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Phenomenological coefficients in a concentrated alloy for the

dumbbell mechanism

V. Barbe∗, M. Nastar
Service de Recherches en Métallurgie Physique, CEA/Saclay,

91191 Gif-sur-Yvette Cedex, France.

Abstract

We present an adaptation of the self-consistent mean field (SCMF) theory to calculate the trans-

port coefficients in a concentrated alloy for diffusion by the dumbbell mechanism. In this theory,

kinetic correlations are accounted for through a set of effective interactions within a non-equilibrium

distribution function of the system. Transport coefficients are calculated for the FCC and BCC

multicomponent concentrated alloys for simple sets of jump frequencies, including different stabili-

ties of the different defects. A first approximation leads to an analytical expression of the Onsager

coefficients in a binary alloy, and a second approximation provides with a more accurate prediction.

The results of the SCMF theory are compared with existing models and available Monte Carlo sim-

ulations, and an interpretation of the set of effective interactions in terms of a competition between

jump frequencies is proposed.

Keywords : Diffusion ; Dumbbell ; Concentrated alloy ; Correlations ; Mean Field.

Short title : Transport coefficients for the dumbbell mechanism
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1 Introduction

When an alloy is irradiated with particles, atomic transport can occur through both types of defects

which are created, vacancies and interstitials. The calculation of the transport coefficients associated

to both mechanisms was therefore intensively studied in the past decades, mainly to predict the

variation of atomic and defect fluxes with the concentration and the basic jump frequencies. In the

case of the vacancy mechanism, relatively complete models are now available, including effects as a

percolation threshold [1, 2, 3] or dependence of the transport coefficient with the thermodynamic

interactions between atoms [4, 5, 6, 7]. However, due to its greater complexity, an efficient general

model is still lacking for the dumbbell mechanism.

Bocquet [8, 9, 10] was the first one to propose a calculation of the tranport coefficients for the

dumbbell mechanism in concentrated alloys. He used an approach based on the description of macro-

jumps, i.e. a series of consecutive jumps of the defect in which one particular atom does not leave

the defect : based on this description, he calculated the tracer diffusion coefficients in a face-centered

cubic (FCC) concentrated alloy and followed a procedure close to the one of Manning [1] for the

vacancy mechanism to deduce the Onsager coefficients [8, 9]. This method, also called effective field

approximation, could predict a percolation behaviour for high jump frequency ratios. This approxi-

mation happened to be not applicable in BCC alloys [10]. Nevertheless, Monte Carlo simulations were

developed in both systems to provide with a reference value of the transport coefficients [9, 10, 11].

Some years later, Chaturvedi and Allnatt [12, 13] derived the calculation of the Lij coefficients

within the framework of equilibrium fluctuations, based on the successful earlier work of Moleko,

Allnatt and Allnatt [2] in the vacancy case. Their results in terms of tracer [12] and collective [13]

correlation factors appeared to be more or less accurate than those of Bocquet compared to the Monte

Carlo simulations as a function of the chosen set of jump frequencies for a global jump frequency ratio

of 1:10, although Bocquet’s model involved a less complex formalism. One has also to notice that

2
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the transport coefficients obtained by this method do not fulfill the Onsager law, i.e. the Onsager

matrix is not symmetrical, which makes the choice of the coefficient LAB problematic.

Recently, Sharma et al. [14] adapted the same formalism to the BCC concentrated alloy, but

the geometrical complexity of the jump mechanism in this particular structure prevented them to

complete the calculation of the transport coefficients. However, they could derive useful relations

between the correlation coefficients, in good agreement with Monte Carlo simulations.

The model of jump frequencies used in those studies is a simplified set of frequencies proposed by

Bocquet [9], which allows dumbbells of different compositions to present different binding energies.

Interactions between a dumbbell and a substitutional atom as well as between two substitutional

atoms were neglected : one must notice that the formalism of Chaturvedi and Allnatt does not allow

such interactions, whereas Bocquet’s model could integrate them at the cost of a great additional

complexity. Sets of jump frequencies including interactions between defects and substitutionnal atoms

were introduced up to now only in the case of dilute alloys for the dumbbell mechanism : among

others, Barbu [15] and Allnatt et al. [16] treated this case with the pair association method [17]

in a FCC dilute alloy. However, later works on dilute alloys [18, 19, 20] neglected the interactions

between dumbbells and solute atoms.

More generally, it must be noted that the assumptions in terms of geometry of the defect and

of the jump mechanism can still be discussed : in this study we apply the widely accepted models

proposed in a review by Robrock [21] and confirmed by recent ab initio calculations in the BCC

structure [22, 23], but such calculations in FCC alloys are still missing, and all results were obtained

up to now in pure elements or dilute alloys. Geometrical details for each structure will be addressed

in their corresponding section.

In this paper we address the calculation of the transport coefficients in a general concentrated

alloy using a self-consistent mean field (SCMF) theory [4, 24, 5, 3] developped in the past years for

3
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the case of the vacancy mechanism. It is based on an atomic model of the jump mechanism, and

introduces a non-equilibrium density function through a set of ‘effective’ interactions which are calcu-

lated thanks to particular kinetic equations derived from a Master Equation in presence of chemical

potential gradients, under steady state conditions [4]. Recently, it was successfully extended to treat

a percolation threshold in concentrated alloys [3] as well as a complete thermodynamic description

of a dilute alloy including atomic interactions [5]. Adapting the SCMF to the dumbbell mechanism

does not involve much change in the formalism, apart from a greater geometrical complexity.

