
Optimal design and control simulation of a monolithic

piezoelectric microactuator with integrated sensor.

Roba El Khoury Moussa, Mathieu Grossard, Nicolas Chaillet, Mehdi

Boukallel, Arnaud Hubert

To cite this version:

Roba El Khoury Moussa, Mathieu Grossard, Nicolas Chaillet, Mehdi Boukallel, Arnaud Hu-
bert. Optimal design and control simulation of a monolithic piezoelectric microactuator with
integrated sensor.. IEEE Robotics and Automation Society, IEEE Industrial Electronics So-
ciety, ASME. IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
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Optimal Design and Control Simulation of a Monolithic Piezoelectric
Microactuator with Integrated Sensor

Roba El Khoury Moussa, Mathieu Grossard, Nicolas Chaillet, Member IEEE, Mehdi Boukallel,
and Arnaud Hubert

Abstract— This paper presents an important evolution in an
optimization method, called FlexIn, developed for the optimal
design of piezoelectric compliant micromechanisms. It is based
on a flexible building block method that uses an evolutionary
approach, to optimize a truss-like planar structure made of
piezoelectric passive, active and now sensitive building blocks.
The model of these blocks is established by means of a finite-
element electromechanical formulation. The main contribution
of this paper is to present an new control-observation-oriented
criterion considered in the optimization procedure, among other
conventional mechanical criteria, to optimize modal observ-
ability of the structure, for the placement of piezoactuating
and piezosensing parts. In order to point out the underlying
interests of this method for the design of smart structures
with integrated actuators and sensors, a planar piezoelectric
compliant smart micro-mechanism is optimally synthesized.
Simulations of the device are finally performed illustrating the
role of the observation-oriented criterion in simplifying the
control of such smart structures.

I. INTRODUCTION

IN microrobotic applications, compliant active materials
are widely used for miniaturization and assembly pur-

poses. One interesting type of smart material used in such
matter is the piezoceramic PZT. Beyond their appealing
properties in the sense of micromechatronic design, an
underlying advantage of piezoelectric materials is the re-
versibility of their electromechanical coupling effect, which
explains their potential use in microrobotic applications as
actuators and/or sensors [1], [2], [3], etc. Furthermore, due to
their high energy density, compactness, and high bandwidth,
piezoceramic actuators and sensors are used for many high-
frequency applications.

Moreover, some researches deal with self-sensing actua-
tion, where the piezoelectric material is used simultaneously
for actuation and sensing purposes, on simple piezoelectric
structures with no placement optimization involved [4], [5].
Numerous papers only address the problem of optimally
placing piezoelectric actuator and sensor parts within flexible
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structures, in order to achieve active vibration control and
to minimize the spillover effects [6], [7], [8]. These studies
are based on controllability and observability modal analysis
of the compliant structure, performed separately for the
optimization of actuator and sensor placement respectively.
One drawback can be that a "well-observed" mode can have
a low control authority and vice-versa.

In order to overcome this problem and thus ensure efficient
structure control, we propose a new optimization criterion
that takes into account both controllability and observability
characteristics. This metric is integrated in a more global
systematic design approach, based on topology optimization
of the structure, as well as that of its frequency responses,
to design compliant micro-mechanisms. In this method,
called FlexIn (Flexible Innovation) [9], based on the flexible
building block method, we propose to optimally integrate
the piezoelectric sensor part in the mechanical piezoelectric
microactuator. To do so, we use two criteria that can help the
designer to optimally place the piezoelectric part. The first
one considers purely static electromechanical aspect [10],
while the second one is based on modal controllability and
observability analysis as briefly cited above. More generally,
this last criterion is a useful tool that can address several
problems. In addition of avoiding noise amplification [11],
and spillover-effects [12], the main purpose is to guarantee
that the flexible modes involved in the response of the de-
flexion are well-observed by the sensing part of the structure.

