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Modelling and numerical simulation of plasma flows with two-fluid
mixing

Rémi Sentis1, Didier Paillard, Céline Baranger 2, Patricia Seytor
CEA, DAM, DIF, 91297 Arpajon, France

Abstract. For the modelling of plasma flows at very high temperature such the ones produced
by laser beams, one must account for a bi-temperature compressible Euler system coupled to
electron thermal conduction and radiative conduction. Moreover, mixing of two different fluids can
occur, the two fluids occupying the same volume. For modelling such a phenomenon, instead of
dealing with the conservation of mass, momentum and energy for each fluid, we propose here a
simplified model which will be easier to implement in a multi-physics Lagrangian 2D code. The
principle is to use a closure for expressing the relative velocity between the two fluids with the help
of the gradient of the concentration. So, besides the classical system, the final model consists in a
non-linear diffusion equation for the concentration and an equation for the mixing kinetic energy
(analogous to the one used in turbulence models). We present also first numerical 2D simulations
using this model.

Keywords. Mixing model. Multi-material two-temperature Euler system. Concentration
diffusion equation. Mixing kinetic energy equation.

Introduction. In the multicomponent plasma flows at very high temperature (for instance
in the plasma produced by laser beams), mixing of two different fluids can occur. In the physical
interesting cases, the mixing phenomena occur in narrow regions of the simulation domain, where
the relative velocity between the two fluids is large if compared to the thermal one. A classical model
for such phenomena consists in a system of six equations which corresponds to the conservation
of mass, momentum and energy for each fluid. The two fluids are assumed to occupy the same
volume (the global pressure is the sum of the pressures of the two fluids). The aim of this work
is to perform numerical simulations dealing with this mixing problem ; this has been addressed by
numerous earlier works, see [6], [7], [8], [10].

Here, our aim is to perform global two-dimension simulations taking into account the mixing
phenomena and the coupling with an electron temperature equation (with thermal conduction).
The related theoretical model has been written for instance in [3]: it consists of the previous system
of six equations with an evolution equation for the electron temperature. Recall that in the single
species case, the simplest model is the so-called two-temperature Euler system which reads as follows
(see for instance [2],[9])

1corresponding author, remi.sentis@cea.fr
2permanent address : CEA, DAM, CESTA, 33114 Le Barp, France
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∂

∂t
ρ+ ∇. (ρU) = 0,

∂

∂t
(ρU) + ∇. (ρUU) + ∇(P0 + Pe) = 0,

∂

∂t
E0 + ∇.(UE0) + ∇.(UP0) + U.∇Pe = Υ0,

∂

∂t
Ee + ∇.(UEe) + Pe∇.U = −Υ0.

where we denote ρ the density, U the velocity, Ee the electron energy and E0 the total ion energy
(kinetic plus internal energy). Moreover, Υ0 denotes a relaxation term between the ion and electron
temperatures. Notice that other physical phenomena are to be taken into account such as the
electron thermal conduction, a radiative transfer model and a laser energy deposition model. All
these phenomena correspond to added terms in the evolution equation for Ee which are coupled
to other equations. This leads to heavy complex simulations, in particular in a multi-dimension
framework, which are generally performed using Lagrangian codes, see for instance FCI2 [1], [4].
For all these reasons, reduced models in which the mixing process is roughly simulated are very
usefull. This paper is aiming at proposing such a reduced model which may be easily implemented
in an existing Lagrangian code.

In the first section we recall the classical model for mixing phenomena which consists in a
system of three equations for each fluid (conservation of mass, momentum and energy), besides an
equation for the electron energy, as it is written in the reference paper [3]. In the second section, we
emphasize the closures for getting a five-equation model which consists in the conservation equations
of mass, momentum and energy for the averaged fluid coupled with an equation of concentration
and an equation for the mixing kinetic energy. These closures are made under the assumption that
the friction coefficient becomes large. The relative velocity is given by a closure using the gradient
of the concentration ; it allows to state a diffusion approximation model for the concentration (it
looks like a diffusion model for combustion or turbulence problem, see [14]). In the second part
of this section we introduce the supplementary terms due to the coupling with the electron energy
balance equation. In a certain way, our model is in the same family of one of the mixing models
introduced in [6] or [15].