In a first part, we present the general formalism of the SCMF in the dumbbell case (section

2). Detailed calculations are presented to enlighten the differences from the vacancy mechanism

treated with the same formalism. In the two following sections, we will show its application to non-

interacting ∗ concentrated alloys : the cases of FCC and BCC structures, intensively discussed in the

litterature, appeared very similar in terms of treatment and results, both are therefore presented in

the same article. The last section will be devoted to the comparison between the SCMF results and

the existing models, as well as general remarks on the SCMF formalism. Results of the SCMF theory

in the case of a dilute alloy will be presented soon in a following paper : the authors found more

consistent to present the structure of the method in the general case of a concentrated alloy where

the symmetries are more likely to be emphasized and take advantage of simple analytic expressions

of the transport coefficients under some simplifying assumptions.

2 The SCMF theory

The main steps of the calculation of the transport coefficients using the SCMF theory in the case

of a dumbbell mechanism are the same as for the vacancy mechanism, each one requiring only light

∗Throughout this paper, we call non-interacting a system without interactions involving the substitutional atoms.
As we will see, a particular set of jump frequencies can take into account different stabilities of the dumbbells of different
compositions, which is equivalent to speak of thermodynamic interactions between both atoms inside the dumbbell.
Nevertheless, non-interacting alloys in this study are characterised by the absence of short-range or long-range order.
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modifications. The main assumption of the model is to introduce a non-equilibrium formalism in

terms of configuration probability, which depends on a driving force, here a gradient of chemical

potential. The dumbbell mechanism which gives rise to diffusion is described by a Master Equation

involving the non-equilibrium distribution function. In a second part, we introduce an atomic model

of the jump frequencies. Eventually, we present the final system of kinetic equations which leads

to the calculation of transport coefficients. As the spirit of the calculation is exactly the same as

for the vacancy mechanism, we will emphasize in the following paragraphs the characteristic aspects

induced by the dumbbell mechanism and will not detail all calculations, which are fully described in

earlier papers [4, 5, 3].

2.1 Non-equilibrium distribution

We consider a system of atoms and dumbbells distributed on the Ns sites of a rigid lattice. A con-

figuration n of the system is described by the occupation numbers {nA
1 , nB

1 , . . . nABα
1 , . . . nA

2 , nB
2 . . .} :

nA
i is equal to 1 when the site i is occupied by a substitutional atom A and 0 if else. Here a defect

ABα is defined as two atoms A and B occupying the same lattice site, α standing for the orientation

of the dumbell as well as its direction if A is different from B. Generalized occupation numbers are

introduced for convenience. On the one hand, NA
i is the total number of atoms of the species A

occupying the lattice site i. This generalized occupation number can take the values 0, 1 or 2 and is

defined as :

NA
i = nA

i + 2×
∑

α

nAAα
i +

∑
α,B 6=A

nABα
i (1)

On the other hand, N I
i is an occupation number of the site i by whatever a dumbbell :

N I
i =

∑
α,A,B

nABα
i . (2)

Throughout this paper, any sum over chemical species will not include the dumbbells, unless ex-

plicitely mentioned.
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In a first approximation, in contrary to the SCMF theory with vacancy mechanism, we shall

consider a non-interacting system, as even such simple systems are currently not satisfactorily treated

by available theories. As a consequence, the equilibrium probability of one configuration n reduces

to :

P̂0 = exp

[
β(Ω +

∑
A,i

µANA
i + µIN

I
i )

]
. (3)

The quantity β = 1/kBT is the reciprocal temperature weighted by the Boltzmann constant, Ω is the

grand canonical potential which guarantees the relationship
∑

n P̂0(n) = 1 and µA is the chemical

potential of the species A. Note that the chemical potentials of all species including dumbbells are

not independent because of the property of the occupation numbers :

∑
A

NA
i −N I

i = 1. (4)

Out of equilibrium, we define the new probability of a configuration n by the product of an

equilibrium and a non-equilibrium part :

P̂ (n, t) = P̂0(n)P̂1(n, t) (5)

where the non-equilibrium contribution has the characteristic form :

P̂1(n, t) = exp

[
β

(
δΩ(t) +

∑
A,i

δµA
i (t)NA

i +
∑

i

δµI
i (t)N

I
i − ĥ(t)

)]
(6)

Following Vaks [25], in addition to the corrections to the chemical potentials and to the grand

canonical potential due to non-equilibrium, we introduce an unknown time-dependent function which

states a new set of correlations between the occupation numbers. This function ĥ(t) is chosen to

have the form of an Hamiltonian as a function of the occupation numbers and will be called effective

Hamiltonian. In the case of the dumbbell mechanism, it should include interactions between both

species inside a dumbbell as well as interactions between the dumbbell and the substitutional atoms.

ĥ(t) =
∑

I

vI
i (t)n

I
i +

1

2!

∑
i,j,A,I

vAI
ij (t)nA

i nI
j + . . . . (7)

6
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where the sum over I means a sum over all types of interstitial defects (composition and orienta-

tion). The unknown time-dependent functions vαβ...
ij... are called for convenience effective interactions

although their physical meaning is in no way comparable to thermodynamic interactions. As it was

the case with the vacancy mechanism, effective interactions between more than two atoms or dumb-

bells may also be introduced, which give rise to a more accurate description of long paths of the

defect.

