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Abstract. In this article we describe a novel method for regularized
regression and apply it to the prediction of a behavioural variable from
brain activation images. In the context of neuroimaging, regression or
classification techniques are often plagued with the curse of dimensional-
ity, due to the extremely high number of voxels and the limited number
of activation maps. A commonly-used solution is the regularization of
the weights used in the parametric prediction function. It entails the
difficult issue of introducing an adapted amount of regularization in the
model; this question can be addressed in a Bayesian framework, but
model specification needs a careful design to balance adaptiveness and
sparsity. Thus, we introduce an adaptive multi-class regularization to
deal with this cluster-based structure of the data. Based on a hierarchi-
cal model and estimated in a Variational Bayes framework, our algorithm
is robust to overfit and more adaptive than other regularization methods.
Results on simulated data and preliminary results on real data show the
accuracy of the method in the context of brain activation images.

1 Introduction

Inferring behavioral information or cognitive states from activation brain images
such as those obtained with functional magnetic resonance imaging (fMRI) is
a recent approach in neuroimaging [?] that can provide more sensitive analy-
ses than standard statistical parametric mapping procedures [?]. Specifically, it
can be used to check the involvement of one or several brain regions in certain
cognitive or perceptual functions by evaluating the accuracy of the prediction
of a behavioral or cognitive variable of interest (the target) when the classifier
is instantiated on that particular brain region. Such an approach is particularly
well suited for the investigation of population coding [?]: certain neuronal popu-
lations are thought to activate specifically when a certain perceptual or cognitive
parameter reaches a given value; inferring the parameter from the neuronal ac-
tivity helps to decode the brain system.

The main difficulty of such a problem is the huge dimensionality of the data,
with far more features (in our case, voxels) than samples (images). This problem



leads to overfit and thus dramatically decreases prediction accuracy. One com-
mon solution consists in working in the dual space using the kernel trick [], but
in the case of neuroimaging, it may be more fruitful to compute explicit loadings
on brain regions, hence to work in the primal space. To deal with this dimen-
sionality problem, some regularized regression techniques have been developed,
forcing the majority of the features to have zero or close to zero loadings, such as
Lasso [?] and elastic net [?]; however, these approaches require that the amount
of regularization is fixed beforehand, and possibly optimized by cross-validation.
By contrast, Bayesian methods (e.g. adpative ridge Regression [] and Automatic
Relevance Determination -ARD- [?]) adapt the amount of regularization to the
problem at hand. These regularized regression methods have been already used
for predicting cognitives states. In [?], a model based on ARD has been proposed
for weighting activity patterns in the case of logistic regression, but ARD can
overfit in the case of very high dimension. Similarly, in [?] a Bayesian regression
approach is used to classify brain states, but the construction relies on ad hoc
voxel selection steps, so that there is no proof that the solution is optimal. In
summary, Bayesian regression techniques have been developed in two contexts:
on the one hand, adpative ridge regression regularizes all the loadings with the
same parameter, which is not adapted to brain activity where only few clusters of
voxels have task-related activity; on the other hand ARD regularizes separately
each voxel, and is prone to overfit when the model contains too many regressors.

In this article, we develop an intermediate approach for regularized sparse
regression, which assigns each voxel to a class, the number of which is fixed by
the operator. Regularization is perfomed in each class separately, leading to a
stable and adaptive regularization, while avoiding overfit - this approach is thus
a compromise between ridge regression and ARD. The algorithm is based on a
Variational-Bayes (VB) approach which leads to a fast estimate of the weights
distributions. The parameters update algorithm is no more complex than an
Expectation maximization algorithm, and iteratively adapts the hyperparame-
ters to our problem. Moreover, the VB approach has one important property for
model selection : it contains a built-in criterion, i.e. the free energy of the model.
After introducing our model and the VB approach, we show that the proposed
algorithm performs better than reference methods for simulated data, and leads
to promising preliminary results on real data.