In this paper, we will first briefly review the underlying
idea of the FlexIn method, based on a finite element (FE)
formulation, for the design of smart compliant mechanisms
(section II). In section III, the state-space approach of the
structure is presented in the modal base. Taking advantage of
this particular representation form, a gramian interpretation
is drawn to take into account, in the optimization algo-
rithm, controllability aspect for actuators and observability
aspect for sensors in flexible structures, by means of a
new numerical criterion. The latter ensures dynamic perfor-
mances required to optimally integrate the piezoactive and
piezosensing parts within the compliant smart mechanism.
The last part of the paper introduces the optimization and
simulations results of one chosen pseudo-optimal solution. It
demonstrates the interest of such a method and observability-
oriented criterion in the design of microrobotic structures.



Fig. 1. Passive (blue), piezoactuating (red) and piezosensitive (green)
libraries of compliant building blocks, for planar compliant mechanisms
synthesis using FlexIn.

II. FLEXIN: A COMPLIANT MECHANISMS
STOCHASTIC DESIGN METHODOLOGY

A. Principles of the Method

FlexIn is an optimization software for the design of planar
compliant micromechanisms. It is based on a multiobjective
genetic algorithm approach, which consists of searching
for an optimal distribution of allowed building blocks. The
resulting structure is thus an assembly of elementary pas-
sive, active or sensitive compliant blocks chosen in three
different libraries (Fig. 1), for simply mechanical, actuation
and sensing functions respectively. In addition to topological
specifications, the optimization problem appoints an optimal
set of boundary conditions (fixed frame location, contacts,
actuators, sensors, end-effectors, etc.), dimensions and ma-
terials, based on the optimization criteria selected by the
designer. More detailed descriptions of the method can be
found in [9] and [13].

B. Electromechanical FE Model of the Piezoelectric Struc-
tures

In the optimization procedure, the computation of different
criteria requires the FE model of each block of the libraries.
To obtain the FE formulation of the piezoelectric blocks,
a model of a piezoelectric beam is needed first, exploiting
both direct and inverse piezoelectricity effects separately for
sensing and actuation purposes respectively (Fig. 2). More
detailed explanations for the piezoelectric actuation model
are given in [13]. The piezoelectric sensing model can be
well understood from [10].

The piezoelectric blocks’ characteristic matrices (mass,
stiffness, electromechanical coupling and electric capacity)
are calculated at the beginning of the optimization algorithm,

Fig. 2. Thickness-polarized piezoelectric beam transducer with electroded
surfaces, and orientation in the material reference frame (e1, e2, e3). (ϕ1,
ϕ2) and (q1, q2) denote respectively the electric potential for actuation case,
and the electric charges for sensing case, of the two electrodes.

by the association of the corresponding beam matrices in the
global coordinate system of the structure.

Each flexible structure synthesized using blocks by FlexIn,
is then defined as a finite-dimensional linear system modelled
by:

Mgη̈g + Kgηg = Egu

yco = δ = Fgηg

yob = qg = Lgηg

(1)

The foregoing second-order differential matrix equations
represent the undamped dynamic behaviour of such a system,
where Mg and Kg are the structure’s mass and stiffness ma-
trices respectively, obtained by the assembly of the matrices
of all the blocks constituting the structure. Considering the
integers p, s, and r, as respectively the numbers of DOFs of
the structure, number of inputs (i.e. actuators), and number
of tip displacement outputs, ηg is then the p × 1 nodal
displacement vector and u is the s × 1 input vector. The
p × s input matrix Eg reflects the location of the actuated
DOFs, while yco is the r × 1 controlled output vector
representing the output tip displacement δ through r × p
output displacement matrix Fg. The third equation expresses
the electric charges (yob = qg) obtained by the integrated
sensing function from the direct piezoelectric effect. Note
that Lg is the 1 × p single output matrix indicating the
placement of piezoelectric sensor in the structure. Hence, it is
important to note that controlled output variable (yco) is not
the observed output one (yob), as in usual other microrobotic
systems, where the controlled tip of the piezocantilever is
observed through external sensor.