2.2 Atomic diffusion model for the dumbbell mechanism

The unknown effective interactions will be related to the transport coefficients of the system by

modelling its kinetic behaviour. Following Vaks [25], we use the Master Equation :

dP̂ (n, t)

dt
=
∑
ñ

[
Ŵ (ñ → n)P̂ (ñ, t)− Ŵ (n → ñ)P̂ (n, t)

]
, (8)

where Ŵ (n → ñ) is the probability of the transition from the configuration n to the configuration

ñ per time unit. In the case of the dumbbell mechanism, a transition from one configuration to

another one can be composed of either a rotation of a dumbbell ABα on its site (becoming ABβ),

or of a single jump of the dumbbell. It is widely assumed that, in the latter case, one atom of the

dumbbell migrates to a neighbouring ‘target site’ and forms a new dumbbell with the species which

was already on this site (‘target atom’). The remaining atom of the initial dumbbell is then left in

a substitutional position.

ABα + C → A + BCβ. (9)

Note that the use of the character β in subscript or superscript always refers to an orienta-

tion/direction, whereas the same character in normal police stands for the inverse temperature

multiplied by the Boltzmann constant. The probability of such a jump exchange per time unit

is :

Ŵ (n → ñ) = nABα
i nC

j ŵ
ABα/Cβ

ij (n). (10)

7
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Several simplified sets of jump frequencies have been proposed by different authors. The most widely

used is the one by Bocquet [26, 9], which assumes that the jump frequency depends only on the three

species A, B and C and can be written wAB/C . However, even in a binary alloy, this model can lead

to eight different frequencies : simplified models with only two jump frequencies have been used by

Bocquet [9, 10] and Sharma et al. [20]. The former assumed that the frequency is controlled by the

change (or not) of the composition of the dumbbell during the jump, introducing different stabilities

of the different dumbbells ; the latter proposed a more ‘vacancy-like’ model where the jump frequency

depends only upon the migrating species. More sophiscated models were used in the case of dilute

alloys (see for example Barbu [15] or Allnatt et al. [16]) where the formation and dissociation of pairs

containing one dumbbell and one solute atom were considered. Throughout this paper, we assume a

set of frequencies of the type wαβ
AB/C as introduced by Bocquet and present the numerical results in

the more convenient two-frequency model. On-site rotation is also considered with a frequency wR
AB

depending only on the composition of the rotating dumbbell : again, more complex models can be

necessary if one considers a binding energy between dumbbells and neighbouring atom, which will

not be the case here.

An overview of the possible orientations α given the cristallographic structure was proposed by

Robrock [21] and was since supported by ab initio calculations [22, 23]. Hence, relations between the

initial and final orientations α and β in Equation (9) also depend on the cristallographic structure,

as well as the definition of target sites for one initial orientation. As long as the structure is not

mentioned, we define a factor γαβ
ij which is equal to 1 if the jump described by equation (9) is allowed,

and equal to 0 if this jump is forbidden for geometrical reasons. Eventually we can write the basic

jump frequency as :

ŵ
ABα/Cβ

ij (n) = γαβ
ij wαβ

AB/C . (11)

In the RHS, the ‘hat’ sign on w has been removed because this frequency does not depend on the

8
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configuration of the system excepted for the nature of the three involved atoms A, B and C. We

note that, defining β as the direction opposite to β, the latter factor obeys the relation :

γαβ
ij = γβα

ji , (12)

and the RHS is to be applied to the reverse jump :

CBβ + A → C + BAα (13)

where we have used the equality ABα = BAα. A similar factor γαβ
R is introduced to separate among

the rotations between orientations α and β those which are geometrically allowed (γαβ
R = 1) and those

which are forbidden (γαβ
R = 0). This factor depends on the cristallographic structure and will be made

explicit in the application of the SCMF model to FCC and BCC structures. Throughout this article,

applications will focus on the 〈110〉 dumbbell in the BCC structure and the 〈100〉 dumbbell in the

FCC one. Target sites as well as useful notations for some important configurations are summarized

in figures 1 and 2 for the FCC and BCC structures respectively.

2.3 System of kinetic equations

For the calculation of the transport coefficients, we consider now the particular case of a system out

of equilibrium, with the following conditions :

• The system is near an homogeneous equilibrium state, so that the non-equilibrium quantities

are close to zero.

• Thanks to suitable boundary conditions, the driving force is an homogeneous chemical potential

gradient.

• The system is assumed to be in steady state.

In these conditions, we solve the Master Equation in order to calculate the unknown effective inter-

actions.

9
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Instead of searching P̂ as a solution of the Master Equation, we define it by its moments. Unlike

the vacancy mechanism, we will focus the calculation on the moments involving the defect, which

are of the type 〈nABα
i 〉 for a one-point moment and 〈nABα

i nC
j 〉 for a two-point moment. The kinetic

equation of the type of Equation (8) is applied to those moments. It comes for example :

d〈nABα
i 〉
dt

=
∑

s 6=i,β,σ

〈nσAβ
s nB

i γβα
si wβα

σA/B + n
CBβ
s nA

i γβα
si wβα

σB/A

−nABα
i nσ

s γ
αβ
is wαβ

BA/σ − nABα
i nσ

s γ
αβ
is wαβ

AB/σ〉

+
∑

β

〈(γβα
R n

ABβ

i − γαβ
R nABα

i )wAB
R 〉. (14)

Here the first two terms refer to the migration of an existing dumbbell towards the site i initially

occupied by a species B (respectively A) ; the following two terms refer to the migration of the

dumbell from the site i to a target neighbour site s, leaving on site i the B atom (respectively A).

