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Abstract 

Eu2O3-doped aluminoborosilicate glasses were prepared by melting in air at high temperature 

(~1500
o
C). It was shown by luminescence and Electron Paramagnetic Resonance 

measurements that both Eu
3+

 and Eu
2+

 ions can exist simultaneously in the glass matrix 

studied after glass synthesis as well as after exposure to ionizing radiation. Increase of total 

Eu2O3 concentration leads to the increase of Eu
3+

 luminescence intensity while the 

luminescence intensity of Eu
2+

 ions tends to reduce. Although as it is seen by Electron 

Paramagnetic Resonance spectroscopy amount of Eu
2+

 ions inside the glass is raised with total 

Eu2O3 concentration. The difference in the results of both spectroscopies is explained in terms 

of energy transfer from Eu
2+

 to Eu
3+

 leading to an Eu
2+

 luminescence quenching. Irradiation 

results in the increase of reduced Eu
2+

 quantity detected by Electron Paramagnetic Resonance 

measurements. It was shown that Eu
2+

 ions are located in both high (g ~ 4.6) and low 

symmetry (“U’ spectrum) sites in the structure of aluminoborosilicate glasses glass. The 

content of Eu
2+

 ions occupied these sites increases by the irradiation dose increase 

manifesting the presence of strong reduction process Eu
3+

 → Eu
2+

.  

 

PACS codes : 61.16.Fh, 61.72.Hh, 61.80.Fe 
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1. Introduction 

 

It is known that rare-earth (RE) elements can be embedded as fission products in the 

glasses used for the immobilization of high-level nuclear wastes (HLW) [1]. At the same 

time, some RE ions can be considered as chemical surrogates of minor actinides and therefore 

could modeled the actinide environment for the simulation of the behavior of real vitrified 

radioactive actinides [2,3]. For that purpose simplified oxide nuclear glasses, doped with 

different RE elements, were exposed to β-irradiation in order to simulate the consequences of 

β-decay and predict influence RE ions on structure of host matrices [4-6]. Europium is 

representative of actinides as the chemical properties of Eu
3+

 are very similar to those of 

trivalent actinides and in particular to Am
3+

. Furthermore, Eu
3+

 can be used as a local 

structural probe with different spectroscopic methods [7,8]. 

The coexistence of both Eu
3+

 and Eu
2+

 ions has been found in some phosphors glasses or 

films during melting or prepared under reduction atmosphere [9-14]. The reducing 

atmosphere, such as H2 or CO, is generally needed to reduce Eu
3+

 to Eu
2+

 during the synthesis 

of Eu
2+

 doped luminescent materials. However, the preparation of Eu
2+

 doped materials in air 

is more convenient than in reducing atmosphere. Some research works on reduction of Eu
3+

 

into Eu
2+

 in air has been reported in Eu doped Al2O3–SiO2 glasses [15], MO–B2O3 glasses (M 

= Ba, Sr, and Ca) [16] and aluminoborosilicate (ABS)  glasses [17]. 

Taking into account, that Eu
3+

 ion is an active electron trap [18], it is apparent to 

consider that ionizing radiation such as γγγγ-rays [18-21] or irradiation with femtosecond laser 
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pulses [22,23] results in the formation of Eu
2+

 ions after Eu
3+

 reduction.  Besides, our recent 

investigations on irradiated Sm-doped ABS glasses have confirmed the presence of almost 

complete Sm
3+

 reduction by luminescence measurements in β-irradiated ABS glasses at the 

highest irradiation doses (10
9
 Gy) [5].  

In continuation of our recent studies, we investigated Eu
3+

 reduction process in pristine 

and exposed to β-irradiation ABS glasses doped with Eu2O3. The influence of europium 

concentration as well as irradiation integrated dose on both optical and structural properties of 

Eu-doped ABS glasses are considered in the present paper. 

