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Effective three-body interactions in nuclei

P. Van Isacker1 and I. Talmi2

1 GANIL, CEA/DSM–CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5, France
2 Weizmann Institute of Science, Rehovot, Israel

PACS 21.30.-x – Nuclear forces
PACS 21.60.Cs – Shell model
PACS 21.45.Ff – Three-nucleon forces

Abstract. - It is shown that the three-body forces in the 1f7/2 shell, for which recently evidence
was found on the basis of spectroscopic properties of the Ca isotopes and N = 28 isotones, can
be most naturally explained as an effective interaction due to excluded higher-lying shells, in
particular the 2p3/2 orbit.

According to the shell model, the ground state of 40Ca
with Z = 20 protons and N = 20 neutrons has completely
filled 1s, 1p, 1d and 2s proton and neutron orbits. Valence
neutrons from N = 21 on occupy the 1f7/2 orbit which is
closed at the magic number N = 28. Similarly, protons
added to the magic nucleus 48Ca occupy the proton 1f7/2
orbit. A natural description in the shell model of nuclei in
this mass region is therefore obtained by restricting neu-
trons and protons to the 1f7/2 orbit, an approach which
was extensively used in the past [1–4]. From the energy
levels of nuclei where these neutron and proton orbits are
filled, it is evident that there must be strong perturba-
tions from higher configurations. The features predicted
for relative positions of levels by using two-body effective
interactions between the protons and between the neu-
trons, are only roughly obeyed. This is not surprising
due to the proximity of higher orbits. In 41Ca, the 3/2−

level, associated with the 2p3/2 orbit, lies only about 2
MeV above the 7/2− ground state. Effects of configura-
tion mixing have been considered many years ago for the
calcium isotopes [5, 6] and for the N = 28 isotones [7, 8]
with results that turned out to be in rather good agree-
ment with experiment.

Effective interactions are determined by the model
spaces for which they are intended. If pure (1f7/2)

n config-
urations are adopted, two-body interactions do not yield
good agreement with experiment. Hence, three-body ef-
fective interactions have been introduced [9, 10]. This ap-
proach may well reproduce level energies in a better way.
The pure 1f7/2 nuclear states, however, will be only an
approximation to the correct shell-model states. Even if
effective operators, other than the Hamiltonian may pro-

vide some help, they cannot provide information on more
complicated processes like beta decay. Recently, a detailed
discussion of the effects of three-body interactions on var-
ious spectroscopic observables was presented by Zelevin-
sky [11].

Recently, three-body interactions were introduced, in
addition to two-body ones, for dealing with the proton
and neutron 1f7/2 shells [12]. The author considers his
results as a “manifestation of three-body forces in 1f7/2-
shell nuclei”. The good agreement he obtains could be
evidence of such forces if the 1f7/2 shell was a pure one.
Even within the shell model, whose wave functions are
not the real ones, the 1f7/2 shells are strongly perturbed.
Such three-body interactions play a role only if the space
used is a pure 1f7/2 shell. It may happen that introducing
four-body and higher interactions will improve the fit to
the data [10] but this will imply a severe loss of predictive
power. It seems to us that it is more reasonable to consider
possible interactions with higher configurations. Attempts
in this direction were made in the past and good agreement
with experiment has been obtained by using only two-
body forces. In fact, we aim to show that the effect of
mixing with nearby configurations leads to a three-body
effective interaction rather similar to those of ref. [12].

The effect of perturbations of the pure 1f7/2 shell, due
to two-body effective interactions, may assume the form
of additional two-body interactions as well as three-body
ones. Such effects were considered in the past in atomic
spectroscopy [13,14]. The aim of this note is to derive, by
adopting a simple approximation, these additional two-
body and three-body interactions arising from second-
order perturbations. In pure (7/2)n configurations, all
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eigenstates have definite seniority for any two-body inter-
action. There is experimental evidence that the two lowest
J = 4 levels in 52Cr are mixtures of states with seniorities
v = 2 and v = 4. This seniority mixing was obtained in
ref. [12] by using a three-body interaction. This mixing,
however, was obtained in refs. [7,8] due to mixing of these
states with those obtained by raising one 1f7/2 proton into
the 2p3/2 orbit.