2 Methods

We introduce the following regression model :

y = Φw + ǫ (1)

where y represents the behavioural data to be fit (written as a vector of length
n) and w the parameters (written as a vector of length m). Φ is the design ma-
trix and can be a n×m matrix (each row is an m-dimensional activation map),
or possibly a n × n matrix (in the case of use of a bilinear kernel). The main
problem with this model is that n ≪ m, so that estimating w is an ill-posed



problem. A solution is to introduce some priors over the parameter distribution.

Priors on regression and adaptative relevance determination (ARD)
Regularized regression can be used to solve ill-posed problem, by imposing a
prior on the weights, hence possibly a sparse feature weighting. First, we model
the noise with a Gaussian density:

ǫ ∼ N (0, σ2In) (2)

p(σ2) = Γ (−1)(λ1, λ2) (3)

with an hyperparameter σ. Γ (−1) stands the inverse gamma distribution.
The prior on the weights is given by a gaussian prior :

w ∼ N (0, A−1) (4)

p(α) = Γ (γ1, γ2) (5)

where A = diag(α1, ..., αm), the hyperparameters αi, i ∈ [1, m] are the precision
parameters, and Γ is the gamma density. Two important cases correspond to
adaptive ridge regression (α1 = ... = αm) and ARD (αi 6= αj if i 6= j). Still,
the highly adaptive regularization of the ARD can lead to severe overfitting if
n ≪ m.

Multi-Classes model (VBK)
In order to accommodate the sparsity of ARD with the stability of adaptive
ridge regression, we introduce an intermediate representation, in which voxels
belong to one class among K following the discrete variable z. Thus all the fea-
tures within a class k ∈ [1, ..,K] share the same precision parameter αk. This
complete generative model is summarized in Fig.1. Next, we introduce a prior
for z :

p(zi) =
K
∏

k=1

πzi=k
k

and a Dirichlet prior on πk with hyperparameter δ: p(π) = Dir(δ)

Estimation and Selection of the model by Variational Bayes
To select a model among several alternatives, it is natural to keep the model that
yields the largest data evidence p(y), which needs to be approximated. Thus, we
use the variational approximation which allows us to find a closed-form q(θ) of
p(θ|y), where q(θ) is in a given family of distributions and θ = [σ2, z, α, w, δ] are
the parameters of the model. We can then decompose log p(y) as the sum of the
free energy F and the Kullback-Leibler divergence between the true posterior
p(θ|y) and the variational approximation q(θ) :

log p(y) = F(q(θ)) + DKL(q(θ)||p(θ|y)) (6)

F =

∫

log
p(θ, y)

q(θ)
q(θ)dθ (7)



Thus, the free energy F is a lower bound of log p(y) with equality iff q(θ) =
p(θ|y), and inferring the density q of the parameters corresponds to maximizing
F . Moreover, free energy is a measure of the quality of the model and can be
used in a model selection scheme and avoids the global time-consuming cross-
validation-based optimization of K.

Initialization and validation
The initialization is set as [?], with weakly informative prior, λ1 = λ2 = γ1 =
γ2 = 10−6 and δ = 5 (see [?]). Since the estimation algorithm converges to a local
maximum of F , the algorithm is very sensitive to initialization of z, performed
by using a K-Means on the F-statistics of the features. Then we developed a
two-steps procedure to avoid this problem : (i) with z fixed, update all the pa-
rameters except z, q(z) and δ until the convergence of all the αk. (ii) z is no
longer fixed, and all the parameters are updated until the convergence of all the
αk.

The performance of the competeing models is computed using the ratio of ex-
plained variance ζ. Let Φl, Y l be a learning set, Φt, Y t a test set, and Ŷ t(Φl, Y l, Φt)
the prediction obtained with a model trained Φl, Y l and tested with Φt.