 

2. Experimental methods 

 

The nominal general composition of the ABS glass was (in mol%): 59.77 % SiO2, 4.00 

% Al2O3, 22.41 % B2O3, 12.12 % Na2O, 1.70 % ZrO2. Eu-doped ABS glasses were prepared 

by adding to the base glass different amounts of europium oxide Eu2O3 (from 0.1 to 1 

mol%). The dried mixed powders were first heated at 750°C in a Pt crucible during 10 hours 

for removing carbonate from the reagents. Then, it was melted at 1500°C for one hour and 

quenched in air. The different glasses were annealed at 500 °C during few hours to release 

strains. Each glass was analyzed by X-Ray diffraction, which confirms the amorphous 

character of glass.  

All glasses were β-irradiated with 2.5 MeV electrons (10 µA) provided by a Van de 

Graaff accelerator (LSI, Palaiseau, France) at different integrated doses from 10
6
 to 2.10

9
 Gy. 

Electron Paramagnetic Resonance (EPR) measurements were conducted at room 

temperature on a X band (ν = 9.420 GHz) EMX Brücker EPR spectrometer using a 100 kHz 

field modulation, 3 gauss of amplitude modulation and an applied microwave power of 1 mW 

(defect EPR line) and 20 mW for Eu
2+

 resonances.. The EPR spectra of all irradiated RE-
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doped ABS glasses have been normalized to the same receiver gain and to a 100 mg sample 

weight. Paramagnetic defects total content has been estimated by the area under the defect 

absorbance EPR spectrum. A maximum error of 10 % has been considered in this work taking 

into account uncertainties in the irradiated glass samples weight measurement, the sample 

positioning inside spectrometer cavity and defect absorbance EPR spectrum area computation 

or EPR line intensity measurement.  

 

3. Results 

 

Fig.1 shows luminescence spectra of pristine ABS glass doped with 0.2 mol% of Eu2O3 

excited with different wavelength. The emission between 550 and 620 nm can be attributed to 

well-known transitions from 
5
D0 to 

7
FJ (J = 0, 1 and 2) levels of Eu

3+
 [15,17]. Appearance of 

the broad band positioned between 350-500 nm can be assigned to the 5d - 4f transition of 

Eu
2+

 ions [15,17]. The observed emission bands under different wavelength of excitation are 

basically the same but the contribution of both Eu
3+

 and Eu
2+

 emission intensity is different. It 

can be seen from Fig. 1 that excitation in the Eu
2+

 band (330 and 350 nm) results in the higher 

luminescence intensity of Eu
2+

 ions while Eu
3+

 ions luminescence is negligible. Indeed, 5d 

band of Eu
2+

 is observed in the Eu doped ABS glass excitation spectrum monitored at 420 nm. 

One can observe in Fig. 2 that 
8
S7/2 → 5d band consists of two component t2g (320 nm) and eg 

(370 nm) splitted by the crystal field around Eu
2+

 ions. At the same time a weak band at 320 

nm can also be distinguished in the Eu
3+

 excitation spectrum, indicating the presence of 

energy transfer (ET) from Eu
2+

 ions 5d level to the Eu
3+

 ions 4f levels. It is apparent from Fig. 

3, that the overlap between broad emission of Eu
2+

 and the different excitation bands of Eu
3+

 

can result in energy transfer from Eu
2+

 to Eu
3+

 ions increasing the Eu
3+

 emission efficiency. 

Indeed, as it can be seen from Fig. 4, the increase of Eu2O3 content into the ABS glass leads 
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to the quenching of Eu
2+

 luminescence while the intensity of Eu
3+

 emission bands is 

increasing.  

