]. In
particular (i) the measured maximum crack speeds lie in
the range 0.5 − 0.6cR, i.e. far smaller than the limiting
speed cR predicted by Eq. (1) and (ii) fracture surfaces
become rough at high velocities (see [3, 4] for reviews).
It has been argued [7] that experiments start to depart
from theory above a critical vb ≃ 0.4cR associated to the
onset of micro-branching instabilities [8]: for v > vb the
crack motion becomes a multi-cracks state. This trans-
lates into (i) a dramatic increase of the fracture energy
Γ at vb, due to the increasing number of micro-branches
propagating simultaneously and (ii) a non-univocal rela-
tion between Γ and v [7]. The micro-branching instability
hence yielded many recent theoretical efforts [9]. How-

ever, a number of puzzling observations remain at smaller
velocities. In particular, even for velocities much lower
than vb, (i) the measured dynamic fracture energy is gen-
erally much higher than that at crack initiation [7, 10–
12] and (ii) fracture surfaces roughen over length scales
much larger than the microstructure scale (”mist” pat-
terns) [13], the origin of which remains debated [14, 15].

In this Letter, we report dynamic fracture experiments
in polymethylmethacrylate (PMMA), the archetype of
brittle amorphous materials, designed to unravel the pri-
mary cause of these last discrepancies. We show that
dynamic fracture energy exhibits an abrupt 3-folds in-
crease from its value at crack initiation at a well-defined
critical velocity va well below vb. This increase coincides
with the onset of damage spreading through the nucle-
ation and growth of micro-cracks, the signature of which
is the presence of conic patterns on post-mortem frac-
ture surfaces. A simple model for this nominally brittle
to quasi-brittle transition is shown to reproduce both the
energetic and fractographic measurements.

Dynamic cracks are driven in PMMA with measured
Young modulus and Poisson ratio of E = 2.8± 0.2 GPa
and ν = 0.36, which yields cR = 880 ± 30 m.s−1. Its
fracture energy at the onset of crack propagation was de-
termined to be K2

c
/E = 0.42 ± 0.07 kJ.m−2, with Kc

being the material toughness. Specimen are prepared
from 140× 125× 15 mm3 parallelepipeds in the x (prop-
agation), y (loading) and z (thickness) directions by cut-
ting a 25 × 25 mm2 rectangle from the middle of one
of the 125 × 15 mm2 edges and then cutting a 10 mm
groove deeper into the specimen (Fig. 1, bottom inset).
Two steel jaws equipped with rollers are placed on both
sides of the cut-out rectangle and a steel wedge (semi-
angle 15◦) is pushed between them at constant velocity
38 µm.s−1 up to crack initiation. In this so-called wedge
splitting geometry, the SIF K decreases with the crack
length c. To increase its value at crack initiation, and
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FIG. 1: Measured crack velocity v as a function of crack
length c in a typical experiment (U0 = 2.6 J). The verti-
cal lines are error bars. Top inset: Calculated quasi-static
SIF K as a function of c. Bottom inset: Schematics of the
Wedge-Splitting test.

therefore the initial crack velocity, a circular hole with a
radius ranging between 2 and 8 mm is drilled at the tip of
the groove to tune the stored mechanical energy U0. Dy-
namic crack growth with instantaneous velocities ranging
from 75 m.s−1 to 500 m.s−1 and stable trajectories are
obtained. The location c(t) of the crack front is measured
during each experiment (40 µm and 0.1 µs resolutions)
using a modified version of the potential drop technique:
A series of 90 parallel conductive lines (2.4 nm-thick Cr
layer covered with 23 nm-thick Au layer), 500 µm-wide
with an x-period of 1 mm are deposited on one of the x-y
surfaces of the specimen, connected in parallel and ali-
mented with a voltage source. As the crack propagates,
the conductive lines are cut at successive times, these
events being detected with an oscilloscope. The instan-
taneous crack velocity v(c) is computed from c(t), and
the instantaneous SIF K(c) is calculated using 2D finite
element calculations (software Castem 2007) on the exact
experimental geometry, assuming plane stress conditions
and a constant wedge position as boundary condition.

Values for the fracture energy Γ are obtained directly
from Eq. (1) by combining the v measurements and the
K calculations. Typical v(c) and K(c) curves are shown
in Fig. 1. The variations of Γ with v (Fig. 2) are found
to be the same in various experiments performed with
various stored mechanical energy U0 > 2.0 J at crack ini-
tiation. This curve provides evidence for three regimes,
separated by two critical velocities. For slow crack ve-
locities, Γ remains of the order of K2

c/E as expected
in LEFM. Then, as v reaches the first critical velocity
va ≃ 165m.s−1 = 0.19cR, Γ increases abruptly to a
value about 3 times larger than K2

c/E. Beyond va, Γ
increases slowly with v up to the second critical veloc-
ity, vb = 0.36cR ≃ 317 m.s−1 [7], above which Γ di-
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FIG. 2: (color online). Fracture energy Γ as a function of
crack velocity v for five different experiments with different
stored mechanical energies U0 at crack initiation: 2.0 (�), 2.6
(◦), 2.9 (♦), 3.8 (+) and 4.2 J (×). The two vertical dashed
lines correspond to va and vb. The two horizontal dashed lines
indicate the confidence interval for the measured fracture en-
ergy K2

c /E at crack initiation. Thick red line: model predic-
tion. Inset: Γ as a function of K2

d/E (see model) for the same
experiments. A crossover between two linear regimes (linear
fits in black lines) occurs at (K2

d/E = K2

a/E ≃ 1.2 kJ.m−2 ;
Γ = Γa ≃ 1.34 kJ.m−2).