III. A NEW CRITERION FOR MATCHING
OBSERVABILITY AND HIGH CONTROL

AUTHORITY OPTIMIZATION

In order to successfully achieve suitable dynamic open-
loop performances (see section III.C), an optimal topol-
ogy design strategy is derived taking into account control-
observability criterion. The latter based on modal balanced
gramians and observability gramians interpretations will be
defined to help optimally integrating actuators and sensors
in the microstructure. To do so, the physical coordinate base
representation (1) is firstly transformed in the modal base



Fig. 3. Control-observation diagram for compliant mechanism with
integrated piezoactuator and piezosensor where Fco and Kob are the control
and observator gains respectively.

to display the flexible modes. Then, we design an observer
that will estimate the flexible modes included in the state
vector through the measured electric charge vector qg on the
sensing blocks of our optimal device. Finally we propose to
control the output tip displacement δ through a state feedback
corrector.

A. Modal Representation for Flexible Structures

By means of modal decomposition, and solving the free
undamped vibration eigenproblem, the first equation in (1)
leads to the eigenvectors matrix Ψ and natural frequencies
ωi of the system. We then obtain:

z̈ + diag(ω2
i )z = ΨtEgu

yco = δ = FgΨz

yob = qg = LgΨz

(2)

where z is the p × 1 modal displacement vector.
By introducing modal damping using Basil’s hypothesis,

the first equation in (2) becomes:

z̈ + diag(2ξiωi)ż + diag(ω2
i )z = ΨtEgu (3)

where ξi is the ith modal damping ratio.
One interesting 2p × 1 state vector x typically used for

flexible structures, and whose advantages are revealed in
[14], consists of modal velocities and frequency-weighted
modal displacements:

x =
(

ż1 ω1z1 . . . żp ωpzp

)t
(4)

Since controlled and observed output vectors are not the
same, the modal state-space representation can be written as
follows:

ẋ = Ax + Bu,

yco = Ccox,

yob = Cobx.

(5)

which leads to two matrices triplets (A,B,Cco) and
(A,B,Cob) designating the control and observation state
space models respectively.

The matrices take the forms A = diag(A1, . . .Ap),
B = (Bt

1, . . .Bt
p)t, Cco = (Cco1 , . . .Ccop), and Cob =

(Cob1 , . . .Cobp), with, for i = 1, ..., p,

Ai =
[ −2ζiωi −ωi

ωi 0

]
(6)

Bi =
[

bi

0

]
(7)

Ccoi
=
[

0 ccoi

ωi

]
(8)

Cobi
=
[

0 cobi

ωi

]
(9)

where bi , ccoi
, and cobi

are the ith components of ΨtEg,
FgΨ and LgΨ respectively. Matrix A revolves on the
structural parameters (eigen frequencies and damping ratio),
whereas matrix B depends on the location of actuated DOF,
matrix Cco on the location of desired displacement output,
and matrix Cob on the location of integrated piezoelectric
sensors. Fig. 3 shows the control-observation diagram prin-
ciple to be applied on our system.

B. Computation of the Observability and Balanced Grami-
ans

Observability gramian (Wob) between state x and mea-
sured output qg is found to be convenient to characterize the
modes’ observability by the mean of electric charge qg. Its
energetic and geometric interpretations are demonstrated in
[6] and [15]. For stable A, Wob is obtained from algebraic
solution of following Lyapunov equation:

AtWob + WobA + Ct
obCob = 0 (10)

Assuming that the damping ratios are infinitely small and
the natural frequencies well spaced, which is widely accepted
for flexible structures, the block diagonal forms of (A,Cob)
couple can be exploited to give closed-form analytical solu-
tion for the expression of the modal observability gramian
[16]. It is diagonal and equal to:

Wob = diag
(

Wob11 , . . . , Wobpp

)
(11)

with, for i = 1, ..., p,

Wobii
=

γqii

4ξiω3
i

I2 = αiI2 (12)

where γqii
= ct

obi
cobi

, and I2 is the 2 × 2 identity matrix.
For a given mode (ξi, ωi), γqii

scalars represent the way the
ith mode is seen through the piezoelectric sensor blocks.