Additional evidence of Eu
2+

 ions formation during Eu doped ABS glass synthesis is 

provided by EPR spectra shown in Fig. 5 for sample doped with 0.6 mol% Eu2O3 doped ABS 

glasses. It is known that Eu
3+

 ion is not paramagnetic one and therefore does not make 

contribution in EPR signal. By contrary, Eu
2+

 ion has the electronic spin (S) and nuclear spin 

(I) are 7/2 and 5/2, respectively [24] and can be easily studied by EPR spectroscopy at room 

temperature. It should be noted that Eu
2+

 ion has the same electronic configuration as Gd
3+

 ion 

and, as expected, EPR spectra of Eu
2+

-doped ABS glasses are similar to those of Gd
3+

-doped 

ABS glasses [4]. Moreover, obtained EPR spectra of Eu doped ABS glasses are in good 

agreement with those published for Eu doped borophosphate glass and fluorobromozirconate 

glass ceramics [25,26].  

At the same time some specific features can be noticed in the EPR spectra of both 

pristine and irradiated Eu-doped ABS glass. As in can be seen from Fig.5 for pristine samples 

all observed EPR lines of so-called “U” spectrum (at g ~ 6.0 (~1154 G), g ~ 2.8 (~2570 G) 

and 2.0 (~3427 G)) are broadening enough in comparison with those in irradiated glass 

samples. In addition, the intensity ratio between the g ~ 6.0 and 2.8 EPR lines of the U 

spectrum is observed to be increasing for irradiated Eu
2+

 doped glasses comparing to Gd
3+

-

doped glass. Besides, the relative proportion between intensities of EPR line at g ~ 4.6 (~1628 

G) and of the components of “U” spectrum in irradiated Eu-doped ABS glasses reveals an 

increase by 3 orders of magnitude in comparison with the same ratio obtained in Gd-doped 

ABS glass (Fig.5).  Finally for all irradiated samples, an EPR line at g ~ 2.3 (~3060 G) is 

found to be correlated to some paramagnetic impurity. 

It should be noted that quantity of reduced Eu
2+

 ions is affected by the Eu 

concentration. It is apparent, that with the increase of Eu2O3 content in ABS glasses, the 
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intensity of EPR lines associated with Eu
2+

 ions increases, although relative ratio between two 

Eu
2+

 bands (g ~ 4.6 and 6.0) reveals negligible dependence with doping ion concentration 

(Fig. 6). The evolution of observed Eu
2+

 EPR lines at g ~ 4.6 and 6.0 is followed by the same 

tendency with increasing the integrated dose (Fig. 7). The EPR lines observed around g ~ 2.0 

(~3500 G) detected only in irradiated ABS glasses are attributed to the defects created by 

ionizing radiation (Fig. 8) [4-6,27]. Two results can be deduced from Fig. 8. First, one can 

see a strong decrease of the radiation defect content with the Eu2O3 concentration in the 

glasses (at one integrated dose). In addition to the total defect amount decrease, a diminution 

of the relative proportion between Bore Oxygen Hole Centers (BOHC) and electron centers 

(E’-defects: electron trapped by silicon atom) [27] is clearly seen in the EPR spectra attributed 

to radiation defects (Fig. 8). 

 

4. Discussion 

 

Observed luminescence in as-prepared ABS glasses doped with Eu ions can be 

attributed both Eu
3+

 and Eu
2+

 ions indicating therefore that glass synthesis in air at high 

temperature affected the oxidation states of europium in this ABS glass composition. The 

broad blue emission with maximum at ~ 420-450 nm (Fig.1) undoubtedly belongs to the 

transition 4f
6
5d → 4f

7
 of Eu

2+
 ion. Intensity of Eu

2+
 ions is increased while the intensity of 

Eu
3+

 drastically decreases with changing of wavelength of excitation which is apparently 

related to the fact that the Eu
2+

 excitation band is a broad one while Eu
3+

 spectrum is 

characterized by a variety of discrete excitation lines. Indeed, in the excitation spectrum 

for the emission at 580 nm (Fig.2) one can see group of 4f intra-configurational transitions 

from the 
7
F0 level to upper-lying excited states in the region of 350-500 nm and the charge 

transfer band at 250 nm attributed  to the electron transfer from 2p orbitals of O2
−
 to 4f levels 
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of Eu
3+