verges again with v. This second increase corresponds to
the onset of the micro-branching instability, widely dis-
cussed in the literature [7, 8], whereas the first one, at
va, is reported here for the first time. The high slope of
Γ(v) around va provides a direct interpretation for the
repeated observation of cracks that span a large range of
Γ but propagate at a nearly constant velocity of about
0.2cR (see e.g. refs. [16, 17]).

The post-mortem fracture surfaces shed light on the
nature of the transition at v = va on the curve Γ(v).
Fig. 3 shows the surface morphology for increasing crack
velocity. For v < va, the fracture surfaces remain smooth
at the optical scale (Fig. 3(a), top). Above va conic
marks are observed (Figs. 3(b) and 3(c), top). They do
not leave any visible print on the sides of the specimens
(Fig. 3(b), bottom), contrary to the micro-branches that
develop for v ≥ vb (Fig. 3(c), bottom).

Similar conic marks were reported in the fracture
of many other amorphous brittle materials (see [4, 13]
and references therein), including polymer glasses, silica
glasses and polycrystals. Their formation is thought to
arise from inherent toughness fluctuations at the micro-
structure scale due to material heterogeneities randomly
distributed in the material [17, 18]. The enhanced stress
field in the vicinity of the main crack front activates some
of the low toughness zones and triggers the initiation of
secondary penny-shaped micro-cracks ahead of the crack
front. Each micro-crack grows radially under the stress
associated with the main crack along a plane different
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FIG. 3: Microscope images (×10) taken at (a) v = 120 ±

20 m.s−1, K2/E = 1 kJ.m−2 (b) v = 260±30 m.s−1, K2/E =
2 kJ.m−2 (c) v = 650 ± 100 m.s−1 (K2/E = 7 kJ.m−2). Top
line : fracture surfaces (0.5× 0.7 mm2 field of view). Bottom
line : sample sides (0.25 × 0.7 mm2 field of view). Crack
propagation is from left to right.

from it. When two cracks intersect in space and time,
the ligament separating them breaks up, leaving a visi-
ble conic marking on the post-mortem fracture surface.
Figure 4 shows the surface density of conic marks ρ as

a function of crack velocity v. Below va, no conic mark
is observed up to ×50 magnification, consistently with
[19]. Above va, ρ increases almost linearly with v − va.
The exact correspondence between the critical velocity
va at which Γ exhibits an abrupt increase and the veloc-
ity at which the first conic marks appear on the fracture
surfaces strongly suggests that both phenomena are as-
sociated with the same transition. The nucleation and
growth of micro-cracks can therefore be identified as the
new fracture mechanism that starts at va. This damage
process is generic in brittle materials and is relevant for
an even wider range of materials than those that exhibit
conic marks, e.g. granite [20].
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FIG. 4: (color online). Surface density ρ of conic marks as a
function of crack velocity for all experiments shown in Fig. 2.
Inset: ρ as a function of K2

d/E (linear fit in black line).

We now present a simple model reproducing the Γ(v)
curve between 0 and vb. We assume that linear elas-
ticity fails in the material when the local stress reaches

a yield stress σY . It defines a fracture process zone
(FPZ) around the crack tip, the size of which is given
by Rc(v) = K2

d
(c, v)/aσ2

Y
where a is a dimensionless con-

stant [15] andKd is the dynamic SIF. We consider that all
the dissipative phenomena (plastic deformations, crazing
or cavitation for instance) occur in the FPZ, with a vo-
lumic dissipated energy ǫ. The material is then assumed
to contain a volume density ρs of discrete ”source-sinks”
(SS, see e.g. [15] for previous uses of this concept). Each
SS is assumed to activate into a micro-crack if two condi-
tions are met: (i) the local stress reaches σY and (ii) the
SS is located at a distance from the crack tip larger than
da [21]. The nucleation of a micro-crack is assumed to
be accompanied by an excluded volume V where stress is
screened i.e. no SS can acivate anymore. In the follow-
ing, ρs, σY , ǫ, da and V are taken as constants through-
out the material. Three cases should be considered:
(I) - At the onset of crack propagation, all the volume
within Rc(v = 0) = K2

c
/aσ2

Y
contributes to the fracture

energy Γ(v = 0) = K2
c/E.

