Dimensionality cross-over in magnetism: from domain walls (2D) to vortices (1D)

Aurélien Masseboeuf, Olivier Fruchart, Jean-Christophe Toussaint, Evaggelos
Kritsikis, L. D. Buda-Prejbeanu, Fabien Cheynis, Pascale Bayle-Guillemaud, A. Marty

To cite this version:

Aurélien Masseboeuf, Olivier Fruchart, Jean-Christophe Toussaint, Evaggelos Kritsikis, L. D. Buda-Prejbeanu, et al.. Dimensionality cross-over in magnetism: from domain walls (2D) to vortices (1D). Physical Review Letters, American Physical Society, 2010, 104, pp. 127204. $<10.1103 /$ PhysRevLett.104.127204>. <hal-00416725v2>

HAL Id: hal-00416725
 https: / /hal.archives-ouvertes.fr/hal-00416725v2

Submitted on 17 Mar 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Dimensionality cross-over in magnetism: from domain walls (2D) to vortices (1D)

A. Massebœuf, ${ }^{1}$ O. Fruchart, ${ }^{2, *}$ J. C. Toussaint, ${ }^{2,3}$ E. Kritsikis, ${ }^{2,3,4}$ L. Buda-Prejbeanu, ${ }^{4}$ F. Cheynis, ${ }^{2}$ P. Bayle-Guillemaud, ${ }^{1}$ and A. Marty ${ }^{5}$
${ }^{1}$ CEA-Grenoble, INAC/SP2M/LEMMA, 17 rue des Martyrs, Grenoble, France
${ }^{2}$ Institut NÉEL, CNRS \& Université Joseph Fourier - BP166 - F-38042 Grenoble Cedex 9 - France
${ }^{3}$ Institut National Polytechnique de Grenoble - France
${ }^{4}$ SPINTEC, URA 2512, CEA/CNRS, CEA/Grenoble, 38054 Grenoble Cedex 9, France
${ }^{5}$ CEA-Grenoble, INAC/SP2M/NM, 17 rue des Martyrs, Grenoble, France

(Dated: June 14, 2010)

Abstract

Dimensionality cross-over is a classical topic in physics. Surprisingly it has not been searched in micromagnetism, which deals with objects such as domain walls (2D) and vortices (1D). We predict by simulation a second-order transition between these two objects, with the wall length as the Landau parameter. This was confirmed experimentally based on micron-sized flux-closure dots.

Dimensionality cross-over is a rich topic in theoretical and experimental physics. It has been widely addressed in the frame of phase transition and critical exponents, $e . g$. in magnetism[1, 2]. Beyond this microscopic level it is known that materials in an ordered state may be split in domains[3]. In the study of magnetization configurations, a field known as micromagnetism, objects have tentatively been classified according to their dimensionality. Magnetic domains are 3D, Domain walls (DWs) are 2D, Bloch lines (i.e. so-called either vortices or anti-vortices) are 1D, Bloch points are $0 \mathrm{D}[4,5]$. Each class may serve as a boundary to the class of immediately-greater dimensionality: DWs are found at domain boundaries, Bloch lines inside domain walls to separate areas with opposite winding $[3,5]$, and Bloch points separate two parts of a vortex with opposite polarities [4, 6]. Beyond magnetism, the notions of DWs and vortices are shared by all states of matter ordered with a unidirectional order parameter, i.e. characterized by a vector field \mathbf{n} with $|\mathbf{n}|=1$. Liquid crystals in the nematic state have a uniaxial order parameter. A strict analogue of magnetic materials is the common case of slabs with anchoring conditions at both surfaces: upon application of a magnetic or electric field perpendicular to the easy axis of anchoring a breaking of symmetry occurs known as the Fredericks transition[7], transforming the order parameter in a unidirectional one. In this case both 180° domain walls and vortices occur $[8,9]$, whose dynamics, topology and annihilation are being studied [10].