 [28]. Nevertheless, under monitoring in 420 nm in the excitation spectrum broad band 

in the region 250-400 nm corresponding to 4f
6
5d → 4f

7
 transition in Eu

2+
 ion is observed as it 

is shown in Fig.2. The 4f – 5d excitation band of Eu
2+

 ions consists of two components 

attributed to a splitting of 5d orbitals into eg and t2g components [29]. This separation is in 

agreement with examination of Eu
2+

 absorption spectra in alumino-silicate glasses, where 

sites of cubic symmetry with 8- and 12-fold coordination are considered resulting in a 

splitting to eg component at lower energy and t2g component at higher energy [30,31]. Thus, in 

this ABS glass investigated, the eg band being the lowest in energy (~ 370 nm) indicates that 

the Eu
2+

 ions possesses cubic sites with higher symmetry. It is interesting to notice that the 

appearance of weak band at 320 nm in the excitation spectrum of Eu
3+

 can be ascribed to 4f-

5d transition of Eu
2+

. Moreover strong overlap between broad blue emission of Eu
2+

 and 

excitation bands of Eu
3+

 in the region 350-500 nm is observed as it is seen from Fig.3. Based 

on these experimental results and taking into account the energy level diagram of the Eu
2+

 and 

Eu
3+

 ions [31] it is possible to suppose that energy transfer from Eu
2+

 to Eu
3+

 can take place. 

The mechanism of energy transfer is similar to that described in [31, 32]. The excited in 

4f
6
5d (eg) state the ion Eu

2+
 transfers the energy by means of non-radiative transition 

4f
6
5d(eg)→

8
S7/2 to the ground state resulting in the excitation of 

5
D0 level of Eu

3+
 ion. We 

also observed another evidence of energy transfer from Eu
2+

 ions to Eu
3+

 by measuring the 

relative ratio between emission intensities for both ions (Fig.4). Indeed, diminution of Eu
2+

 

emission intensity with simultaneous enhancement of Eu
3+

 luminescence as a function of 

Eu2O3 concentration is caused by non-radiative relaxation of Eu
2+

 ion to the ground state 

(
8
S7/2) providing energy transfer (resonant or through re-absorption [33]) to Eu

3+
 ions.  

The occurrence of well known “U” EPR spectrum described for Gd
3+

 doped glasses [34-

43] in both as-prepared and irradiated Eu-doped ABS glass clearly shows the presence of Eu
2+

 

ions with the same electronic configuration like Gd
3+

 ions (Fig.5). Although, a specific 
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broadening of the Eu
2+

 EPR lines width at g ~ 2.8 and 2 for pristine as-prepared ABS glasses 

as well as different ratio between the intensities of the components of “U”-spectrum and EPR 

line at g ~ 4.6 for irradiated ABS glasses comparing to those of Gd
3+

 EPR lines can be noticed 

(Fig.5). We assume that these differences in could be due to a different local environment in 

terms of disorder around an average site of Eu
2+

 ions.  

Since Eu
2+

 ion is equivalent for EPR to Gd
3+

 ion, it is expected to observe similar EPR 

spectra for both doping ions. Indeed, comparing the EPR data for both Gd- [4] and Eu-doped 

ABS glass we can notice similarities. First the appearance of “U” spectrum (g ~ 2.0, 4.6 and 

6.0) as well is less ordinary observed EPR band at g ~ 4.6. The origin of this spectrum for 

Gd
3+

 doped glasses has been discussed by several authors [34-40]. The more complete and 

thorough treatment have been effected by Brodbeck and Iton [40, 41]. They pointed out that 

the EPR features at g ~ 2.8 and g ~ 6.0 are always occurred together with similar relative 

intensity and that all bands of “U” spectrum (g ~ 2.0, g ~ 2.8 and g ~ 6.0) are assigned to 

transitions of Gd
3+

 ions in one site. On the contrary, EPR signal at g ~ 4.8 is corresponding to 

a Gd
3+ 

site different from the one observed in the “U”-spectrum [36,42,43]. Indeed, our recent 

study of irradiated Gd
3+

-doped ABS glass clearly showed that the observed changes in the 

EPR spectra in dependence on the integrated dose can only be interpreted with two Gd
3+

 

environments in the glass investigated [4].     