Consider first the jn configuration. The two-body in-
teraction V̂ is taken to be a perturbation on the single-
nucleon Hamiltonian. The first-order contribution of V̂ is
its expectation value in the states considered. In second
order, the contribution to the energy of the state aJ of the
jn configuration is given by

∑

c

〈aJ |V̂ |cJ〉〈cJ |V̂ |aJ〉
E(aJ)− E(cJ)

, (1)

where the summation is over all states cJ which have non-
vanishing matrix elements with the state aJ . Such states
are in configurations which differ from that of aJ in single-
nucleon states of at most two nucleons. These are the
jn−1j′ and jn−2j′j′′ configurations. It is well known that
contributions of the interaction with the latter configu-
rations yield, in second-order perturbation, effective two-
body interactions. In the following, the contributions of
configurations cJ which differ from the aJ configuration
by the state of one nucleon will be considered.

The energies of all states of the jn−1j′ configuration cJ
may differ by small amounts in the difference E(aJ) −
E(cJ). In such cases it may be a good approximation to
replace this difference by a constant term, independent of
the quantum numbers which characterize the state with
the given J in the excited configuration c. It is then pos-
sible to carry out the summation over all states cJ . In
the following we make this approximation and we also as-
sume that the energy differences in (1) are the same for all
states in the aJ configuration for any number n of (iden-
tical) nucleons. This is in accordance with the strict rules
of perturbation theory where these differences are deter-
mined only by the single-nucleon Hamiltonian. It is a very
good approximation for electron states in atoms; in nuclei,
it is not expected to be a very good one.

Using second quantized operators, explicit expressions
may be obtained for the resulting two-body and three-
body operators. The part of the Hamiltonian which con-
nects the jn and jn−1j′ configurations is given by [15]

∑

JM

〈j2J |V̂ |jj′J〉A†(jj′JM)A(jjJM), (2)

where A(jj′JM) =
(

A†(jj′JM)
)†

and

A†(jj′JM) =
1

√

1 + δjj′

∑

mm′

(jmj′m′|jj′JM)a†jma†j′m′ .

(3)

From the formula (1), applied to the intermediate config-
urations cJ of the type jj′J and assuming equal denomi-
nators, the following sums are obtained:

∑

M1M2

〈j2J1|V̂ |jj′J1〉A†(jjJ1M1)A(jj
′J1M1)

×〈j2J2|V̂ |jj′J2〉A†(jj′J2M2)A(jjJ2M2). (4)

With the help of the anti-commutation relations between
creation and annihilation operators as well as some tensor
algebra identities, this expression can be evaluated. The
result is the sum of a two-body interaction

∑

JM

|〈j2J |V̂ |jj′J〉|2A†(jjJM)A(jjJM), (5)

and a three-body one

∑

J1J2JM

〈j2J1|V̂ |jj′J1〉〈j2J2|V̂ |jj′J2〉
{

j J1 j′

j J2 J

}

×[A†(jjJ1)× a†j]
(JM)[A(jjJ2)× aj ]

(JM). (6)

Instead of using these expressions, it is simpler to reduce
the matrix elements in the jn configuration to those in the
j2 and j3 configurations, where the calculation of matrix
elements is straightforward. These matrix elements define
uniquely the operators. To calculate matrix elements be-
tween states aJ and bJ in the jn configuration one may
use the expansion [15]

