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Nuclear shell model calculations predict the existence of super-heavy elements
(SHE) that are tentatively synthesized through heavy-ion collisions. A complete
description of the reaction to synthesize super-heavy elements is necessary to
bridge these predictions with the experimental results on the fission time and
residue cross sections. In this contribution, we will present the constraints that
can be given on the shell correction energy from experimental data and the
developments that are needed for the dynamical models. We will especially
focus on the fission time of heavy elements and on the role of the isomeric
potential pockets.
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1. Introduction

The size of the nuclei in nature is limited. But super-heavy elements are ex-

pected to exist beyond uranium due to an extra-stability given by the next

shell closure for the nucleons. There has been a long quest to synthesize

these elements by heavy ion collisions in various laboratories. Experimen-

tally, the main difficulties arise from the fact that such a reaction is not

favourable and the cross sections are extremely small, of the order of few

picobarns, or even less.
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It is very important to note that these elements should not exist if

one only considers the Liquid Drop Model. Therefore, these are very fragile

objects that easily decay through fission as soon as they are slightly excited.

Their main properties come from the shell structure, but there are still many

ambiguities on the Z of the next shell closure and on the absolute value of

the shell correction energy.

At GANIL there is also a tentative to locate the super-heavy island of

stability by measuring the fission time. Recent experiments based on crystal

blocking techniques have shown that the Z = 120 and 124 elements have a

long fission time, suggesting an extra-stability.

There is a need for theoretical developments on the description of the

whole reaction processes between the two colliding nuclei up to the super-

heavy element. The heavier elements formed up to now where identified

by their alpha-decay chain and their properties are unknown. Then, a well

understanding of the reaction mechanism is also necessary to link the shell

correction energy predicted by structure models to the experimental results.

Actually, the fusion mechanism is not a simple extrapolation of what is

known with lighter nuclei. It is well known that fusion is hindered in this

region, i.e. the fusion cross section is far lower than one would expect. The

origin of the fusion hindrance is nowadays well understood on a qualitative

point of view,1 but they are still many quantitative ambiguities. Therefore,

we have not reached yet the state of being able to guide the experiments

without ambiguity.

2. Residue cross sections

Super-heavy nuclei mainly decay though fission, but we are interested in

the small neutron-evaporation channel that stabilizes the nucleus. In order

to calculate this very tiny fraction, we have developed a fission-evaporation

code that can calculate very low cross sections in a short time.

2.1. The Kewpie2 code

The Kewpie2 code2,3 is based on the Bateman equations describing the time

evolution of an evaporation cascade, including neutrons, protons, alphas,

gammas. . . The physical ingredients are the usual ones: it can accommo-

date both Weisskopf and Hauser-Feschbach evaporation widths. The fis-

sion width is based on the Bohr and Wheeler formula with Kramers and

Struntinsky correction factors. The collective enhancement factor is also

included. For details and references, see Ref. 3.
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The level density parameter is taken from Töke-Swiatecki and the damp-

ing of the shell correction energy with the excitation energy follows Ig-

natyuk’s prescription: at the ground state, the level density parameter reads

ag = a

[

1 +
(1 − e−E∗/Ed)∆Eshell

E∗

]

, (1)

where the damping energy is set to its usual value, Ed = 18.5 MeV.

The main particularity of this code is that it is not based on a Monte-

Carlo algorithm that is not well suited for very low probabilities.

2.2. Evaporation residues

The fission channel dominates the disintegration of the compound nucleus

formed by heavy-ions collision. If we tune slightly the fission width, this will

not affect much the fission probability that remains close to 1, but it will

dramatically change the fate of the evaporation residue. The fission width

mainly depends on three parameters that are the fission barrier height that

mainly consists of the shell correction energy, the damping energy Ed, see

Eq. (1) and the reduced friction parameter. If these last two parameters

are fixed to their usual values, the measured residue cross section can con-

strain the shell correction energy with a precision of 1 MeV. This accuracy

corresponds to about one order of magnitude in the residue cross section.

Unfortunately, such a precision can only be obtained if we know pre-

cisely the fusion probability. But it is well known that the fusion mechanism

is hindered for heavy elements because of the appearance of the so-called

quasi-fission process. Experimentally, it is very difficult to distinguish be-

tween fission and quasi-fission, and then to evaluate the fusion probability

without ambiguity. On a theoretical point of view, it is commonly accepted

that the fusion hindrance is due to the appearance of an additional inner

barrier that has to be crossed after the Coulomb barrier, but the various

models differ on the size of this barrier and on the strength of the dissipa-

tion mechanism. Therefore, the main challenge is to find ways to assess the

fusion models by other means.1,4

One of the ways to get rid of these problems is to send the projectile at

energy well above the barriers in order to have a large fusion probability.