On the other hand, the observer should be able to re-
construct the dominant modes of δ/u transfer by measuring
qg (see Fig. 4). These dominant modes are symbolized by
high Hankel singular values (HSVs) defining the balanced
gramian Weδ of (A,B,Cco) system as follows:

Wcδ = Woδ = Weδ = diag (σi) (13)

where σi are the HSVs of the (A,B,Cco) system.
Note that balanced gramian is a useful tool for quantifying

the joint controllability and observability of the system. It is
shown that when the damping ratios decrease to zero, the
physical modal state coordinates are approximately balanced
in this asymptotic situation, and the approximate ith Hankel
singular value for flexible structure is given by [16]

σi =

√
ct
coi

ccoi
bibt

i

4ξiω2
i

(14)



Fig. 4. Example of desired form of Control and Observation transfers:
corresponding good control authority and good observability of the first
k = 3 modes

HSV describes the degree of the corresponding modal state’s
input-output energy flow through the system.

C. A Gramian-Based Criterion for the Optimization of the
Actuator and Sensor Placement Within a Piezoelectric Mi-
cromechanism

Considering the statements made in Section III.B, this
kind of active structures which are to be finely controlled
are confronted with two main issues:

1) A reduced model of the structure must be developed,
which includes the few dominant low frequency modes,
without destabilizing the system by rejecting the residual
modes (i.e. high roll-off after the dominant modes).

2) If the dominant modes are not all observed, the recon-
struction of δ̂ will not be guarenteed in an optimal way by
the observer.

As mentioned earlier, each piezostructure suggested in
the optimization procedure is evaluated according to the
specified criteria. Hence, we developed a new criterion to
help overcome these two difficulties: the first problem is
conquered by forcing the optimal structure to have k first
dominant modes of the δ/u transfer in order to reduce the
model without destabilizing it. Then, to surmount the second
problem, we guarantee a high-level of observability of these
dominant modes by means of electric charge qg. It is thus
presented by a procedure formulated as follows:

If
σmin

i=1→k

σmax
j=k+1→p

≥ thv, (15)

then Jk,n,thv =
σmin

i=1→k

σmax
j=k+1→p

.

k∑
i=1

αi

(
σi

σmax
j=1→k

)n

(16)

where k is the number of the first dominant modes specified
by the designer, σmin

i=1→k and σmax
j=k+1→p are respectively the

level of the least dominant mode within the first k and the
level of the most dominant mode within the residual ones.
thv is a threshold value specified by the designer. Hence,
the condition (15) represents the domination of the k first
modes by at least thv times compared to the residual modes
(see Fig. 4). It is inspired by a singular-value-decomposition

based truncation method, called balanced model reduction
introduced by [17]. Furthermore, in the numerical expression
(16) of the criterion itself, αi = γqii

4ξiω3
i

corresponds to the
coefficient of the ith observability modal gramian Wobii

.(
σi
/
σMax

j

)n

is a weighing ratio ∈ [0,1]. When the latter’s

value is close to 1, the ith mode in question is a dominant
mode within the first k ones. Note that the exponant n
helps emphasizing the most dominant modes by accelerating
the convergence towards σMax

i . Thus, the corresponding
αi is privileged compared to other modes’ observability.
In other words, by maximizing this criterion, we privilege
the modes where good observability of δ coincides with
its dominant modes (Fig. 4). In this way, it appears that
the procedure given by (15) and (16) is able to solve the
problems mentioned above.