The study of magnetic DWs and vortices as objects that can be moved[11] and modified[12-15] in their inner structure is a timely topic, driven by proposals of their use in memory[16] and logic[17] devices. Despite this and the established dimensional classification abovementioned, surprisingly the possibility of a dimensionality cross-over between a DW and a vortex has not been addressed. Thus, beyond the aesthetics physical issue of dimensionality crossover, the knowledge of how a DW
*Olivier.Fruchart@grenoble.cnrs.fr
(a)

(c)

(d)

FIG. 1: Simulated magnetization states in flat $\mathrm{Fe}(110)$ dots with size (a) $500 \times 500 \times 50 \mathrm{~nm}$: vortex state and (b) $500 \times 750 \times$ 50 nm : Landau state consisting of a Bloch wall separating two antiparallel domains. The color stands for the direction of magnetization along z, see right scale. In these open views the only parts displayed as volumes are those were m_{z} is greater than 0.5. This highlights the central vortex or Bloch wall (red) and the magnetization areas close to the vertical edges of the prisms (blue). At all other places the surface displays magnetization in the mid-height plane. (c-d) Views in the $x z$ plane, corresponding to the framed areas in a-b, respectively.
may switch reversibly to a magnetic vortex should have a great importance in understanding and controlling their static and dynamic features. This transition has not been described either in analogous cases such as liquid crystals.
In this Letter we report on a dimensionality cross-over from a DW (2D) to a vortex (1D). Although exemplified in the particular case of magnetic materials, this effect should occur in any state of matter characterized with a unidirectional order parameter. It should be noted that a dimensionality cross-over was recently reported for the dynamics of motion of a domain wall along a stripe, whose behavior changes from two-dimensional pinning to one-dimensional pinning on structural defects when the width of the stripe is reduced below typically the distance between major pinning sites[18]. This process however
is very different, since it pertains to dynamic processes, and also is extrinsic because it relies on structural defects which depend on the material, method of deposition, and nanofabrication.

For our demonstration we considered epitaxial micronsized magnetic dots in a flux-closure state. Depending on the dot geometry (size and aspect ratio), the flux may be closed around a vortex[12] or a DW of finite length[19]. The use of an epitaxial material ensures that the results are not biased by microstructural pinning. Besides the dots display sharp and well-defined edges, so that their dimensions can be measured with accuracy. It is known that the topology of Bloch DW of finite length and of vortices is identical, the former being obtained from the latter by a continuous deformation[19-21]. Thus the question of a transition from a DW to a magnetic vortex arises naturally. We first show by simulation that a wall tends to collapse into a vortex at a critical length of a few tens of nanometers. The transition is of second order, with the wall length as the order parameter. This is confirmed quantitatively by experiments based on micron-sized selfassembled epitaxial dots, both with the dot geometry and an external magnetic field as the driving parameter, showing the generality and robustness of the transition.

Let us describe our methods. Micromagnetic simulations of prisms were performed using GL_FFT, a finitedifferences code[23]. The cell size was $3.91 \times 3.91 \times$ 3.13 nm or lower and the parameters for bulk Fe were used with an $\mathrm{Fe}(110)$ orientation[15]. Simulations of trigonal fcc $\mathrm{Co}(111)$ dots were performed using Feellgood, a finite-elements code[24]. The mean cell size was 2.6 nm . Both codes have been custom-developed and are based on the temporal integration of the Landau-LifshitzGilbert equation. The experimental systems consist of self-assembled micron-size $\mathrm{Co}(111)[22]$ and $\mathrm{Fe}(110)[15]$ dots, epitaxially-grown under ultra-high vacuum using pulsed-laser deposition[25]. These were grown on a single-crystalline 10 nm -thick W buffer layer deposited on sapphire ($11 \overline{2} 0$) wafers, and capped with a 5 nm thick Au layer to prevent oxidation. The wafer was then thinned by mechanical polishing and ion milling. Lorentz microscopy was performed in the Fresnel mode using a JEOL 3010 microscope equipped with a GATAN imaging filter. In this mode DWs (resp. vortices) are highlighted as dark or bright lines (resp. dots) depending on the chirality of magnetization curling around the DW/vortex[26]. The image are formed with a dedicated mini-lens, while an axial magnetic field can be added using the conventional objective lens.