However, it was underlined in [29] that Eu
2+

 and Gd
3+

 ions do not occupy similar sites. 

It is marked that the ligand field splitting of the 4f
n-1

5d excited configurations is different for 

trivalent and divalent ions. Thus, Ebendorff-Heidepriem et al. pointed out that in the case of 

Eu
2+

 ions, the splitting of the 5d orbitals into eg and t2g orbitals suggests cubic RE sites of 

higher symmetry while Azzoni et al. [44] inferred the presence of at least one site for Gd
3+

 ion 

with symmetry lower than cubic and coordination number higher than 6 [34-40]. At the same 

time, Furnisst et al. affirm that the higher Eu
2+

 crystal-field terms reflect greater departures 
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from spherical symmetry than it is occurred for the Gd
3+

 ions [45]. Coey et al. concluded that 

divalent europium in different fluorozirconate glass is occupied not good defined sites with a 

range of coordination numbers from 8 to 12 as it was confirmed by optical investigations 

[30,31], whereas the sites occupied by a trivalent rare-earth ion are more uniform [46]. 

Nevertheless, based on our EPR experimental results on Eu
2+

 ions and previous EPR 

analysis of Gd
3+

 ions behavior in ABS glass we can conclude that these RE ions occupy 

equivalent positions (in terms of the environment symmetry) in the glass investigated. Indeed, 

the presence of two Gd
3+

 sites different in symmetry and local environment is apparent: 

exposure to irradiation reveals not the same evolution of the sites with irradiation dose 

increase [4]. Moreover relative proportion between sites attributed to Gd
3+

 ions in position of 

network former (g ~ 4.8) and network modifier (g ~ 6.0) is decreased by the increase of 

Gd2O3 concentration [47]. For Eu doped glasses, the ratio between Eu
2+

 EPR lines intensities 

at g ~ 6.0 and g ~ 4.6 (I g~6.0/I g~4.6) showed not significant dependence on Eu2O3 content 

(Fig.6) but at the same time the evolution of these lines as a function of integrated dose 

reveals the similar tendency (Fig.7). It is well established in literature that Eu
3+

 ions are 

located in two environments in oxide glasses like silicate, borate, borosilicate and 

aluminoborate [48]. Thus it is logical to suppose that reduction processes of the Eu
3+

 ions in 

ABS glasses can produce different Eu
2+

 sites with different coordination numbers, crystal 

field strength and covalency between the ligands and Eu
2+

 ions. Present EPR study revealed 

the presence of two Eu
2+

 sites – a high symmetry site corresponding to the line at g ~ 4.6 and 

a low symmetry site characterized by the Eu
2+

 “U” EPR spectrum. However equivalent ratio 

between these sites as a function of doping ion content and their similar behaviour with 

integrated dose are not clearly understood and can not be explained at the moment requiring 

further studies. In the case of fluorozirconated glasses doped with Eu, Coey et al. determined 

by Mossbauer spectroscopy an Eu
2+

 environment and interpreted Eu
2+

 site in these glasses as 
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a network modifier one [46]. Taking into account this consideration and based on our result 

presented we assume that the “U” spectrum for Eu
2+ 

is attributed to a network modifiers 

location for the Eu
2+ 

ion. 