The last two terms refer to the appearance or disappearance of the dumbbell ABα by means of a

rotation. The kinetic equation for the two-point moment 〈nABα
i nC

j 〉 is exactly of the same type, but

attention should be paid to the possible jump of the dumbbell from site i to site j. It comes :

d〈nABα
i nC

j 〉
dt

= 〈
∑

β,σ,s 6=i,j

(nC
j n

σAβ
s nB

i γβα
si wβα

σA/B + nC
j n

σBβ
s nA

i γβα
si wβα

σB/A

−nC
j nABα

i nσ
s γ

αβ
is wαβ

BA/σ − nC
j nABα

i nσ
s γ

αβ
is wαβ

AB/σ)

+
∑

β

(n
CAβ

j nB
i γβα

ji wβα
CA/B + n

CBβ

j nA
i γβα

ji wβα
CB/A

−nABα
i nC

j γαβ
ij wαβ

BA/C − nABα
i nC

j γαβ
ij wαβ

AB/C)

+
∑

β

nC
j (γβα

R n
ABβ

i − γαβ
R nABα

i )wAB
R 〉, (15)

where terms involving the presence of two dumbbells have been neglected.

The next step is the linearization with respect to the terms β(δµA
i −δµA

s ) and βĥ. This calculation

is detailed in Appendix A : it is greatly simplified by the use of the detailed balance, which is satisfied

10
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at equilibrium and states for the migration and the rotation of the dumbbell respectively :

〈nCAβ
s nB

i γβα
si wβα

CA/B〉
(0) = 〈nABα

i nC
s γαβ

is wαβ
BA/C〉

(0) (16)

〈γβα
R n

ABβ

i wAB
R 〉(0) = 〈γαβ

R nABα
i wAB

R 〉(0), (17)

where 〈〉(0) means an equilibrium average over the equilibrium distribution fonction P0.

Eventually, each moment set to zero on one or many sites leads to a linear relation between the

effective interactions and the gradients of chemical potentials of the different species.

2.4 Transport coefficients and correlation effects

The link with the transport coefficients is based on the time derivative of the one-point moment of

the generalized occupation number 〈NA
i 〉. Given its definition, any variation of NA

i can occur only

if an atom jumps to or from site i :

d〈NA
i 〉

dt
=

∑
s 6=i,α,β,σ,σ′

〈nσ′Aβ
s nσ

i γ
βα
si wβα

σ′A/σ

−nσAα
i nσ′

s γαβ
is wαβ

σA/σ′〉. (18)

This moment is identified as a local concentration 〈NA
i 〉 ≡ cA

i . One recognizes the equation of matter

conservation :

dcA
i

dt
= −

∑
s 6=i

JA
i→s (19)

where the flux of atoms A from site i to site j is :

JA
i→s =

∑
αβ,σ,σ′

〈nσAα
i nσ′

s γαβ
is wαβ

σA/σ′ − n
σ′Aβ
s nσ

i γ
βα
si wβα

σA/σ′〉.

= −β
∑

α,β,σ,σ′

γαβ
is wαβ

σA/σ′〈n
σAα
i nσ′

s (µA
s − µA

i + ĥσAα
i − ĥ

Aσ′β
s )〉, (20)

where ĥσAα
i is the partial derivative of ĥ with respect to the occupation number nσAα

i . The procedure

to obtain the second line is described in detail in Appendix A, and will be used in the same manner

in all kinetic moments.
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It will now be convenient to write the flux directly in terms of the effective interactions :

JA
i→s = −βl

(0)
A (µA

s − µA
i )− βlA ×V, (21)

where V is the column vector of the effective interactions and lA a line vector of the same dimension.

We can then identify the transport coefficients of the system regarding the species A as the

coefficients of proportionnality relating the flux of atoms A and the gradients of chemical potentials

of each species σ, i.e. the projection of the RHS of equation (21) along the vector (µσ
s −µσ

i ). We can

separate the uncorrelated part of the coefficient LAA
† as :

1

β
L

(0)
AA = 〈

∑
α,β,σ,σ′

nσAα
i nσ′

j γαβ
is wαβ

σA/σ′〉
(0). (22)

In opposition to the vacancy mechanism, it is possible to restrict the effective Hamiltonian to

interactions within one site only, i.e. the effective interactions of the type vI
i . In this case, Equation

(20) is greatly simplified and one can express the correlated transport coefficient as :

∑
α,β,σ,σ′

γαβ
is wαβ

σA/σ′〈n
σAα
i nσ′

s (ĥσAα
i − ĥ

Aσ′β
s )〉 =

1

β

∑
B

(δABL
(0)
AA − LAB)(µB

s − µB
i ).

(23)

Throughout the article, we found more convenient to express the transport coefficients in terms of

correlation coefficients f
(A)
AB which follow the usual definition :

f
(A)
AB =

LAB

L
(0)
AA

, (24)

where the superscipt (A) is omitted if A = B.

2.5 Effective interactions in the case of one-dimensional diffusion

After solving the kinetic equations, one obtains the expression of the effective interactions as a linear

combination of the gradients of chemical potentials of the atomic species (see for example [4, 5, 3] for

†The link with the macroscopic transport phenomenology for a cubic symmetry states : J̃A =
∑

σ(a2/Vat)LAσ∇µσ,
where J̃A is expressed in atoms per time and area units, a is the lattice parameter and Vat the atomic volume.
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such expressions in the vacancy case). It is then straightforward to deduce that in these conditions :

vAB
ij = −vAB

ji , (25)

where A and B are subsitutional atoms. Namely, inverting sites i and j is equivalent to invert the

sign of the gradients of chemical potentials. Concerning the dumbbells, attention must be paid to

apply a complete symmetric inversion, involving the exchange of sites and the orientation of the

dumbbell. Let us note I the ‘inversed’ dumbbell (defined by ABα = ABα = BAα) :

vI
i = −vI

i (26)

vAI
ij = −vIA

ij (27)

The consequence is a considerable reduction of the number of independent effective interactions.