We first present the results of simulation. As a textbook case we consider flat prismatic dots with fixed height-over-width ratio 0.2 and thickness 50 nm and above. The prismatic shape and use of finite differences ensure high accuracy results for the description of the phase transition. The length, taken along the in-plane $\mathrm{Fe}[001]$ direction, is varied from 1 to 1.5 with respect to the width. As expected for elongated dots of such thickness[19-21] a Landau state occurs, dis-

FIG. 2: (a) Open symbols: length of the Bloch wall in the simulated Landau state in an $\mathrm{Fe}(110)$ dot of thickness 50 nm , plotted versus the dot lateral asymmetry Δl (length minus width, see inset sketch). Linear line with slope +1 : wall length in the simple geometrical Van den Berg model (black line). Dotted line: asymptotic extrapolation from long dot, whose intercept with the x axis defines the total collapsed. Inset: squared length of Bloch wall, same x axis. (b) Similar simulations based on a Co(111) dot, here 50 nm-thick. The inset shows the detailed facetted shape of these dots[22].
playing two main longitudinal domains separated by a Bloch DW (FIG. 1b,d). The DW displays perpendicular magnetization in its core, while it is terminated at each surface by an area with in-plane magnetization, the Néel caps[27]. At each end of the DW the magnetic flux escapes through a surface vortex. We define the length of the DW as the distance between the projections into the film plane of the locii of these two vortices (FIG. 1d). From this definition a vortex is a DW with zero length, such as found e.g. for a dot with a square base (FIG. 1a,c). Series of simulations of the equilibrium state for variable dot length were performed. At each stage the magnetization map is stretched or compressed along the length to serve as a crude input for the map of the next value of length, for which the equilibrium state is again calculated. The series was performed once with rising length, then again with decreasing length back to the square base. This yielded identical results, ruling out the possibility of metastable configurations biasing the results. To avoid discretization artifacts the
number of cells was kept constant for all simulations of a dot of given height. The length of each cell was varied progressively to fit the dot length. The dependence of the DW length with the dot length is shown on FIG. 2a. For largely elongated dots the wall length increases linearly with slope 1. In this regime the two surface vortices are sufficiently apart one from another to have a negligible interaction. Their position is essentially determined by the minimization of the energy of the triangular closure domain along the two short sides of the dot. On the reverse in the low-length regime the DW length decreases faster than slope 1 , so that the vortex state is reached before the dot has a square base. We define the collapsed length as the difference between the length of dot upon the collapse and the asymptotic linear variation of wall length for an elongated dot (FIG. 2a). Plotting the square of the DW length versus the dot length reveals a linear variation. The cross-over is therefore Landau-like, i.e. of second order. Such transitions are associated with a breaking of symmetry, which in the present case is whether the top surface vortex shifts towards $+x$ or $-x$. The results are qualitatively similar for other thicknesses. FIG. 2b shows the results of similar finite-element simulations applied to trigonal Co(111) dots also 50 nm -thick, which display the very same physics. This suggests that the cross-over is a general phenomenon, independent from the exact shape of the system.

These predictions have been confirmed experimentally. We first consider self-assembled face-centered cubic Co(111) dots. These have a trigonal symmetry reflecting their crystalline structure, with a base close to a regular hexagon (FIG. 3b)[22]. Whereas previous studies on such systems were dealing with very thin dots thus found in a nearly single-domain state[28], the thickness of our dots is in the range $50-200 \mathrm{~nm}$ inducing fluxclosure states around a DW or vortex. These dots are perfectly suited for our needs because owing to the natural spread of shape occurring in self-assembly we can study the length of DWs as a function of the dot aspect ratio, by a statistical investigation of an assembly of dots over the same sample. For each dot we measured the experimental DW length, and computed the expected DW length predicted by the simple Van den Berg geometrical construction. This construction is relevant for vanishing thickness and infinite dimensions[29], and equals the dot asymmetry used in the simulations so that a direct comparison with the data of FIG. 2 is possible. FIG. 3b summarizes this analysis, performed over more than 30 dots. The collected results are quantitatively consistent with the simulation predictions. The experimental spread of points may be attributed first to errors in the measurement of both the DW length and dot dimensions, second to the spread of dot thickness as the collapsing length slightly depends on the thickness. Despite this spread, it shall be noticed that only vortices are observed when the expected length lies below 40 nm . This cannot be attributed to an experimental limitation to identify short DWs, as many DWs with length be-