In the last section, we give some enlightenments on the numerical methods for solving this
mixing model. Some preliminary numerical results are also presented firstly in a one-dimension
toy problem and secondly in a two-dimension problem where we account for electron temperature
coupling as well as a simple laser energy deposition model.

We thank sincerly Gilles Carré for his work on the implemention of the numerical method and
his help for tuning the numerical code.

1 Initial model for mixing of plasmas

We recall here the detailed model given in [3] (see particularly §§1.4 ,1.5). In the sequel, we do not
account for the ion thermal conduction flux and the thermo-electric terms, for the sake of simplicity.
We first write this model without the coupling between the electron and ion temperatures for
focusing on its main features. The coupling between the electron and ion will be introduced in the
second subsection.

1.1 Model without the coupling with the electron temperature

For each fluid (a and b ) denote by ρa, ρb the densities, ua,ub the velocities and by Ea, Eb the total
specific energies. So εa = Ea −

1
2
|ua|

2 and εb = Eb −
1
2
|ub|

2 are the specific internal energies. The
initial model is the following (with q = a or b)
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∂

∂t
ρq + ∇. (ρquq) = 0, (1)

∂

∂t
(ρquq) + ∇. (ρququq + Pq) = Ξq, (2)

∂

∂t
(ρqEq) + ∇. (ρquqEq + uqPq) = Ωq (3)

knowing that the friction or drag term may read as

Ξa = −Ξb = ν̃ρaρb(ub − ua).

(uu denotes as usual a tensor). In the sequel, we assume that each fluid obeys a perfect gas
law with a polytropic coefficient γq; that is to say we have Pq = (γq − 1)ρεq.

In [3], the author gives the expression of the relaxation coefficient ν̃ which depends on the
temperatures of the two species and on the physical characteristics of the particles (and on the
relative velocity when it is not small compared with sound speed). On the other hand, we have

Ωa = −Ωb = Ω# + ν̃ρaρb(ub − ua)
maua +mbub

ma +mb
, Ω# = ν#ρaρb(Tb − Ta)

where ma,mb are the mass of the two ion species and coefficient ν# corresponds to the relaxation
between the temperatures of the two species.

As we will see in the sequel, the order of magnitude of the coefficient ν̃ is crucial in order to
determine whether the mixing of the two plasmas can occur or not.

1.2 Model taking into account the electron temperature

We account here for the coupling of the previous model with the electron population. Let us denote
the electron density, temperature, energy per unit of volume and pressure by Ne, Te, Ee and Pe.
Firstly, if ηa and ηb are the ionization levels divided by the atomic mass, according to the electric
neutrality of the plasma, we get

Ne = ηaρa + ηbρb

Notice also that the electron velocity Ue is not equal to the averaged ion velocity but is char-
acterized by

NeUe = ηaρaua + ηbρbub

(that is to say the electric current is zero). Secondly, we know that

Ee =
3

2
NeTe, Pe = NeTe.

Of course the continuity equation (1) still holds.
The ion momentum and energy balance equations have to be modified to take into account the

electron pressure, that is to say a force proportional to 1
Ne

∇Pe (corresponding to the electrostatic
field); so we get

∂

∂t
(ρquq) + ∇. (ρququq + Pq) +

ηqρq

Ne
∇Pe = Ξq, (4)

∂

∂t
(ρqEq) + ∇. (ρquqEq + uqPq) +

ηqρq

Ne
uq.∇Pe = Υq + Ωq. (5)

here Υq denotes a relaxation term between the ion and electron temperatures and reads as

Υa = νE
a ρaNe(Te − εa/Cv,a), Υb = νE

b ρbNe(Te − εb/Cv,b).

3



where Cv,q is the heat capacity and νE
q is a positive coefficient. Let us state now the electron

energy balance equation accounting for the electron thermal conduction; so we set qth the Spitzer

thermal conduction flux equal to −κ(Te)∇Te (where κ is roughly speaking proportional to T
5/2
e )

and we have

∂

∂t
Ee + ∇. (EeUe) + Pe∇.Ue + ∇.qth = −(Υa + Υb). (6)

Notice that the friction phenomenon between ions and electrons has not been accounted here
since it is generally less important than the friction between the two ion species (notice that this is
not always true , particularly at the very beginning of the collision process, but it is sufficient here
to explain the main ideas of our method).