Ψ(jnaJ) =
∑

a0J0

[jn−1(a0J0)jJ |}jnaJ ]Ψ(jn−1(a0J0)jnJ),

(7)
where [jn−1(a0J0)jJ |}jnaJ ] are coefficients of fractional
parentage (c.f.p.) which express the anti-symmetric n-
particle wave function Ψ(jnaJ) in terms of an anti-
symmetric (n−1)-particle wave function Ψ(jn−1a0J0) cou-
pled with that of the nth particle jn to total angular mo-
mentum J . Since this wave function, as well as the one
of the bJ state, is fully antisymmetric, it is possible to
replace the matrix element of any two-body interaction
V̂ =

∑

ik V̂ik by V̂12 multiplied by n(n− 1)/2, the number
of such terms. Thus, we obtain

〈jnaJ |V̂ |jnbJ〉

=
n(n− 1)

2
〈jnaJ |V̂12|jnbJ〉

=
n(n− 1)

2

∑

a0b0J0

〈jn−1a0J0|V̂12|jn−1b0J0〉

×[jn−1(a0J0)jJ |}jnaJ ][jn−1(b0J0)jJ |}jnbJ ]
=

n

n− 2

∑

a0b0J0

〈jn−1a0J0|V̂ |jn−1b0J0〉

×[jn−1(a0J0)jJ |}jnaJ ][jn−1(b0J0)jJ |}jnbJ ].(8)

This procedure may be further applied to the matrix ele-
ments in the jn−1 configuration until the j2 configuration
is reached.
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Similarly, it is possible to apply this procedure to any
three-body interaction V̂ =

∑

ijk V̂ijk and to replace it

by n(n − 1)(n − 2)V̂123/6. Using c.f.p., it is possible to
calculate matrix elements in the jn configuration in terms
of matrix elements in the jn−1 configuration. Thus, we
obtain

〈jnaJ |V̂ |jnbJ〉

=
n(n− 1)(n− 2)

6
〈jnaJ |V̂123|jnbJ〉

=
n(n− 1)(n− 2)

6

∑

a0b0J0

〈jn−1a0J0|V̂123|jn−1b0J0〉

×[jn−1(a0J0)jJ |}jnaJ ][jn−1(b0J0)jJ |}jnbJ ]
=

n

n− 3

∑

a0b0J0

〈jn−1a0J0|V̂ |jn−1b0J0〉

×[jn−1(a0J0)jJ |}jnaJ ][jn−1(b0J0)jJ |}jnbJ ]. (9)

This procedure may be continued until the j3 configura-
tion is reached.
Let us now turn to the calculation of the effective inter-

action in the j2 and j3 configurations, due to additional
shells j′ that are not explicitly taken into account. The
two-body operators may be obtained from perturbation
theory in the two-nucleon configuration. The contribu-
tion in second-order perturbation to the j2 configuration
in a state with spin J0 can be simply calculated from (1)
and is given by

∑

j′

|〈j2J0|V̂ |jj′J0〉|2
E(j2J0)− E(jj′J0)

, (10)

where the matrix elements of the interaction V̂ are be-
tween anti-symmetric and normalized states 〈j2J0| and
|jj′J0〉.
To obtain the matrix elements of the three-nucleon con-

tribution, the j3 configuration should be considered. Re-
sults of perturbations of states in the j3 configuration may
be calculated as follows. Anti-symmetric and normalized
cJ states may be expressed as

Ψ(j2(J1)j
′J) =

1√
3

(

Ψ(j2(J1)j
′
3J)−Ψ(j2(J1)j

′
1J)

−Ψ(j2(J1)j
′
2J)

)

. (11)

The matrix element of V̂ = V̂12 + V̂13 + V̂23 between the
fully anti-symmetric states |aJ〉 ≡ |j3aJ〉 and |cJ〉 ≡
|j2(J1)j′J〉 is equal to the matrix element of 3V̂12 and
hence is given by

−
√
3
∑

J0

[j2(J0)jJ |}j3aJ ]〈j2(J0)j3J |V̂12|j2(J1)j′1J〉

−
√
3
∑

J0

[j2(J0)jJ |}j3aJ ]〈j2(J0)j3J |V̂12|j2(J1)j′2J〉.