FIG. 3: (a) True Z-scale 3D view of a $6 \times 6 \mu \mathrm{~m}$ AFM image of self-assembled Co(111) dots (b) Open symbols: DW length measured in $\mathrm{Co}(111)$ dots plotted versus the length expected from the geometrical Van den Berg construction. The predictions from simulations for the estimated thickness of the dot 116 nm are superimposed without adjustment, as guide to the eye, both for $\mathrm{Fe}(110$ (dotted line) and $\mathrm{Co}(111)$ (full line). Insets: typical Co dot displaying a vortex (upper left) along with the associated construction predicting a DW (lower right, central blue line).
low 40 nm have been measured. These however all lie for expected wall length above 40 nm . These correlations lie above statistical fluctuations, which unambiguously demonstrates the collapse of DWs towards vortices in a quantitative agreement with simulations.

To demonstrate the generality and robustness of the vortex-DW transformation we now consider an external field as the driving parameter for the transition. In this case we use $\mathrm{Fe}(110)$ dots, which by their crystallographic nature are elongated [25] (FIG. 4a). Upon applying the saturating field with a tilt angle of a few degrees with respect to the normal to the plane, and the in-plane component oriented along its short length, the dot can be prepared in a diamond state, i.e. consisting of two fluxclosure parts with opposite chiralities (FIG. 4b). It happens that the application of a tilted field of moderate magnitude affects the length of the DWs (FIG. 4c) in a continuous way. The length of the DW to the right of the dot decreases with increasing field. When its reaches $21 \pm 3 \mathrm{~nm}$, which is comparable to the collapse length mentioned above, a stochastic switching was observed in real time between a Bloch wall and a vortex state with a characteristic time constant of 100 ms (see supplementary material). We ascribe this as a confirmation of the

FIG. 4: (a) True Z-scale 3D AFM view of a typical Fe(110) dots, along with the geometry of the applied field. (b) map of the in-plane magnetization of a similar dot found in the diamond state, reconstructed from Fresnel images taken at different defocusing. (c) Series of Fresnel images of the same dot taken under a magnetic field applied tilted towards y. The labels indicate the value of the y component of the field.
attraction of the top and bottom surface vortices, being the driving force for the transition.

To conclude we addressed the dimensionality crossover of a magnetic domain wall (DW, 2D) into a magnetic vortex (1D). Simulations and experiments agree quantitatively that DWs collapse into vortices at a critical length of a few tens of nanometers, which reveals a short-ranged attractive force between the two ends of a DW. Beyond physics aesthetics, our investigation should prove useful when analyzing the increasing number of experiments dealing with the behavior of domain walls and vortices under the effect of pulsed magnetic fields or spinpolarized currents, which undergo complex variations of shape and length during their dynamics. This includes the case of e.g. the vortex state, where a domain wall dynamically replaces the vortex[30], or the multiplication of vortices or transformation of the type of domain wall in magnetic stripes[31, 32].