Of course, one can check easily that the total energy Ee+ρaEa+ρbEb satisfies a balance equation

∂

∂t
(ρaEa + ρbEb + Ee) + ∇.qth =

−∇. (ρaEaua + ρbEbub + uaPa + ubPb + Ue (Pe + Ee))

2 Reduced model

For the sake of simplicity, we withdraw in the first sub-section the coupling terms with the electron
energy equation. The correction terms accounting this coupling are given in the second sub-section.

2.1 Model without the coupling with the electron temperature

Let us define the averaged physical quantities:

ρ = ρa + ρb, U = (ρaua + ρbub)/ρ (7)

are the mass density and the mean ion velocity
V = ua − ub , the relative velocity
c = ρa/ρ, the mass concentration of material a (so we have ρ(1 − c) = ρb)
P0 = Pa + Pb, the global ion pressure.
The global specific internal energy ε is

ε = (ρaεa + ρbεb)/ρ = cεa + (1 − c)εb (8)

Let us also denote

K =
1

2
|V|2c(1 − c)

which is the specific mixing kinetic energy. It is easy to check that the total energy E0 satisfies

E0 = ρaEa + ρbEb = ρε+
1

2
ρ|U|2 + ρK.

One can show after standard calculus that :

∂

∂t
ρ+ ∇. (ρU) = 0, (9)

∂

∂t
(ρU) + ∇. (ρUU) + ∇P0 = −∇.(ρVVc(1 − c)), (10)

∂

∂t
(ρc) + ∇. (ρcU) + ∇. (ρc(1 − c)V) = 0, (11)
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Moreover, if one defines σ = ρν̃, one may state an equation for the relative velocity

∂

∂t
V + ∇. (UV) −∇.

(
|V|2

2c− 1

2

)
+ B + A = −σV, (12)

B = −∇.

(
VV

2c− 1

2

)
+ ∇.

(
|V|2

2c− 1

2

)
+

2c− 1

2
[(∇.V)V − (V.∇)V] + (V.∇)U − (∇.U)V.

with

A = (γa − 1)
1

ρa
∇(ρaεa) − (γb − 1)

1

ρb
∇(ρbεb)

In the monodimensional case, B is equal to zero, so in the sequel, we always withdraw B.
Afterwards, the ion total energy balance equation reads as

∂

∂t
E0 + ∇. (E0U) + ∇. (P0U + ρc(1 − c)VG) + ∇. (2ρKU − (2c− 1)ρKV) = 0.

with

G =
1

ρa
(Pa + ρaεa) −

1

ρb
(Pb + ρbεb) = γaεa − γbεb.

The closures
i) We first assume that the mixing pressure tensor ρVVc(1− c) reduces to a scalar one; that is

to say in the r.h.s. of equation (10) we set −∇(2ρK).
ii) Secondly, we assume that there exists an increasing function Ψ of the variable c satisfying

Ψ(1) = γa, Ψ(0) = −γb (13)

with the following approximation for the two terms G and A

G =γaεa − γbεb ≃ εΨ(c)

A =
1

ρ

(
1

c
∇Pa −

1

(1 − c)
∇Pb

)
≃ ε∇Ψ(c)

iii) We now make the crucial assumption that the friction coefficient σ is large enough if
compared to the inverse of the characteristic evolution time. Thus, in equation (12), we withdraw
all the terms but the two last ones, so it leads to the following approximation

V ≃ −
ε

σ
∇Ψ(c) = −D∇c, with D =

ε

σ
Ψ′.

Remark 1. The closure for A may be justified by the following way. Near c = 1, if the flow
is assumed to be isentropic, we have Pa = Pr(cρ)

γa/ργa
r and Pr,ρr constant; so we may state

1
cρ∇Pa = γa

Pr

ργa
r
ργa−1cγa−2∇c + γa

Pr

ργa
r
cγa−1ργa−2∇ρ; then after withdrawing the second term and

setting ργa−1 ≃ ργa−1
r , we get A ≃ 1

cρ∇Pa ≃ ε∇Ψ(c) with Ψ′(1) = γa(γa − 1). In the case where
γa = γb = γ, the simplest choice for a odd function Ψ satisfying (13) and this last condition is

Ψ(c) = γ

(
7 − γ

2
(c−

1

2
) + 2(γ − 3)(c −

1

2
)3
)
.