Amount of defects created under irradiation is decreased by the increase of Eu2O3 

doping level as it was found early for all RE embedded in ABS glass [4-6] and could due. to 

the fact that electron-hole pairs produced during ionizing radiation support dynamical balance 

between the two charge states of Eu ions (Eu
3+

 + (h
ο
/e

-
) => Sm

2+
 + h

o
 => Eu

3+
 or Eu

2+
 + (h

o
/e

-

) => Eu
3+

 + e
-
 => Eu

2+
) rather than participate in the rupture of the bonds between the atoms 

forming glass network. The same results have also been observed in β-irradiated 

aluminoborosilicate glasses doped with Sm
3+

 or Ce
4+

 ions [5,6]. It is interesting to notice also 

the well-resolved structure of the EPR line attributed to the Boron Oxygen Hole Center 

(BOHC) defects (Fig.8), while the radiation defect ERP signal in aluminoborosilicate glasses 

doped with Gd
3+

 ions considered as an analogue to Eu
2+

 ion reveals no any structure due to 

preferentially distribution in the borate environment [4]. On the contrary from the results of 

Fig.8 we can conclude that that Eu
2+

 ions produced during irradiation are distributed more 

homogeneously in the glass studied and located not in the vicinity of BOHC centers. Except 

total radiation defect diminution with increase of Eu2O3 concentration one can see the 

decrease of relative proportion between hole (BOHC) and electron (E’) defects in dependence 

on Eu2O3 concentration.  It is well-known that Eu
3+

 ion is a good electron trap, therefore this 

ion can competes with intrinsic electron traps for the defects production and reduces 

significantly the number of electron defects. As a matter of fact, this result is reflected in Fig. 

8 where the intensity of the EPR line belonging to E’ defect decreases as a function of Eu2O3 

doping content and becomes negligible for ABS glasses doped with 0.4 mol% europium oxide 

and higher. 
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5. Conclusion 

  

The effect of europium concentration and irradiation dose on the Eu
3+

 → Eu
2+

 

reduction in aluminoborosilicate glasses has been studied. It is shown that both Eu
3+

 and 

Eu
2+

 ions can coexist simultaneously in the as-prepared glass. Luminescence properties 

of Eu
2+

 ions are found to be concentration-dependent. Energy transfer between Eu
2+

 and 

Eu
3+

 ions is assumed to be responsible for the Eu
2+

 emission quenching and 

enhancement of Eu
3+

 luminescence efficiency. At the same time Electron Paramagnetic 

Resonance measurements confirm the strong increase of the Eu
2+

 ions quantity in 

aluminoborosilicate glasses with increase of Eu2O3 concentration as well as with 

irradiation dose. Moreover, observed Electron Paramagnetic Resonances let us suppose 

that the position of Eu
2+

 ions in aluminoborosilicate glass could be associated with both 

network modifier (low symmetry) and network former (high symmetry) sites. Finally, it 

is postulated that the radiation effects on the structure of aluminoborosilicate glass in 

particular creation of radiation defects can be essentially minimized by the europium 

doping.  

  

Acknowledgements 

 

We are grateful to Thierry Pouthier and Vincent Métayer for their contribution during 

external β irradiation experiments.  

 

References 



 12

[1] A.Haddi, F.Farges, P.Trocellier, E.Curti, M.Harfouche, G.E.Brown. Proceedings of 13th 

Conference on X-Ray Absorption Fine Structure (XAFS13), July 9-14, 2006 Stanford 

California. 

[2] C. Lopez, X. Deschanels, J.M. Bart, J.M. Boubals, C. den Auwer, E. Simoni. J.Nucl. 

Mater. 312 (2003) 76.  

[3] P.Loiseau, D.Cauran, N.Baffier, L.Mazerolles, C.Fillet. J. Nucl. Mater. 335 (2004) 14. 

[4] E. Malchukova, B. Boizot, D. Ghaleb, G. Petite. J. Non-Cryst.Solids 352 (2006) 297. 

[5] E. Malchukova, B. Boizot, G. Petite, D. Ghaleb, J. Non-Cryst. Solids 353 (2007) 2397. 

[6] E. Malchukova, B. Boizot, G. Petite, D. Ghaleb, Eur.Phys.J.Appl.Phys.45 (2009) 10701. 

[7] N. Ollier, G. Panczer, B. Champagnon, G. Boulon, P.Jollivet, J. Lumin. 94&95 (2001) 

197.  