(II) - For v ≤ va, no micro-crack nucleates and Rc(v) =

Kd(c, v)
2
/aσ2

Y
< da. The dynamic SIF is then Kd(c, v) =

k(v)K(c) [1] where k(v) ≃ (1 − v/cR)/
√

1− v/cD is
universal and cD is the dilatational wave speed (here
cD=2010±60 m.s−1). The volume scanned by the FPZ
when the crack surface increases by S is 2Rc(v)S. The
dissipated energy Γ(v)S is given by γS+2ǫRc(v)S where
γ is the Griffith surface energy. Since Γ(v = 0) = K2

c/E,
one finally gets for v ≤ va:

Γ(v) = α
Kd(v)

2

E
+ (1− α)

K2
c

E
with α =

2ǫE

aσ2
Y

. (2)

This predicted linear dependence of Γ with Kd
2/E for

v ≤ va is in agreement with measurements (Fig. 2, inset).
A linear fit to the data (correlation coefficient R=0.985)
gives α=1.17±0.05 and K2

c
/E=0.3±0.2 kJ/m2, where ±

stands for 95% confidence interval. The latter value
is compatible with the measurements of the fracture
energy at crack initiation. By combining Eqs. (1)
and (2), one gets a prediction for the Γ(v) curve [22]
that reproduces very well the low velocity regime in
Fig. 2. Extrapolation of this regime [22] exhibits a
divergence of the dissipated energy for a finite veloc-
ity v′

a
=(α − 1)cRcD/(αcD − cR) ≃200 m.s−1 ≃0.23cR,

slightly larger than va. In the absence of micro-cracks,
this velocity v′

a
would have therefore set the limiting

macroscopic crack velocity.
(III) - For v ≥ va, Rc(v) ≥ da i.e. micro-cracks start to
nucleate. The surface density of micro-cracks ρ(v) is then
equal to the number of activated SS beyond da per unit
of fracture area, i.e. ρs {2 [Rc(v)−Rc(va)]− ρV } where
the third term in the parenthesis stands for the excluded
sites around micro-cracks. This yields:

ρ(v) = β
Kd(v)

2 −K2
a

E
with β =

2E

aσ2
Y

ρs
1 + ρsV

(3)
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where Ka=Kd(va). This linear relationship is in good
agreement with the measurements for ρ(K2

d
/E) before

the micro-branching onset, beyond which ρ saturates
(Fig. 4, inset). A fit to the data (R=0.877) between
Ka and Kb = Kd(vb) gives β =33±3 J−1. In the micro-
cracking regime, the local dynamic SIF Kd is not equal
to the macroscopic one anymore, but corresponds to that
at the individual micro-crack tips, at which the limiting
velocity is expected to be v′

a
& va. It is then natural to

assume that all micro-cracks propagate at the same ve-
locity va, which yields Kd(v) = k(va)K [23]. The energy
Γ(v)S dissipated when the crack surface increases by S
is γS + ǫ [2Rc(v)S − ρ(v)SV ], yielding:

Γ(v) = Γa + χ
Kd(v)

2 −K2
a

E
with χ =

2ǫE/aσ2
Y

1 + ρsV
(4)

where Γa = Γ(va). Eq. (4) predicts a linear dependence
of Γ with K2

d
/E, in agreement with the measurements for

K2
d
/E > K2

a/E (Fig. 2, inset). A linear fit to the data
between Ka and Kb = Kd(vb) gives χ = 0.67±0.01. The
corresponding predicted Γ(v) curve [22] reproduces very
well the intermediate velocity regime va < v < vb (Fig.
2) and exhibits a divergence of the dissipated energy for
v∞ = cR(1 − χk(va)

2) ≃ 450 m.s−1 ≃ 0.52cR. This
limiting velocity is very close to the observed maximum
crack speed in brittle amorphous materials.
This simple scenario allows to illustrate how material

defects control the dynamic fracture of amorphous solids
before the onset of micro-branching. For v < va, the
mechanical energy released at the crack tip is dissipated
into both a constant surfacic energy and a volumic en-
ergy within the FPZ, the size of which increases with
crack speed. With this mechanism alone, the crack speed
would be limited to a value slightly larger than va. But
damage spreading through micro-cracking makes possi-
ble to observe much larger velocities: The crack propa-
gates through the nucleation, growth and coalescence of
micro-cracks, with a macroscopic effective velocity that
can be much larger than the local velocity of each micro-
crack tip [17, 24]. We suggest that micro-cracks in them-
selves do not increase dissipation, but rather decrease it
by locally screening the stress. At velocities larger than
vb, micro-branches contribute to the dissipated energy
proportionally to their surface [25]. We emphasize that
the nominally brittle to quasi-brittle transition occurring
at va is very likely to be generic for amorphous solids
and should therefore be taken into account in future con-
ceptual and mathematical descriptions of dynamic frac-
ture. In this respect, Continuum Damage Mechanics
(CDM) [26] initially derived for ”real” quasi-brittle ma-
terials like ceramics or concrete may be relevant to de-
scribe fast crack growth in nominally brittle materials. In
particular, a better understanding of the relationship be-
tween the dynamics of propagation of both the individual
micro-cracks and the macroscopic crack is still needed.
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