(12)

To evaluate the first sum it is convenient to carry
out a change of coupling transformation on the state
|j3j2(J1)j′1J〉 = −|j2j3(J1)j′1J〉,

|j2j3(J1)j′1J〉 =
∑

J2

(−1)j+j′+J1+J2 Ĵ1Ĵ2

×
{ j J2 J

j′ J1 j

}

|j2j′1(J2)j3J〉, (13)

where Ĵi ≡
√
2Ji + 1. The integration over j3 can be

carried out and yields the non-vanishing terms in which
the equality J2 = J0 must hold, as follows

√
3(−1)j+j′

∑

J0

Ĵ0Ĵ1[j
2(J0)jJ |}j3aJ ]

×
{

j J0 J
j′ J1 j

}

〈j2J0|V̂ |j2j′1J0〉. (14)

Similarly, the second summation in (12) yields the follow-
ing result:

−
√
3(−1)j+j′

∑

J0

Ĵ0Ĵ1[j
2(J0)jJ |}j3aJ ]

×
{

j J0 J
j′ J1 j

}

〈j2J0|V̂ |j1j′2J0〉. (15)

The two expressions may be combined yielding the result

−
√
6(−1)j+j′

∑

J0

Ĵ0Ĵ1[j
2(J0)jJ |}j3aJ ]

×
{

j J0 J
j′ J1 j

}

〈j2J0|V̂ |jj′J0〉, (16)

where again the states 〈j2J0| and |jj′J0〉 are anti-
symmetric and normalized. To obtain the second-order
contribution (1) of these perturbations, this expression
should be multiplied by a similar one where the summa-
tion is over all values of J ′

0. The second-order perturbation
contribution in the j3 configuration is therefore

6
∑

j′J1

(2J1 + 1)
∑

J0J′

0

Ĵ0Ĵ
′
0

×[j2(J0)jJ |}j3aJ ]
{ j J0 J

j′ J1 j

}

×[j2(J ′
0)jJ |}j3aJ ]

{

j J ′
0 J

j′ J1 j

}

×〈j2J0|V̂ |jj′J0〉〈jj′J ′
0|V̂ |j2J ′

0〉
E(j3aJ)− E(j2(J1)j′J)

. (17)

As explained above, we make the approximation that
the energy denominators in (1) are the same for all states
of the jn and jn−1j′ configurations. This means that
for the j3 configurations we assume that the energies
E(j3aJ) ≡ E(j3) and E(j2(J1)j

′J) ≡ E(j2j′), are in-
dependent of a, J1 and J , and given be 3ǫj and 2ǫj + ǫj′ ,
respectively, where ǫj and ǫj′ are single-particle energies.
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Table 1: The T = 3/2 three-body interaction matrix elements in the 1f7/2 shell obtained by Volya and the effective three-body
interaction matrix elements derived with the formula (21) for various p3f7 interactions and for the gxpf1a interaction. Energies
are in keV.

Z = 20 N = 28
J Volya [12] p3f7 [5] p3f7 [6] Volya [12] p3f7 [7] p3f7 [8] gxpf1a

3/2 −559 (273) −412 −173 −128 (88) −53 −115 −41
5/2 2 (185) −207 −104 −18 (70) −54 −57 −75
7/2 53 (70) 138 76 55 (28) 42 37 45
9/2 272 (98) 392 157 122 (41) 36 110 105
11/2 51 (130) 29 46 102 (43) 72 6 79
15/2 −24 (73) 77 28 −53 (29) 5 23 −1

In this case, the summation over J1 can be carried out
directly due to the identities of Racah coefficients. The
sum over even values of J1 can be expressed as a linear
combination of sums in which the summation is over all
values of J1, yielding