ζ(Φl, Y l, Φt, Y t) =
var(Y t) − var

(

Y t − Ŷ t(Φl, Y l, Φt)
)

var(Y t)
(8)

This is the amount of variability in the response that can be explained by the
model (prediction is perfect if ζ = 1, and is worst than chance if ζ < 0).

✬

✫

✩

✪Fig. 1. Generative model of the multi-class bayesian regression approach.



3 Results

3.1 Simulated Data

We tested our algorithm on a simulated data set X of Np images with squared
Regions of Interest (ROIs) R (defined by a position and a width). We note b

the background (i.e. outside the ROIs). The signal in the (i, j) voxel of the kth

image is simulated as :

Xi,j,k =
∑

r∈R

Ir(i, j)αr,kui,j,k + Ib(i, j)ui,j,k + ǫi,j,k (9)

where ui,j,k is a random value from an uniforme distribution in [0, 1], ǫi,j,k a
random value from a Gaussian distribution N (0, 1) smoothed with a parameter
of 2 voxels to mimic the correlation structure observed in real fMRI datasets,
αr,k ∼ U [0, 1] for ROI r and image k. We have Ir(i, j) = 1 (resp. Ib) if the (i, j)
voxel is in r (resp. b), and Ir(i, j) = 0 (resp. Ib) elsewhere. We simulate the
target Y as : Yk =

∑

r∈R
αr,k

We generate a a dataset of 250 images, and split it in a learning set of 200 images
and validation set of 50 images. The images have a size of 20×20, with two non-
overlapping ROIs of width 2 pixels. We compare our algorithm with three other
methods : a bilinear kernel-based ARD regression (also called Relevance Vector
Machine RVM [?]), an elastic net regularization procedure (which we will call
Enet [?] with parameters s = 0.5 and λ = 0.1), and a Support Vector Regression
procedure (which we will call SVR [?] with a linear kernel and C = 1).

3.2 Results on Simulated Data

In a first experiment, we average the results obtained for the different methods for
40 tests. We test the values 1, 2 and 3 for the parameter K. See the results Fig.2:
the VBK algorithm outperforms the other methods for K > 1 (c). Moreover, the
VBK method finds very low and stable weights outside the ROIs (a,b), where
Enet leads to a sparse (many weights are closed to zero) but less stable (higher
standard deviation ) regularized solutions. Both RVM and SVR yield a poorly
regularized solution : many irrelevant voxels have a significant weight.
In a second experiment, we compute the explained variance and the free energy
for different models with K ∈ [1, 2, 3, 4, 5] for 20 samples (see Fig. 3). The model
with the lowest free energy (K = 1) is the one with the worst prediction accuracy.
We can see that the increase of free energy is strongly correlated with the increase
of explained variance, with a maximum reached for K = 3.

3.3 Real data

We use real dataset related to a numerotopy (mental representations of quanti-
ties) experiment. During the experiment, ten healthy volunteers (6 males and 4
females, mean age 21.2 +/- 3.0 years) view dot patterns with different quantities



(a) (b)

(c)

VBK - K=1 VBK - K=2 VBK - K=3 RVM Enet SVR

average ζ 0.05 0.35 0.39 0.09 0.31 0.16

std. deviation ζ 0.16 0.18 0.13 0.17 0.18 0.17

Fig. 2. Results of the simulation experiment. ROIs are outlined by blue squares. Mean
(a) and standard deviation (b) for the weights found with different methods. The
VBK approach gives weights similar to those of the Enet method, but with more
stable estimation outside the ROIs. The RVM and SVM approaches lead to non-zero
weights outside the ROIs, and weights estimation is not stable across trials. (c) Ratio
and standard deviation of the explained variance for different methods averaged on 40
simulations. The VBK algorithm outperforms all the other techniques and yields less
variable results (when K > 1).