IV. MULTIOBJECTIVE OPTIMAL SYNTHESIS OF
PIEZOELECTRIC MECHANISM WITH

INTEGRATED ACTUATOR AND SENSOR

A. Optimization Problem Specifications

We consider here the synthesis of a monolithic mi-
cromechanism with integrated actuator and sensor, made of a
single piezoelectric material PIC151 from PI Piezo Ceramic
Technology [18].

The structure topology is considered to have a maximal
size of 15mm×18mm, and a constant thickness of 200µm.
It is defined to be made of either passive, active or sensitive
blocks inside a 2 × 3 mesh (see Fig. 5). For the optimal
synthesis run, the number of active (resp. sensitive) blocks
in the structure, chosen among blocks given in Fig. 1, is
chosen to vary between 1 and 4. When external voltages are
applied to the blocks electrodes, the chosen output node of
the structure has to move along the x-axis. For evaluation of
static mechanical criteria, the potential difference between
upper and lower face is taken equal to 200V . The size
ratio of the blocks can vary as bmax/bmin ∈ [[1; 2]] and
amax/amin ∈ [[1; 2]] (see Fig. 5 for details about a and b
parameters definitions). The number of blocked nodes is
comprised between 1 and 3 among the locations permitted
which are reported in Fig. 5.

Finally, two numerical criteria to be maximized with
FlexIn are:

• J1: free mechanical displacement δx at the output node
in x-direction,

• J2: amplitude of the sensing electric charges induced
on the piezoelectric blocks [10].

Note that J1 and J2 consider only the static behavior
of the structure. They are calculated via the finite element
approach used in FlexIn.

Simultaneously, a third dynamic criterion presented in
section III.C is evaluated along with the first two:

• Jk,n,thv: modal observability of the mechanism output
δ by the observed sensitive blocks charges qg. In this
example, we chose k = 2, n = 2 and thv = 3.



Fig. 5. Mesh of the PZT compliant micromechanism with imposed and
permitted boundary conditions. a and b optimization parameters define the
relative height and width of the blocks.

Fig. 6. Pareto fronts of compliant mechanisms synthesized using FlexIn.

B. Results and Validation

After defining the problems specifications, the optimiza-
tion is set to run. When the genetic algorithm does not find
any new pseudo-optimum during 200 subsequent genera-
tions, the best compromises are kept and can be found on
Pareto fronts (Fig. 6). The designer can chose among these
solutions, after studying their static and dynamic behaviours.
In our case, the structure chosen appears to have the best
dynamic desired behavior according to J3, while static
criteria remain very acceptable. It allows a tip displacement
of 7µm, and induces sensing charges around 1.9 × 10−9C.
To illustrate the dynamic behavior, bode diagrams of δ/u
control transfer and qg/u observation transfer given by
FlexIn and commercial 3D finite element Comsol software
are shown in Fig. 7.b. The slight error between the resonant
frequencies is mainly due to the fact that the building block
6 present in the structure is replaced by full triangles for
machining conveniences, as shown in Fig. 7.a .

C. Control of the Chosen Structure in Simulation

Considering the modal state-space representation (5), we
chose to reduce it to the first two dominant modes as men-
tioned earlier. Thus, from bode diagrams given by Comsol
software in Fig. 7.b, open-loop δ/u control transfer and
qg/u observation transfer are both identified, considering
the first two dominant modes as follow:

Gco (s) =
δ(s)
u(s)

=
kc1

s2

ω2
1

+ 2ζc1s
ω1

+ 1
+

kc2

s2

ω2
2

+ 2ζc2s
ω2

+ 1
(17)

Gob (s) =
q(s)
u(s)

=
ko1

s2

ω2
1

+ 2ζo1s
ω1

+ 1
+

ko2

s2

ω2
2

+ 2ζo2s
ω2

+ 1
(18)

Fig. 7. a) FlexIn and Comsol schemes of the chosen structure, b) Bode
diagrams of control and observation transfers of the chosen structure.