2
∑

J1 even

(2J1 + 1)
{ j J0 J

j′ J1 j

}{ j J ′
0 J

j′ J1 j

}

=
∑

J1

(2J1 + 1)
{

j J0 J
j′ J1 j

}{

j J ′
0 J

j′ J1 j

}

+
∑

J1

(−1)J1(2J1 + 1)
{ j J0 J

j′ J1 j

}{ j J ′
0 J

j′ J1 j

}

=
δJ0J′

0

2J0 + 1
+
{

j J J0
j j′ J ′

0

}

. (18)

Substituting this result into the expression above we find

3
∑

j′

∑

J0J′

0

Ĵ0Ĵ
′
0[j

2(J0)jJ |}j3aJ ][j2(J ′
0)jJ |}j3aJ ]

×
[

δJ0J′

0

2J0 + 1
+
{ j J J0

j j′ J ′
0

}

]

×〈j2J0|V̂ |jj′J0〉〈jj′J ′
0|V̂ |j2J ′

0〉
E(j3)− E(j2j′)

. (19)

To obtain the matrix elements of the genuine (but effec-
tive) three-body interaction, the contribution of the two-
body interaction should be subtracted. The latter is given
by

3[j2(J0)jJ |}j3aJ ]2
∑

j′

|〈j2J0|V̂12|jj′J0〉|2
E(j2J0)− E(jj′J0)

. (20)

Again we assume that the energies E(j2J0) ≡ E(j2) = 2ǫj
and E(jj′J0) ≡ E(jj′) = ǫj + ǫj′ , are independent of J0.
In that case, subtracting this contribution from (19), we
find the genuine three-body matrix element to be equal to

3
∑

j′

∑

J0J′

0

Ĵ0Ĵ
′
0[j

2(J0)jJ |}j3aJ ][j2(J ′
0)jJ |}j3aJ ]

×
{ j J J0

j j′ J ′
0

} 〈j2J0|V̂ |jj′J0〉〈jj′J ′
0|V̂ |j2J ′

0〉
E(j3)− E(j2j′)

. (21)

It should be pointed out that the second-order pertur-
bation contribution is contained in both two-body and
three-body interactions. The contribution of second or-
der in perturbation theory is always attractive (negative).
This need not be the case for the three-body interaction
which may lead to some strange results. For example, if
j = 7/2 and j′ = 1/2, there is no contribution of this
perturbation to the j3 state with J = 15/2. The highest
value of J1 is J1 = 6 which cannot couple with j′ = 1/2
to yield J = 15/2. Still, there is a non-vanishing contribu-
tion to the matrix element with J = 15/2 and J0 = 6 of
the two-body interaction. This unphysical contribution is
exactly cancelled by the corresponding contribution from
the three-body interaction. Such cancellation must take
place in all 7/2n configurations.

In the calculation of matrix elements in the j3 configura-
tion, the origin of the unphysical terms is clear. The sum
of products of two 6j-symbols in (18) is always 1/(2J0+1)
even if all 6j-symbols with J1 even vanish. In such a case,
the result is due to symbols with odd J1 values. These
symbols contribute to a non-vanishing symbol in which J1
no longer appears. If in (18) J0 6= J ′

0, there is no con-
tribution of terms with odd J1 values to the three-body
interaction. If, however, J0 = J ′

0, the odd J1 terms con-
tribute with opposite signs the same amount to the two-
body interactions and to the three-body ones. Thus, the
two-body (20) and three-body (21) expressions calculated
above, which are genuine two-body and three-body inter-
actions, may contain unphysical terms. The contributions
of two-body interactions are usually absorbed into the ef-
fective two-body interaction. If the interest is in three-
body interactions whose contributions cannot be mim-
icked by two-body terms, the expressions obtained above
should be used.