On the one hand, interactions of the type vABα
i only need to be taken into account if A is different

from B and if the orientation α is not perpendicular to the main direction of diffusion which is

chosen to be the direction 〈100〉 (also called X axis). The contribution of the dumbbell AB will be

noted vAB if the projection of α along the direction X is positive (the dumbbell can be noted AB+),

and vBA = −vAB if the projection is negative. If the projection is zero (dumbbell AB0), so is the

corresponding effective interaction.

Concerning the interactions involving one defect ABα on site i and one substitutionnal atom C

on site j, we will limit ourselves in this study to nearest neighbour (nn) interactions. For symmetry

reasons, it is sufficient to take into account configurations where the projection of the vector ij along

the X direction is positive or equal to zero. To this point, it will be necessary to differentiate if site j

is a possible target site of the dumbbell or not. Four possibilities arise which are summed up in figures

1 and 2 for the case of FCC and BCC structures respectively. We use the subscripts ‖ if the jump

AB → C is allowed (C is on a compression site) and ⊥ if the jump is forbidden (C on a dilatation

site), and the superscript + (respectively 0) stands for an orientation of the dumbbell AB positive

13
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along the X direction (respectively perpendicular to the X direction) : effective interactions one has

to deal with are of the type vAB, vAB+
‖ C , vAB+

⊥C , vAB0
‖C and vAB0

⊥C . Examples of the antisymmetry

properties in the BCC structure are given in figure 3. Eventually, if the projection of the dumbbell

and of the vector ij on the X axis are both 0, the associated effective interaction is also 0. In a

system containing n atomic species, the number of effective interactions (and of kinetic equations to

solve) is n(n − 1)/2 + 4n3 : the first term comes from the effective interactions inside a dumbbell

AB+ and the second term stands for the four independent positions of a complex ABαC. For each

cristallographic structure we will derive the calculation using this entire set of kinetic equations

and address eventually the possible simplifications and their consequences in terms of transport

coefficients.

[ Insert Figure 1 about here. ]

[ Insert Figure 2 about here. ]

[ Insert Figure 3 about here. ]

3 FCC concentrated alloy

3.1 Jump mechanism

In a FCC alloy the most stable configuration of a dumbbell is the 〈100〉 direction. The jump mech-

anism as described among others by Johnson [27] is a jump towards a nn atom including a rotation

of 90◦ of the orientation of the dumbbell. On-site rotation of the dumbbell with an angle of 90◦ is

also allowed.

The twelve nn atoms of an AB dumbbell must then be separated into four target sites for the

atom A, four target sites for the atom B and four sites which cannot be reached in one jump. Figure

1 summarizes the different configurations to be taken into account.
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Eventually, we define equilibrium concentrations of the different dumbbells as :

cAB = 〈nABα
i 〉(0). (28)

The quantity cAA is then one third of the total concentration of dumbbells of type AA, and cAB is

one sixth of the total concentration of mixed dumbbells, with the relation :

∑
A,B

cAB =
cI

3
(29)

due to the three possible orientations of the dumbbell. The way to calculate cAB is detailed in

Appendix B.

To simplify the notations, we introduce an effective field hAB as the total effective interactions

involved by a single dumbbell AB in an average environment :

hAB = vAB + 4
∑

σ

(vAB+
‖ σ − vBA+

‖ σ + vAB+
⊥σ)cσ (30)

and express the moments in terms of hAB instead of vAB. We will also use the compact notation :

vAB+
‖ C =

∑
σ

vAB+
‖ σcσ − vAB+

‖ C . (31)

The way to obtain such combinations of effective interactions is detailed in Appendix C.

Eventually, we introduce weighted jump frequencies WAB/C , which are proportional to the prob-

ability of a jump AB → C in the system :

WAB/C ≡ cABcCwAB/C , (32)

as well as mean jump frequencies of a certain dumbbell :

WAB/X ≡ cAB

∑
σ

cσwAB/σ, (33)

and finally the average jump frequency of one species :

WA ≡
∑
σ,σ′

cσ′Acσwσ′A/σ. (34)

The corresponding frequency for rotation is WR
AB ≡ cABwR

AB.
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3.2 Kinetic equations

The kinetic equations of the one-point and two-point moments are much more complex than the

ones obtained for the vacancy mechanism, because of the additional geometry and of the increased

number of atoms involved in one jump. We will detail the calculation of the one-point moment to

show the origin of the different terms and give the expression of three more characteristic two-point

moments, the other being of the very same structure is given in Appendix D.

We first express the flux of atoms A by adapting Equation (20) to the FCC structure :

JA
i→j+ = −2WA(µA

j+ − µA
i )

−
∑
σ,σ′

cσAcσ′(hσA − vσA+
‖ σ′ − vσA0

‖σ′

−hAσ′ + vσ′A+
‖ σ + vσ′A0

‖σ)wσA/σ′

= −2WA(µA
j+ − µA

i )

−2
∑
σ,σ′

(hσA − vσA+
‖ σ′ − vσA0

‖σ′)WσA/σ′ . (35)

To obtain the latter expression, we use the equality WσA/σ′ = Wσ′A/σ deduced from the detailed

balance and invert the order of σ and σ′ in the double sum.

We now express Equation (14) in terms of the simplified effective interactions in a FCC lattice.