Note that since flexible structures are slightly damped, we
assume that all damping ratios are equal (ζci = ζoi = 2%),
which simplifies by far the computation of the modal state-
space representation. Furthermore, the purpose of our opti-
mization criterion J3 is successfully achieved, which leads
to the same natural frequencies in both transfer functions
(ω1 = 1.37 × 104rad/s and ω2 = 2.21 × 104rad/s).
Numerical values of identified static gains of both transfer
functions are mentioned in Table I.

After specifying the state vector as in (4), we apply the
same process followed in section III.A, where p = 2 is the
number of flexible modes. Finally, for values from (7) to (9),
we obtain bi = ω2

i , ccoi
= kci and cobi

= koi.
To make the model more realistic, we introduce white

noises v(t) and w(t) applied respectively on the state x
and the measured output qg. In the following, two steps are
performed independently, according to the separation prin-
ciple: we first synthesize a Kalman filter to reconstruct the
state via the measurement of qg and to minimize the noise
effect on the control. Then, we implement a reconstructed
modal state feedback control strategy.

1) Kalman filter estimator: it is known for its accuracy to
optimally estimate the states in the presence of disturbances.
In our case, we specified the noises’ variances V(t) and
W(t) to bring approximately 10% error on the state and
measurement vectors respectively. The state reconstruction
is given by :

˙̂x(t) = Ax̂(t) + Bu(t) + Kob (yob(t) − Cobx̂(t))

Kob = Σ(t)Cob
T W(t)−1,

(19)

where Σ(t) the reconstruction error variance, is the solution
of Riccati equation:
AΣ(t)+Σ(t)AT +V(t)−Σ(t)Cob

T W(t)−1CobΣ(t) = 0
(20)

2) Reconstructed state feedback control strategy: It is
a very common control strategy based on pole placement



TABLE I
IDENTIFIED PARAMETERS OF Gco AND Gob TRANSFER FUNCTIONS.

Gco Gob

kc1(mm/V ) kc2(mm/V ) ko1(C/V ) ko2(C/V )
3.40 × 10−5 2.76 × 10−5 −1.59 × 10−11 −9.30 × 10−12

Fig. 8. Step response of the controlled structure.

by state feedback control. The idea is to synthesize a full
state feedback u = −Fx̂, where the gain F is selected to
achieve desirable properties of the closed-loop system. In our
context, by defining the theoretical time response tr = 10ms
and specifying a zero overshoot, we determine the poles of
the closed loop transfer function designated by (A − BF)
matrix. In this way, they are two double pole pairs with zero
imaginary parts (p1 = p2 = −500 and p3 = p4 = −800).

3) Response analysis: Fig. 8 presents the time response
to a 6µm step input on the structure controlled by the pole
placement strategy. From this plot, we can conclude that
this strategy is satisfying in simulation, in term of noise
rejection and overshoot reduction. The time response at 5%
from reference is 12.5ms. Furthermore, the system shows
very appealing stability margins: gain margin =104.7dB and
infinite phase margin.

V. CONCLUSION

A contribution to an existing optimal compliant mi-
cromechanisms design method has been presented in this
paper. In this method, structures composed of an assembly of
building blocks made of PZT, optimally integrate active and
sensing blocks by means of a control-observation oriented
gramian-based criterion. This is achieved by considering
the open-loop dynamic control and observation transfers’
performances. In fact, for optimally integrating both actu-
ation and sensing functions in the structure, the criterion
implies matching high control authority modes from the
balanced gramian matrix, with high observation ability from
the observation gramian matrix.

An optimization problem is specified to illustrate the men-
tioned methodology. The analysis of the resulting pseudo-
optimal solution bring to satisfying conclusion: it can operate
at both static and dynamic regimes, and more importantly,
the dynamic properties successfully sought by our optimiza-
tion gramian-based criterion, simplify the control of such
structures as shown in the last part.

A prototype of the compliant pseudo-optimal micromech-
anism resulting from the optimal design will be developed
for experimental validations and control.
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