[8] F. Thevenet, G. Panczer, P. Jollivet, B. Champagnon, J. Non-Cryst. Solids 351 (2005) 

673. 

[9] Z. Lian, J. Wang, Y.H. Lv, S.B. Wang, Q. Su, J. Alloys Compd. 430 (2007) 257. 

[10] J.H. Hao, J. Gao, Appl. Phys. Lett. 85 (2004) 3720.  

[11] J.H. Hao, J. Gao, M. Cocivera, Appl. Phys. Lett. 82 (2003) 2778.  

[12] M.Y. Peng, Z.W. Pei, G.Y. Hong, Q. Su, Chem. Phys. Lett. 371 (2003) 1. 

[13] H.P. Xia, J.L. Zhang, J.H. Wang, Q.H. Nie, H.W. Song, Mater. Lett. 53 (2002) 273. 

[14] Z.W. Pei, Q.H. Zeng, Q. Su, J. Phys. Chem. Solids 61 (2000) 9. 

[15] M. Nogami, T. Kawaguchi, A. Yasumori, Opt. Commun. 193 (2001) 237. 

[16] C. Wang, M.Y. Peng, N. Jiang, X.W. Jiang, C.J. Zhao, J.R. Qiu, Mater. Lett. 61 (2007) 

3608. 

[17] S. Liu, G. Zhao, W. Ruan, Z. Yao, T. Xie, J. Jin, H. Ying, J. Wang, G. Hanw. J. Am. 

Ceram. Soc., 91  (2008) 2740. 

[18] R.Yokota. J.Phys.Soc.Japan 23 (1967) 129. 



 13

[19] V.I. Arbuzov, M.N. Tolstoj, M.A. Elerts.  Fizika i Khimiya Stekla. (Glass Physics and 

Chemistry) 11 (1985)  547.  

[20] V.I. Arbuzov, M.N. Tolstoi, M.A. Elerts, Ya.S. Trokshs. Fizika i Khimiya Stekla (Glass 

Physics and Chemistry) 13 (1987) 581.   

[21] A.Shida, S.T.Yakamuku. Chem. Lett. 9 (1988) 1497. 

[22] J. Qiu, K. Kojima, K. Miura, T. Mitsuyu, K. Hirao, Opt. Lett. 24 (1999) 786.  

[23] H. You, M. Nogami. J.Phys.Chem.B 109  (2005) 13980. 

[24] Q. H. Zeng, Z. W. Pei, S. B. Wang, Q. Su. J. Alloys Compd. 275–277 (1998) 238. 

[25] C. Zhu, Y. Yang, X. Liang, S. Yuan, G. Chen. J. Am. Ceram. Soc., 90 (2007) 2984.  

[26] S Schweizer, G Corradi, A Edgar and J-M Spaeth. J. Phys.: Condens. Matter 13 (2001) 

2331. 

[27] B. Boizot, G. Petite, D. Ghaleb, and G. Calas, Nucl. Instr. and Meth. in Phys. Res. B 141 

(1998) 580. 

[28] H. Liang, Q. Zeng, Y. Tao, S. Wang, Q. Su, Mater. Sci. Eng. B 98 (2003) 213. 

[29] H. Ebendor-Heidepriem, D. Ehrt. Opt.Mater. 15 (2000) 7. 

[30] M. Nogami, Y. Abe. Appl. Phys. Lett. 69 (1996) 3776.  

[31] M. Nogami, T. Yamazaki, Y. Abe. J. Lumin. 78 (1998) 63. 

[32] K.-S. Lima, S. Lee, M.-T. Trinh, S.-H. Kim, M. Lee, D. S. Hamilton, G. N. Gibson. J. 

Lumin. 122–123 (2007) 14. 

[33] D. Zhou, R.Y. Chen, C. Shi, Y. Wei, H. Chen, M. Yin, J. Alloy. Compd. 322 (2001) 298. 