Considering the dumbbell AB with a positive orientation on site i, j+ is a target site for the jump

AB/C and j− a target site for the jump BA/C (see figure 1). The four possible positions of j+ or

j− are all equivalent due to the one-dimensional symmetry.

d〈nAB+

i 〉
dt

= 〈nB
i

∑
σ

4nσA0

j− wσA/B

+nA
i

∑
σ

4nBσ0

j+ wσB/A

−nAB+

i

∑
σ

[
4nσ

j−wBA/σ + 4nσ
j+wAB/σ

]
+(4nAB0

i − 4nAB+

i )wR〉. (36)
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Applying the same procedure as in Appendix A, we derive it in terms of non-equilibrium quan-

tities :

d〈nAB+

i 〉
dt

= 4WAB/X(µB
j+ − µB

i )− 4WBA/X(µA
i − µA

j−)

+4(WBA/X + WAB/X + WR
AB)hAB

−4
∑

σ

[
WAB/σ(vAB+

‖ σ + vσB0
‖A)

−WBA/σ(vBA+
‖ σ + vσA0

‖B)
]

(37)

We give the expression of three more 2-point moments over the four possible ones to illustrate

particular points of the calculation. The last one is formally very close to the latters and is to be

found in Appendix D.

d〈n
AB+

‖
i nC

j 〉
dt

= −4cCWBA/X(µA
i − µA

j−) + (3cCWAB/X + WAB/C)(µB
j+ − µB

i )

−4
∑

σ

WBA/σcC(−vσA0
‖B − vBA+

‖ σ − hAB + vAB+
‖ C)

−3
∑

σ

WAB/σcC(vσB0
‖A + vAB+

‖ σ − hAB + vAB+
‖ C)

−WAB/C(vCB+
‖ A − hAB + vAB+

‖ C)

+cCWR
AB(vAB0

‖C + vBA0
‖C + 2vAB0

⊥C + 4hAB − 4vAB+
‖ C)WR

AB.

(38)

Here the effective interactions h and v have been grouped as a function of the mechanism of appear-

ance/disappearance of the complex AB+
‖ C. The second line refers to a jump of atom A toward or

from the dumbbell (four possible sites), the third line to a jump of atom B involving a site other

than j (three possible sites), the fourth line to a jump of B between sites i and j, and the fifth line to

an on-site rotation. Furthermore, we note for convenience n
AB+

‖ C

ij the product nAB
i nC

j where atoms

A, B and C are in a particular configuration which gives rise to the effective interaction vAB+
‖ C : an

example of such a configuration is given in figure 1(e).
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In the first and second lines of the RHS, one can perceive the principal effect contained in the

2-point moment, which is the competition for a dumbbell AB between the jump toward a given

species (here C) and the jump into an average medium. This is more visible if we express the ratio

of the generalized frequencies W as :

WAB/C

cC(4WAB/X + 3WBA/X)
=

cABcCwAB/C

cC

∑
σ cABcσ(4wAB/σ + 3WBA/σ)

=
wAB/C∑

σ cσ(wAB/σ + WBA/σ)
(39)

The last 2-moment equations concern a substitutionnal atom in a nn non-target site. It is conve-

nient to use instead of the two-point moment the quantity K
AB+

⊥C

ij ≡ 〈nAB+
⊥C

ij − nAB+

i cC〉.

dK
AB+

⊥C

ij

dt
= −4cC(WAB/X + WBA/X + WR

AB)vAB+
⊥C

+2cC

∑
σ

(WBA/σvAσ0
⊥C −WAB/σvBσ0

⊥C) (40)

dK
AB0

⊥C
ij

dt
= −4cC(WAB/X + WBA/X + WR

AB)vAB0
⊥C

+cC

∑
σ

(WBA/σ(vAσ+
⊥C + vAσ0

⊥C) + WAB/σ(vBσ+
⊥C + vBσ0

⊥C))

+cCWR
AB(vAB+

‖ C + vBA+
‖ C + vAB0

‖C + vBA0
‖C). (41)

It is worth noting that if the rotation frequencies wR
AB are equal to zero, combining those two kinetic

equations leads to vAB+
⊥C = vAB0

⊥C = 0. As a consequence, as long as the rotation is not taken into

account, it is sufficient to deal with the effective interactions between a dumbbell and a nn target

site.

3.3 First shell approximation

Even if the rotation is discarded, the resulting system of 17 equations in a binary alloy cannot be

solved analytically. However, as mentionned in the above section, the system can reduce to only
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one equation if we restrict the effective Hamiltonian to effective interactions inside the dumbbell.

It is then sufficient to set to zero the one-point moment, so that only atoms in nn position with

respect to the dumbbell are involved in the calculation of the transport coefficients : we will call the

resulting model the first shell approximation, the second shell approximation consisting in solving the

one-point and two-point kinetic equations. One obtains the expression of the effective field hAB as :

hAB =
WBA/X(µA

j+ − µA
i )−WAB/X(µB

j+ − µB
i )

WBA/X + WAB/X + WR
AB

. (42)

We recognize in the denominator the average jump frequency of a mixed dumbbell AB, and define

WAB ≡ WBA/X + WAB/X + WR
AB. The average jump frequency of the dumbbell is in fact 4WAB,

due to the four target sites for each atom and to the four possible rotations. Under the assumption

of a limited effective Hamiltonian, we can express simply the correlation coefficients in a binary

concentrated FCC alloy :

fAA = 1−
W 2

AB/X

WAWAB

(43)

f
(A)
AB =

WAB/XWBA/X

WAWAB

, (44)

and the coefficients fBB and f
(B)
BA are obtained by inverting A and B in the above expressions.