Otherwise, we may choose Ψ(c) = γ
(

7−γ
2

(c− 1
2
) + 2(γ − 3)(c− 1

2
)3
)

+ (γa − γb)/2, where γ =

(γa + γb)/2. �

Remark 2. If the flows for both species are assumed to be isentropic, then the closure for A
comes from the closure for G, after withdrawing the gradient of ε. �

According to the approximation of G and the relation (8), we get

εa = ε
γb + (1 − c)Ψ

cγb + (1 − c)γa
, εb = ε

γa − cΨ

cγb + (1 − c)γa
(14)
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If the polytropic coefficients γa and γb are equal for the two ion species, we have P0 = ρ(γ−1)ε.
Otherwise, we may give an equation of state for the averaged fluid. Indeed, according to (14), we get
the following relation P0=ρ(Γ(c)−1)ε, with Γ(c) = (γaγb + c(1− c)(γa −γb)Ψ(c))/(cγb +(1− c)γa);
it is a good equation of state for the averaged fluid, since Γ(c) − 1 is strictly positive.

Now, using the previous closures for A and V, the evolution equation for concentration and for
the total energy reads as

∂

∂t
(ρc) + ∇. (ρcU) −∇. (ρc(1 − c)D∇c) = 0

∂

∂t
E0 + ∇. (E0U) + ∇. ((P0 + 2ρK)U) −∇. [(c(1 − c)Ψρε− (2c− 1)K)ρD∇c] = 0 (15)

and the velocity equation reads as

∂

∂t
(ρU) + ∇. (ρUU) + ∇(P0 + 2ρK) = 0

Now, to get a full model, it suffices to determine the mixing kinetic energy K. Of course, one
could claim that K has to be equal to expression c(1 − c)D2|∇c|2/2, but this leads to complicate
balance equation for the internal energy. Thus, we prefer to use a simple form for the internal
energy balance and to deduce an evolution equation to determine K given by E0ρ

−1 − ε− 1
2
|U|2 .

Notice that according to initial equations (2)(3) and the previous closures, the balance equation
for the internal energy ρaεa + ρbεb would read

∂

∂t
(ρε) + ∇. (ρεU) + P0∇.U = −Ψ∇.(ρc(1 − c)εD∇c) + 2σρK.

But, we prefer to set simply

∂

∂t
ρε+ ∇. (ρεU) + P0∇.U = 2σρK.

[which is justified when σK is large compared to ∇(c(1 − c)εD∇c). ]
Then, from (15) one gets a coherent evolution equation for K which is

∂

∂t
(ρK) + ∇. (ρKU) + 2ρK∇.U + ∇ ((2c− 1)ρKD∇c) = ∇. (ρc(1 − c)ΨεD∇c) − 2σρK.

But since εΨ′ = σD we may use the following relation

∇. (ρc(1 − c)ΨεD∇c) = σρc(1 − c)D2|∇c|2 + Ψ∇. (ρc(1 − c)εD∇c)

Therefore, using the Lagrangian derivative Dt = ∂
∂t +U.∇, we may summarize the system which

we address besides the continuity equation (9)

ρDtU + ∇(P0 + 2ρK) = 0 (16)

ρDtε+ P0∇.U = 2σρK (17)

ρDtc−∇. (ρc(1 − c)D∇c) = 0 (18)

ρDtK + 2ρK∇.U + ∇ ((2c − 1)ρKD∇c) − Ψ∇. (ρc(1 − c)εD∇c) = σρ
(
c(1 − c)D2|∇c|2 − 2K

)
.

(19)
Of course, there is an energy balance relation associated to this system which is (15). Notice

that when coefficient σ goes to infinity, coefficient D goes to 0 then this system reduces to the
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classical Euler equations for two fluids without mixing ; indeed if D would be set to zero and if the
initial value of K would be zero, then K(t, .) is always equal to 0.

In equation (19), one sees that when coefficient 1/σ is small if compared to the characteristic
time of evolution of the plasma, then K will be close to the quanity c(1 − c)D2|∇c|2/2.