Then, the compound nucleus will have no chance to survive, but one can

get some information by measuring its fission time. This is the topic of the

second part of this presentation.
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3. Fission time measurements

The fission time of the Z = 114, 120 and 124 nuclei was measured at

GANIL using the crystal blocking technique.5 It has been found that for

the Z = 120 and 124 nuclei, at least 10% of the capture events had a fission

time longer than 10−18 s, which is very long. No such events were observed

for the Z = 114 nucleus.

Such a long fission time cannot be calculated using a Langevin equation,

as it is traditionaly done.6 But the Kewpie2 code that solves Bateman

equation in time can calculate dynamical observables.3,7 It appears that

whatever the mass table we use as an input of the code, we cannot reproduce

such a statistics for the fission times longer than 10−18 s.

How can we understand such results? Some hints will be given, using a

simplified model.

With excitation energy of the order of 70 MeV, we can safely neglect

the evaporation of charged particles like protons and alphas. We will there-

fore only consider neutrons and gammas. The characteristics of the nuclei

entering the evaporation chain are not known. As a toy, model, we will first

fix the fission barrier of each isotope of the chain to an identical value, Bf .

The average fission time is plotted as a function of the fission barrier

compared to the neutron binding energy Bn in Fig. 1.

With a small fission barrier, fission occurs rapidly at the beginning of

the chain. When Bf increases, the fission time increases. But for large

barriers, it is the opposite. In this case, fission events are becoming rare

and are mainly first chance fission. After the evaporation of few neutrons,

the nucleus is too cold to undergo fission.

This means that the long fission times that were observed correspond

to fission events that occurred after evaporating several neutrons. Then,

in order to reproduce the experimental data, one has to guess the fission

barrier or shell correction energy of several isotopes, up to 9. The only thing

we can say is that large shell correction energies are necessary to reproduce

the data, far larger than the prediction of any mass table.

In this model, the description of the fission width is based on the Bohr

and Wheeler model with a single saddle. But there are predictions8 that

the potential landscape along the fission path has several humps. How does

it influence the fission time?
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Fig. 1. Average fission time as a function of Bf /Bn assumed to be the same for all the
isotopes of a Z = 120 like nucleus at an excitation energy of 70 MeV.

4. Influence of structures in the potential on the fission

time10

It is well known that in the actinides region, the potential has a complex

structure along the fission pathway. It might be the same in the super-heavy

region. Then, we cannot simply apply the previous model based on a single

saddle.

There are various theoretical tools in the literature to evaluate the av-

erage fission time.9 Solving numerically the Langevin equation or using the

so-called Non Linear Relaxation Time formula, we can show the largest

effect on the average fission time with a double-humped potential is when

the barriers have the same size (see the dashed curve of Fig. 3). Then, the

average fission time is three times longer than with a single barrier having

the same height. We will assume such a potential in the following.

The Langevin formalism including neutron evaporation that is usually

used to calculate the fission dynamics6 can hardly be applied in this context

because of the extremely long fission times we need to calculate. We have

developed another model based on master equations.

To estimate the rate of jumping into the other potential well or to

escape, we use Kramers formula. Evaporation of neutrons that cools down

the nuclei is estimated within the Weisskopf formalism. Assuming that the
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potential structure is the same for all isotopes, we can calculate the average

fission time and the probability to have a fission time longer than 10−18s and

compare these results to the single humped potential case. See Fig. 2. Note

that for small fission barriers, this model was validated with a Langevin

type approach.

Fig. 2. Average fission time calculated with a double-humped potential divided by the
same time calculated with a single-humped potential as a function of the fission barrier
Bf . Bn is fixed to 6 MeV.

It can be noted that structures in the potential can naturally enlarge

the average fission time of at most a factor 7.

Of course the assumption of a uniform potential for all the isotopes is

not realistic. It should not be the same for each isotope, and especially

structure should disappear at high excitation energy.8 In order to evalu-

ate this effect, we have considered a potential depending on the excitation

energy as shown on Fig. 3 and solved numerically the Langevin equation

with neutron evaporation. We have found that there is almost no differ-

ence on the average fission time and the number of events having a fission

time longer than 10−18 s between a single-humped potential and a double-

humped potential.

This means that the large tail of the long fission time distribution that

was observed in the experiment cannot be explained by the structure of the

potential.
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Fig. 3. Evolution of the test potential as a function of excitation energy.

5. Conclusion

Super-heavy elements formed by fusion reaction of heavy ions mainly de-

cay by fission. Measuring the tiny residue cross sections can give a precise

information on the fission width and the fission barrier provided we know

the fusion probability. Unfortunately it is not the case and one of the main

challenges is to find ways to assess the fusion models.1,4

An alternative way is to use fission time measurements to locate the

super-heavy island of stability.5 The very long fission times measured by

crystal blocking techniques for the Z = 120 and 124 nuclei remain unex-

plained.7,10
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