In these conditions, it is also possible to give an analytical expression of the tracer correlation

coefficient fA by considering a ternary system ABA∗ infinitely dilute in the tracer element A∗. The

coefficient fA is then the limit of fA∗A∗ and is given as :

fA = 1−
W 2

AA/X

WAWAA

−
W 2

BA/X

WAWAB

. (45)

This expression gives very simple results for the correlation factor of a dilute tracer in a pure

matrix of element A :

f0 = fA = 1−
wAA/A

2wAA/A + wR
AA

(46)

fB = 1−
W 2

AB/X

WBWAB

(47)
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In the dilute limit, WAB/X and WB reduce to cABwAB/A while WAB is cAB(wAB/A + wBA/A + wR).

If one assumes that the mixed dumbbell can neither dissociate (wBA/A = 0) nor rotate (wR
AB = 0),

the coefficient fB is zero : the first-shell approximation of the SCMF is then sufficient to predict the

well-known ‘caging effect’ in FCC crystals.

4 BCC concentrated alloy

4.1 Geometry of the dumbbell

In most BCC alloys, the most stable configuration of the dumbbell is along the 〈110〉 direction,

although the 〈111〉 direction is also possible for mixed dumbbells in alloys [27, 21, 22, 23]. This

study will be restricted to the first case, which has also been the most extensively studied up to now.

In this system, four jump mechanisms have been used by Bocquet [28] : an on-site rotation R of 60◦

to another 〈110〉 direction with four possible final orientations; a translation T towards a nn target

site ; a translation and rotation of 60◦ towards the same nn target site (RT) with two equivalent final

orientations ; a translation to a second neighbour site followed by a rotation of 90◦ (RT2). As for the

last mechanism, we expect that a correct treatment with the SCMF theory would involve at least

the use of second-neighbour effective interactions, which would considerably increase the complexity

of the calculation. As a consequence, we will discard this mechanism and focus on the three others.

Target sites as a function of the orientation of the dumbbell are indicated on figure 2 : jumps

AB → C are permitted for two sites j+, and BA → C for two sites j− if AB is directed towards

the positive X direction. Jumps AB → C and BA → C are permitted for one site j+ and one site

j− each if AB is perpendicular to the X direction.

In terms of jump frequencies, we differentiate the T and RT mechanisms by introducing a factor

τ as :

wT
AB/C = τwRT

AB/C . (48)
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The limit τ = 0 is equivalent to neglecting the simple translation, and τ = 1 sets a degeneracy

between the three possible nn jumps. In real systems, this factor may depend on the chemical

species involved in the jump of the defect. However, in a concentrated alloy it is probable that this

effect would be averaged due to the high number of possible configurations. Consequently, we will

restrict ourselves to a constant, and species independent, factor.

Concentrations cAB as well as generalized jump frequencies WAB/C , WAB/X , WR
AB and WA are

defined as in section 3.1, except for Equation (29) which becomes :

∑
A,B

cAB =
cI

6
, (49)

because of the six possible orientations, instead of three in the FCC structure.

Throughout this section, we will derive the same equations as in the case of a FCC crystal :

nevertheless, we found that the greater geometrical complexity deserved a complete description of

the set of equations. As a consequence, we will just emphasize the differences between both structures

and try not to repeat all explanations already given in the preceeding section.

4.2 Expression of the flux

We first express the flux of atoms A by applying Equation (20) to our set of frequencies in the BCC

structure :

JA
i→s = −3(2 + τ)WA(µA

s − µA
i )

−(2 + τ)
∑
σ,σ′

cσAcσ′(2h
σA − 2vσA+

‖ σ′ − vσA0
‖σ′

−2hAσ′ + 2vσ′A+
‖ σ + vσ′A0

‖σ)wσA/σ′

= −3(2 + τ)WA(µA
s − µA

i )

−2(2 + τ)
∑
σ,σ′

cσAcσ′(2h
σA − 2vσA+

‖ σ′ − vσA0
‖σ′)wσA/σ′ . (50)
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In the first line, the factor 3(2 + τ) arises from the fact that on site i, three possible configurations

of a dumbbell σA can jump toward site j, and each configuration can jump through two translation-

rotations or one simple translation. Within the three configurations, one is orthogonal to the X

direction, the other two being oriented positively relative to X.

4.3 Kinetic moments

We now express Equation (14) in terms of the simplified effective interactions in a BCC lattice.

Considering the dumbbell AB with a positive orientation on site i, let us call j+ a target site for the

jump AB/C and j− a target site for the jump BA/C :

d〈nAB
i 〉

dt
= 〈nB

i

∑
σ

2(nσA0

j− + (1 + τ)nσA+

j− )wσA/B

+nA
i

∑
σ

2(nBσ0

j+ + (1 + τ)nBσ+

j+ )wσB/A

−nAB+

i

∑
σ

[
2(2 + τ)nσ

j−wBA/σ + 2(2 + τ)nσ
j+wAB/σ

]
+(2nAB0

i + 2nAB+

i − 4nAB+

i )wR〉. (51)

The analysis of the first line is straightforward : it refers to the creation of a AB+ dumbbell on site

i (because the sign is positive) starting from a dumbbell σA on site j−. The factor 2 arises from the

fact that two equivalent j− sites are available. Focusing on one j− site, the AB+ dumbbell can be

created through a rotation-translation of a σA0 defect (first term), another rotation-translation of a