Remark 3. If the initial value cin of c is a Heavyside function, then the function cin remains a
solution of equation (18), but it is unstable solution. On the other hand, it may be proved easily
that for any bounded regular function D of x, the solution of (18) remains positive. �

Remark 4 This diffusion concentration equation (18) has a form analogous to the one written
in [11], (chap. VI, but in this last one, there are a pure diffusion term and a thermo-diffusion term).
This kind of equation is also introduced in turbulence models, in motor combustion or in classical
model for plasmas (see [12] , [14] for instance). It may be also compared to the one introduced [3]
(§9.5). In this last case (besides a thermo-diffusion term), one can find an equation which reads
with our notations

ρDtc−∇. (ρD0∇c) = 0, (20)

with D0 depending on the temperature and on the plasma components but independent of c.
Notice that if one wants to follow the expansion of a mixing domain with a model like (20), the
relative velocity becomes

V = −
1

c(1 − c)
D0∇c = −D0∇

(
log

c

1 − c

)
,

which is infinite near the front of the mixing domain (when c tends to 0 or 1). Our model overcomes
this difficulty and may be interpreted as a limitation of the mass flux at the boundary of the mixing
model. In a certain way, we have changed the unbounded function log c

1−c by a bounded one ψ(c).
�

Remark 5. For modeling the mixing, we use the formula given by [3] (p. 119) and we assume
that γa = γb = 5/3. Then we get

σ = ρβ0

((
9π

2α2
0

)1/3 2

3
(εa + εb) + V 2

r

)
−3/2

,

with
β0 = 4πη2

aη
2
b (ma +mb)q

4
e log Λab

where qe is the electron charge, log Λab a Coulomb logarithm (which is in the order of some units),
α2

0 is a dimensionless coefficient in the order of 1 depending on the plasma and Vr is a corrector
term in the order of the relative velocity. Then, by using the expressions of εa and εb (see (14)), D
has the following form

D(c) ≃
ε

β0

Ψ′(c)

ρ

((
9π

2α2
0

)1/3(4

3
+ (2 − 4c)

Ψ(c)

5

)
ε+ V 2

r

)3/2

. (21)

One has to evaluate the corrector term Vr
2, but it is possible to check that this added term is

not negligible only when the ion temperature is not large, that is to say at the beginning of mixing
phenomenon, so it may be seen that a very crude evaluation of this term is sufficient. As a matter
of fact, we set

Vr
2 = ε5/(Lρβ0)

2

where L is a constant which is a characteristic value of the width of the mixing zone (it depends
on the actual cases and in our hot plasma cases it is set to some micrometers).

According to the fact that |Ψ(c)| ≤ 5/3, we can see that D(c) ≥ C ε5/2

ρβ0
for some constant C.
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2.2 Model accounting for the electron temperature

This technical section is devoted to the statement of the extension of the the previous mixing model,
when we take into account the coupling between the ion and electron temperatures (as described
in section 1.2). For the sake of simplicity, we assume here that γg = γl = γ. Recall that

Ne = ρ(cηa + (1 − c)ηb).

Let us first evaluate the quantity Υ0 = Υa + Υb, we get

Υ0 = ρ2(cηa + (1 − c)ηb)

[
(cνE

a + (1 − c)νE
b )Te − cνE

a

εa
Cv,a

− (1 − c)νE
b

εb
Cv,b

]
.

Recall that according to the closure we have made, the relations (14) express εa and εb with
the help of ε ; therefore, it leads to

Υ0 = ρ2(cηa + (1 − c)ηb)(cν
E
a + (1 − c)νE

b )

(
Te −

ε

Cv,0

)
,

where Cv,0 is given by

cνE
a + (1 − c)νE

b

Cv,0
=
νE

a c(γ + (1 − c)Ψ)

γCv,a
+
νE

b (1 − c)(γ − cΨ)

γCv,b
. (22)

Thus, quantity Υ0 has a classical form Ω(Te − ε/Cv,0), with Ω positive.
Now, defining ζ = (ηa − ηb) /(cηa + (1 − c)ηb), we get a modified expression for the ion energy

balance

ρDt

(
E0

ρ

)
+ ∇. (P0U + 2ρKU) + U.∇Pe −∇. ((c(1 − c)Ψρε− (2c− 1)K)ρD∇c) =

Υ0 − ζc(1 − c)D∇c.∇Pe (23)