[34] I. Ardelean, E. Burzo, D. Mitulescu-Ungur, S. Simon, J. Non-Cryst.Solids 146 (1992) 

256.  

[35] E. Culea, I. Milea, J. Non-Cryst. Solids 189 (1995) 246.  

[36] S. Simon, I. Ardelean, S. Filip, I. Bratu, I. Cosma, Solid State Commun. 116 (2000) 83.  

[37] E. Culea, L. Pop, S. Simon, Mater. Sci. Eng. B 112 (2004) 59.  



 14

[38] D.L. Griscom, J. Non-Cryst. Solids 40 (1980) 211.  

[39] I.E. Iton, C.M. Brodbeck, S.L. Suib, G.D. Stucky, J. Chem. Phys. 79 (1983) 1185;. 

[40] C.M. Brodbeck, I.E. Iton, J. Chem. Phys. 83 (1985) 4285. 

[41] C. Legein , J .Y.Buzare , G. Silly, C. Jacoboni. J. Phys.: Condens. Matter 8 (1996) 4339. 

[42] E. Culea, A. Pop, I. Cosma. J. Magnet. 157/158 (1996) 163.  

[43] I. Ardelean, L. Griguta. J.Non-Cryst. Solids 353 (2007) 2363. 

[44] C.B. Azzoni, D. Di Martino, A. Paleari, A. Speghini, M. Bettinelli. . J.Mater.Sci. 34 

(1999) 3931. 

[45]  D. Furnisst, E. A. Harrist, D. B. Hollis. J. Phys. C: Solid State Phys. 20 (1987) L147. 

[46] J. M. D. Coey, A. McEvoy, M.W. Shafer.  J. Non-Cryst. Solids 43 (1981) 381. 

[47] E. Malchukova, B. Boizot, G. Petite, D. Ghaleb. J. Non-Cryst Solids 354 (2008) 3592. 

[48] J. de Bonfils, G. Panczer, D. de Ligny, S. Peuget, B. Champagnon. J.Nucl. Mater. 362 

(2007) 480. 

 

 

 

 

 

 

 

 

 

 



 15

Figure Captions 

 

Figure 1: Luminescence spectra of pristine as-prepared Eu-doped ABS glass (0.2 mol% of 

Eu2O3) in dependence on excitation wavelength (Xe lamp) 

 

Figure 2: Excitation spectra for Eu
2+

 and Eu
3+

 ions monitored at 420 and 580 nm, 

respectively, measured for pristine as-prepared Eu-doped ABS glass (0.2 mol% of Eu2O3) 

 

Figure 3: Overlap of Eu
2+

 luminescence spectrum (350 nm) with Eu
3+

 excitation spectrum of 

pristine as-prepared Eu-doped ABS glass (580 nm) (0.2 mol% of Eu2O3) 

 

Figure 4: Evolution of the luminescence spectra (λλλλex = 266nm, Xe lamp) of pristine as-

prepared Eu-doped ABS glass on Eu2O3 concentration; in inset – the intensity ratio 

Eu
2+

/Eu
3+

 as a function of Eu2O3 content  

 

Figure 5: EPR spectra of pristine and irradiated Eu- and Gd-doped ABS glass (0.6 and 0.57 

mol% of Eu2O3 and Gd2O3, respectively) 

 

Figure 6: Ratio between EPR line intensities at g ~ 4.6 and g ~ 6.0 as a function of Eu2O3 

concentration 

 

Figure 7: Dependence of EPR band intensity of Eu-doped ABS glass at g ~ 4.6 – a and g ~ 6.0 

– b  on irradiation dose 
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Figure 8. Evolution of EPR defects concentration on Eu2O3 concentration in β-irradiated 

glasses (5.3 · 10
8
 Gy); in inset – radiation defect content as a function of Eu2O3 

concentration 
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Figure 1 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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 Figure 5.  
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Figure 6. 
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Figure 7. 
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Figure 8. 
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