The above formalism can be applied to the 1f7/2 shell.
Several interactions are available that include effects from
the 2p3/2 shell. Two of them were derived on the basis
of spectroscopic properties of the calcium isotopes [5, 6]
and two more from those of the N = 28 isotones [7,8]. In
particular, the authors of these references give numerical
values for the matrix elements involving the 2p3/2 shell
which enter the expression (21) and for the difference in
single-particle energies, ǫ2p3/2

−ǫ1f7/2 . We refer to these in-
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teractions as p3f7, followed by the relevant reference. For
comparison, we also include results obtained with a more
recent interaction which considers the 2p1f shell and re-
sults from an empirical fit (starting from a microscopically
derived set of matrix elements) to reproduce a large body
of energy data in the 2p1f -shell nuclei. This is the gxpf1a
interaction [16] which adopts the single-particles energies
ǫ1f7/2 = −8.6240, ǫ2p3/2

= −5.6793, ǫ2p1/2
= −4.1370 and

ǫ1f5/2 = −1.3829 MeV.

We have used these interactions, without any modifi-
cation, to calculate the effective three-body interaction
which is induced when the model space is restricted to
1f7/2. The results are shown in Table 1. For j = 7/2
a three-nucleon state is completely specified by its total
angular momentum J and there is no need for the ad-
ditional label a. There are six three-nucleon states with
J = 3/2, 5/2, 7/2, 9/2, 11/2 and 15/2, and each of these
states defines a component of the three-body interaction.
According to the expression (21), the total effective three-
body interaction results from additive contributions of the
different shells j′ which can be 2p1/2, 2p3/2 or 1f5/2. The
three-body matrix elements of Volya [12] result from sep-
arate fits to the calcium isotopes and to the N = 28 iso-
tones, and they should thus be compared with correspond-
ing matrix elements obtained with the p3f7 interactions
from refs. [5, 6] and [7, 8], respectively. The numbers in
parentheses in Table 1 are also taken from Volya and cor-
respond to the variances of the parameters in the fits.

There are substantial variations in the calculated ef-
fective three-body matrix elements. In particular, those
derived from the Z = 20 p3f7 interactions are generally
larger than those obtained with the N = 28 p3f7 inter-
actions. This results from a combination of a larger dif-
ference ǫ2p3/2

− ǫ1f7/2 and smaller two-body matrix ele-

ments 〈(1f7/2)2J0|V̂ |1f7/22p3/2J0〉 in the latter interac-
tions. Note also that the effective three-body matrix el-
ements derived from gxpf1a are closer to those obtained
with the N = 28 p3f7 interactions.

There are certainly differences between these calcula-
tions and the results of Volya. However, in spite of these
differences and uncertainties, it is clear that the matrix el-
ements are correlated: with one exception, attractive (re-
pulsive) matrix elements in the analysis of Volya turn out
to be attractive (repulsive) in our analysis. The exception
concerns the J = 15/2 interaction which is attractive in
Volya’s analysis while it is repulsive for the p3f7 interac-
tions and essentially zero in gxpf1a.

It is believed that there are important ab initio three-
body interactions and also three-body interactions due
to short-range correlations between nucleons. The lat-
ter arise from admixtures of highly excited configura-
tions. So far, no evidence was found for the effects of
three-body interactions on states of valence nucleons. In
cases where rather pure shell-model configurations were
observed, states and energies were well determined by ef-
fective two-body interactions. Clearly, the 1f7/2 shell for

protons and for neutrons is not in this category since there
are low-lying configurations whose states may well mix
with the (1f7/2)

n states. Insisting on using pure 1f7/2 con-
figurations, better agreement with experiment is obtained
by incorporating effective three-body interactions. We do
not question the existence of such three-body interactions
but we surmise that most likely they arise from renormal-
ization effects due to admixtures of rather low-lying con-
figurations. Our conclusion is that claims of evidence for
the existence of genuine three-nucleon interaction should
be treated with some skepticism if they are based on cal-
culations in a shell-model space which seems to be too
restricted.
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