Moreover, for the electron energy, equation (6) reads by a classical way and the full model
becomes

ρDt(ρ
−1) −∇.U = 0, (24)

ρDtU + ∇(P0 + Pe + 2ρK) = 0, (25)

ρDtε+ P0∇.U = 2σρK + Υ0, (26)

ρDtc−∇. (ρc(1 − c)D∇c) = 0, (27)

ρDtK + 2ρK∇.U + ∇ ((2c − 1)ρKD∇c) = Ψ∇. (c(1 − c)ρεD∇c)

+σρ[c(1 − c)D2|∇c|2 − 2K] + ζc(1 − c)D∇c.∇Pe (28)

ρDt (Ee/ρ) + Pe∇.U −∇.(Eec(1 − c)ζD∇c) − Pe∇.(c(1 − c)ζD∇c) + ∇.qth = −Υ0. (29)

Remark The structure of these three energy equations is satisfying because we can observe the
coupling terms 2ρσK, 2ρ2ν0

eK and Υ0 appear with opposite signs in the right hand side of these
equations. On the other hand, one can check that the global energy E0 + Ee satisfies a conservative
balance equation.

3 Numerical issues

The aim of this work was the implementation of the previous model in a 2D multi-material hydro-
dynamics code for plasma flow. Without going into the details of the numerical methods for the
simulations without the mixing model, we only recall briefly that for the hydrodynamics part of
the model, one uses a Wilkins scheme which is based on a staggered grid method; that is to say,
the density, the energy, the pressures and the concentration are evaluated in the center of each cell
and the velocity at the cell vertices (in a one-dimension framework, it reduces to the classical Von
Neuman-Richtmyer scheme, cf. [13]).

8



3.1 Some remarks on the numerical methods

At each time step, there are two stages. At the first stage of the leapfrog method, one updates the
velocity and one moves each node with its velocity. At the second stage, one updates the density
and one solves the internal energy equation.

The modifications due to the mixing model are the following. The mixing kinetic energy K
and the concentration c are evaluated at the center of each cell. First one has to deal with the
concentration equation (18): we make a time implicit discretization of the diffusion term

∂

∂x

(
c(1 − c)D

∂

∂x
c

)

the key point is the evaluation of the mean value of [c(1 − c)D]i+1/2 on each interface i + 1/2
between the cells i and i+ 1. We state in the one-dimension framework

[
c(1 − c)D

∂c

∂x

]

i+1/2

= 2
ci+1 − ci

(δxi+1 + δxi)
(ci+1(1 − ci+1)Di+1 + ci(1 − ci)Di) ,

where the ci are the unknown values; we have the analogous for the two-dimension framework. So
at each time step, one has to solve a non linear matrix system by an iterative method.

Then, using the value of the normal relative velocity −Dn.∇c at the interfaces between two
neighbouring cells (n is the unit normal to the interface), one solves the mixing kinetic energy
equation (28). It is done with a finite volume scheme; the only technical point is the advection
term (2c− 1)ρKD∇c which is handled with an upwind technique which is explicit with respect to
the time (in each cell, it depends on the sign of (2c− 1)n.∇c in the neighbouring cells). Of course,
the time step has to satisfy a classical stabilty criterium for this upwind technique which is of the
type |(2c − 1)Dn.∇c|δt/δx ≤ 1, but this criterium is generally less strong than the standard one
related to the Wilkins scheme vtherδt/δx ≤ 1, where vther is the sound speed.

Moreover, for the ion internal energy equation (26) , one has to take into account extra terms
in the right hand side : no difficulty for the term 2σρK and the coupling term Υ0 which reads as
Ω(Te − ε/Cv,0) is handled classically by implicit evaluation of Te and ε.

3.2 Numerical results

a. One-dimension toy problem.
In a first stage, we consider here a toy one-dimension problem and we wish to compare the

numerical results obtained with the proposed model and the ones obtained with a multifluid code
which handles a model of the type of [3], (cf. MULTIF code [5]). We consider here a simple case,
that is to say without laser and without radiative loss: there are two slabs occupied initially by
a pure gold plasma which are separated by vacuum. Both fluids are characterized by the same
polytropic coefficient γ (equal to 5

3
) and the same heat capacity coefficient; their initial densities

are equal to 0.0029 g/cm3 and their initial temperatures equal to 1 keV. The initial velocities are
9.5 107 cm/s for the left fluid and −9.5 107 cm/s for the right one. For the evaluation of D defined
by (21), we take α0 = 0.84 (since the two fluids are identical [3]) and β0 = 2.22 1036 (in CGS units)
which corresponds to log Λab = 5 (a mean value of the Coulomb logarithm in the mixing region
during the time of simulation).