of dots (ν = 2, 4, 6 and 8; we take Y = log(ν)), with 8 repetitions of each stim-
ulus : so that we have a total of Np = 32 images by subjects. Functional images
were acquired on a 3 Tesla MR system with 12-channel head coil (Siemens Trio
TIM) as T2* weighted echo-planar image (EPI) volumes using a high-resolution
EPI-sequence. 26 oblique-transverse slices covering parietal and superior parts
of frontal lobes were obtained in interleaved acquisition order with a TR of 2.5
s (FOV 192 mm, fat suppression, TE 30 ms, flip angle 78◦ , 1.5 × 1.5 × 1.5 mm
voxels). Standard pre-processings and the fit of the general linear model have
been performed with the SPM5 software. Signals magnitude are expressed as
percentage of increase compared to the baseline.
We keep 1000 voxels included in the main region of interest, i.e. the Intra-Parietal
Sulcus (IPS), which has been manually delineated in all the available datasets



Fig. 3. Results of the simulation experi-
ment for model selection. The free energy
(red) and the explained variance (blue) are
average for 20 simulations, and are strongly
correlated, with a maximum reached for
K = 3. Thus, the free energy of the VBK

model can be used for the selection of the
model.

prior to fMRI data analysis. Thus, in order to further reduce the dimensionality
of the data, we parcellate this region in 200 parcels with a variant of Ward’s
algorithm, and we average the signal within each parcels.

3.4 Results on Real data

We compute the explained variance obtained in a leave-one-session-out proce-
dure for different values of K with the VBK algorithm. We average the results
across the 10 subjects. See Fig.??: (a) Example of loadings found by the VBK

algorithm for one subject superimposed on the anatomical image. We can see
that the VBK provides explicit weighting maps that allow to understand the
anatomical orgnaization of discriminant brain activity. (b) free energy (top) and
explained variance (bottom) averaged across subjects for different values of K.
They are strongly correlated, and increasing the number K of classes in the
model decreases the explained variance. This means that the proposed approach
favors sparse parameterizations.

4 Discussion

Regularization of voxels loadings significantly increases the prediction accuracy.
However, this regularization has to be adapted to the specific nature of each par-
ticular fMRI dataset, which is done in this article by introducing a multi-class
framework. Our approach performs an adaptive and efficient regularization, and
is a compromise between a global regularization (ridge regression and Lasso)
which does not take into account the region-based structure of the information,
and a the (ARD) which is subject to overfit when used in the primal space.

On simulated data, our approach performs better than other classical meth-
ods such as SVR, RVM and Enet. Besides an increase of the explained variance
which shows that the VBK approach extracts more information from the data,
the loadings are less noisy and more stable, leading to more interpretable activa-
tion maps. The correlation between the free energy and the prediction accuracy
confirms that free energy is a valuable model selection tool that furthermore
avoids time-consuming optimization by cross-validation.



(a)
(b)

Fig. 4. Results on the real data for model selection. (a) Weights of the parcels found
by VBK algorithm and superimposed on the anatomical image. Our method gives
promising results for interpretative activity maps. (b) The free energy (red) and the
explained variance (blue) are average for the 10 subjects, and are strongly correlated.
Thus, in these preliminary results on real data, the free energy of the VBK model can
be still used for the selection of the model.

Preliminary results on real data shows the advantages of our method. The VBK

algorithm gives access to highly interpretable loadings maps which are a powerful
tool for understanding brain activity. Moreover, the free energy seems to be an
accurate built-in criterion for model selection. A future direction of our work is
to optimize the spatial model used in our framework (here we simply use a prior
parcellation of the search volume) in relationship with the prediction function
taht we use. In parellel, we will develop non-linear versions (e.g. logistic/probit)
of this model for classification.

Conclusion We have presented a multi-class regularization approach that
includes adaptative ridge and automatic relevance determination as limit case;
the ensuing problem of optimizing the number of classes is easily dealt with
in teh Variational Bayes framework. Our simulations and experiments on real
fMRI data show that this approach is well suited ofr neuroimaging, as it yields
a powerful framework but also reliable and interpretable feature loadings.
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