References

${ }^{1}$ N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
${ }^{2}$ P. Poulopoulos and K. Baberschke, J. Phys.: Condens. Matter 11, 9495 (1999).
${ }^{3}$ A. Hubert and R. Schäfer, Magnetic domains. The analysis of magnetic microstructures (Springer, Berlin, 1999),
${ }^{4}$ W. Döring, J. Appl. Phys. 39, 1006 (1968).
${ }^{5}$ A. S. Arrott and T. L. Templeton, Physica B 233, 259 (1997).
${ }^{6}$ A. Thiaville, J. M. García, R. Dittrich, J. Miltat, and T. Schrefl, Phys. Rev. B 67, 094410 (2003).
${ }^{7}$ H. Zocher, Trans. Faraday Soc. 29, 945 (1933).
${ }^{8}$ F. Brochard, J. Phys. 33, 607 (1972).
${ }^{9}$ P. G. de Gennes, The physics of liquid crystals (Oxford, 1974),
${ }^{10}$ C. Blanc, D. Svensek, S. Zumer, and M. Nobili, Phys. Rev. Lett. 95, 097802 (2005).
11 J. Grollier, P. Boulenc, V. Cros, A. Hamzic, A. Vaurès, A. Fert, and G. Faini, Appl. Phys. Lett. 83, 509 (2003).
${ }^{12}$ T. Okuno, K. Shigeto, T. Ono, K. Mibu, and T. Shinjo, J. Magn. Magn. Mater. 240, 1 (2002).
${ }^{13}$ B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back, and G. Schütz, Nature 444, 461 (2006).
${ }^{14}$ R. Hertel, S. Gliga, M. Fähnle, and C. M. Schneider, Phys. Rev. Lett. 98, 117201 (2007).
${ }^{15}$ F. Cheynis, A. Masseboeuf, O. Fruchart, N. Rougemaille, J. C. Toussaint, R. Belkhou, P. Bayle-Guillemaud, and A. Marty, Phys. Rev. Lett. 102, 107201 (2009).
16 J.-G. Zhu, Y. Zheng, and G. A. Prinz, J. Appl. Phys. 87, 6668 (2000).
17 D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D.

Petit, and R. P. Cowburn, Science 309, 1688 (2005).
18 K.-J. Kim, J.-C. Lee, S.-M. Ahn, K.-S. Lee, C.-W. Lee, Y. J. Cho, S. Seo, K.-H. Shin, S.-B. Choe, and H.-W. Lee, Nature 458, 740 (2009).
${ }^{19}$ P. O. Jubert, J. C. Toussaint, O. Fruchart, C. Meyer, and Y. Samson, Europhys. Lett. 63, 132 (2003).

20 A. S. Arrott, B. Heinrich, and A. Aharoni, IEEE Trans. Magn. 15, 1228 (1979).
${ }^{21}$ R. Hertel and H. Kronmüller, Phys. Rev. B 60, 7366 (1999).

22 O. Fruchart et al. (unpublished).
23 J. C. Toussaint, A. Marty, N. Vukadinovic, J. Ben Youssef, and M. Labrune, Comput. Mater. Sci. 24, 175 (2002).
${ }^{24}$ E. Kritsikis and J.C. Toussaint and O. Fruchart and L.D Buda-Prejbeanu, to be published.
${ }^{25}$ O. Fruchart, M. Eleoui, P. O. Jubert, P. David, V. Santonacci, F. Cheynis, B. Borca, M. Hasegawa, and C. Meyer, J. Phys.: Condens. Matter 19, 053001 (2007).
${ }^{26}$ J. N. Chapman, J. Phys. D: Appl. Phys. 17, 623 (1984).
27 A. Hubert, Phys. Stat. Sol. 32, 519 (1969).
${ }^{28}$ D. Li, C. Yu, J. Pearson, and S. D. Bader, Phys. Rev. B 66, $020404(\mathrm{R})$ (2002).
29 H. A. M. Van den Berg, J. Magn. Magn. Mater. 44, 207 (1984).

30 D.H. Kim, B.L. Mesler, E. Anderson, P. Fischer, J.-H. Moon and K.J. Lee, (2010) under review.
${ }^{31}$ Y. Nakatani, A. Thiaville, and J. Miltat, Nat. Mater. 2, 521 (2003).
${ }^{32}$ M. Kläui, M. Laufenberg, L. Heyne, D. Backes, U. Rüdiger, C. A. F. Vaz, J. A. C. Bland, L. J. Heyderman, S. Cherifi, A. Locatelli, T. O. Mentes, and L. Aba, Appl. Phys. Lett. 88, 232507 (2006).