With these values, the slowing down distance of the ions on the other ion population in the
mixing region is in the order of 130 µm and the corresponding slowing down time can reach 160
ps.

The spatial grid is 1000 µm long and composed of about 1000 meshes. As the slowing down
distance represents several meshes, a strong collision with mixing between the two fluids occurs.The
ionization level fixed to approximately 58, that is to say the electron equation of state is

Ee =
3

2
58ρTe.
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Figure 1: Profile of the density at time t = 300 ps, without the mixing model (solid line), with
the mixing model (doted line), compared to the result given the MULTIF code (the lowest dashed
line).

For the closure function Ψ, we have chosen as above. Moreover, in the above mentioned Spitzer

formula for the electron thermal flux, we take κ(Te) = k(x)T
5/2
e , where k(x) is a function depending

weakly on the space variable (due to the so-called electron Coulomb logarithm).
We show on figure 1, the density profiles at 300 ps, in the standard case without accounting

for the mixing model and the same density profiles in the case where the mixing model is taken
into account by using the above value of σ0. Notice that 300 ps corresponds to a few relaxation
times. We can observe that the level of the maximum of the density is about 0.015 g/cm3 without
the mixing model but only 0.012 g/cm3 with the mixing model, it is closer to the reference value
which is 0.011 g/cm3 given by the MULTIF code.

Notice that in the simulations with the mixing model, we have to give an ad hoc value for the
length L, in the formula defining the corrector term V 2

r ; but we may check that if we change this
value by a factor 2, the above values of density do not vary by more than 5%. Moreover, choosing
other functions for Ψ (satisfying (13)) leads also to small variations for these values of density.

Two dimension simulations
In this simulation, we have two gold diskes which are separated by vacuum. Each disk is

heated by some laser beams; it is expanded and a collision between the two diskes occurs. We
have performed numerical simulations with the two-dimension axi-symmetric code FCI2 [1] with
an arbitrary Lagrange-Euler framework accounting for laser heating (by a ray-tracing method) and
electron thermal conduction. We have compared the results of a simulation made without mixing
model and another one accounting for mixing model from the time 1.9 ns (which is the time of
collision between the two diskes).

Thus, on figure 2, one may compare the density without and with mixing model at time t = 2 ns.
Moreover, on figure 3, one compares firstly the ion temperature without and with mixing model

at time t = 2 ns and secondly, on figure 4, the map of electron temperature at the same time.
It may be noticed that the ion temperature quickly increases up to 150 106K in the collision

region with or without mixing. This is due to the fact that almost all the initial kinetic energy of
the two fluids is very quickly converted into internal energy.

4 Conclusion

We have proposed a model for mixing of two plasmas; it has been extended easily to the framework
of the two-temperature Euler system. The underlying assumption is that the relative velocity
between the two fluids is small compared to the sound speed of the flow. This model consists
in coupling the classical Euler equations with a concentration equation (which is a non linear
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Figure 2: Map of the density at 2. ns, without (on the left) and with the mixing model (on the
right).

Figure 3: Map of the ion temperature at 2. ns, without (on the left) and with the mixing model
(on the right).
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Figure 4: Map of the electron temperature at 2. ns, without (on the left) and with the mixing
model (on the right).

diffusion equation) and an evolution equation for the mixing kinetic energy K. The implementation
of this model has been performed in a two-dimension Arbitrary-Lagange-Euler code where electron
thermal conduction, radiative conduction and laser enegy deposition are taken into account.

Without the mixing model, when a strong collision between the two fluids occurs, a bump of
the density ρ may be observed in the collision region. Accounting the mixing model, the numerical
results show a decrease of the level of this bump; this leads to a notable decrease of the radiative
emission which is, roughly speaking, proportional to the square of ρ. Notice that our model may be
also generalized to mixing accounting for three fluids, using two concentration diffusion equations.
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