σA+ defect or a translation of another σA+ defect. The latter two refer to two different orientations

of the σA defect but they are equivalent in terms of effective interactions.
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We next derive it in terms of non-equilibrium quantities :

d〈nAB
i 〉

dt
= 2(2 + τ)WAB/X(µB

j+ − µB
i )− 2(2 + τ)WBA/X(µA

j+ − µA
i )

+
∑

σ

[
2WBA/σ

[
(2 + τ)(vBA+

‖ σ + hAB)

+(1 + τ)(vσA+
‖ B + hAσ) + vσA0

‖B

]
− 2WAB/σ

[
(2 + τ)(vAB+

‖ σ − hAB)

+(1 + τ)(vσB+
‖ A − hσB) + vσB0

‖A

]]
+ 2WR

ABhAB (52)

We give the expression of two more 2-point moments over the four possible to illustrate particular

points of the calculation. The other two are formally very close to the latters, and can be found in

Appendix D :

d〈n
AB0

‖C

ij 〉
dt

= (2 + τ)(WAB/C −WAB/X)(µB
j+ − µB

i )

+WAB/C

[
2hCB − (2vCB+

‖ A + τvCB0
‖A)− (2 + τ)vAB0

‖C)
]

+
∑

σ

cCWAB/σ

[
− 2hσB − (2vσB+

‖ A + τvσB0
‖A + (2 + τ)vAB0

‖σ)

−(2 + τ)vAB0
‖C

]
−
∑

σ

2(2 + τ)cCWBA/σvAB0
‖C

+(2vAB+
‖ C + 2vAB+

⊥C − 4vAB0
‖C)cCWR

AB. (53)

dK
AB+

⊥C

ij

dt
= (2(2 + τ)(WAB/X + WBA/X) + 3WR

AB)cCvAB+
⊥C

−(vAB+
‖ C + vAB0

⊥C + vBA0
‖C)cCWR

AB. (54)

As in the FCC structure, if the rotation frequencies wR
AB are equal to zero, the kinetic equation

reduces to vAB+
⊥C = 0, so that only effective interactions between a dumbbell and a target site need

to be considered.
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4.4 First shell approximation

Eventually, we present the only analytical results achievable by this method, with the condition that

effective interactions between a dumbbell and a substitutional atom are set to zero. It is then possible

to express hAB as :

hAB =
(2 + τ)WBA/X(µA

j+ − µA
i )− (2 + τ)WAB/X(µB

j+ − µB
i )

(2 + τ)(WBA/X + WAB/X) + WR
AB + (1 + τ)(WBA/B + WAB/A)

. (55)

We recognize in the denominator a mean frequency of the mixed dumbbell WAB ≡ (2 + τ)(WBA/X +

WAB/X) + WR
AB. As in the FCC case, we note that the total jump frequency of a dumbbell is not

exactly WAB but 2WAB + 2WR
AB : the first factor 2 is due to the presence of two target sites for

each atom of the dumbbell in the BCC structure. On the other hand, even if four rotations are

possible for a AB+ dumbbell, two among them lead to an equivalent AB+ configuration and are

therefore not accounted for in the correlation effects. Furthermore, contrary to the FCC structure,

the denominator does not consist only in the mean frequency WAB. By analogy with the vacancy

case, we call the other term 2W ′ ≡ (1 + τ)(WBA/B + WAB/A). Under the assumption of a limited

effective Hamiltonian, we can express simply the correlation coefficients in a binary concentrated

BCC alloy :

fAA = 1−
(2 + τ)W 2

AB/X/WA

WAB + 2W ′ (56)

f
(A)
AB =

(2 + τ)WAB/XWBA/X/WA

WAB + 2W ′ , (57)

and the coefficients fBB and f
(B)
BA are obtained by inverting A and B in the above expressions. In

these conditions, it is also possible to give an analytical expression of the tracer correlation coefficient

fA in the binary alloy by considering a ternary system ABA∗ infinitely dilute in the tracer element

A∗. The coefficient fA is then the limit of fA∗A∗ and is given as :

fA = 1− 4(2 + τ)

3WA

×
W 2

AA/XW̃ABW 2
BA/XW̃AA − 4WAA/XWBA/XWBA/A

W̃AAW̃AB − 4W 2
BA/A

(58)
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where W̃ij is a compact jump frequency defined as :

W̃AB ≡ (2 + τ)(WAB/X + WBA/X) + 2WR
AB + (1 + τ)WAB/A. (59)

It is straightforward to deduce that in this case no caging effect is possible in a dilute alloy : this

result is consistent as, in a BCC dilute alloy, a mixed dumbbell can migrate on long distances without

dissociating, which is not the case in a FCC dilute alloy.

5 Discussion

In the two preceeding sections two approximations of the SCMF theory are presented for each

cristallographic structure : the first shell approximation consists in a very simple analytic formulation

of the transport coefficients, whereas one expects that a better accuracy will be achieved by the

second shell approximation, which consists in solving a system of n(n − 1)/2 + 4n3 equations in a

n-component system. Although the treatment of both structures is very similar within the framework

of the SCMF formalism, it appears that only the FCC structure had yet been addressed successfully

by other theories in the case of a concentrated alloy. In a first part, we compare the results of

all models in a concentrated FCC alloy, and test the SCMF theory against available Monte Carlo

simulations in a BCC alloy in a second part : simple relations between the four collective correlation

coefficients are specifically examined. A last part is devoted to the incidence of the jump frequency

model on the convergence of the SCMF theory.

5.1 Comparison with existing models in FCC alloys

Existing formalisms to calculate the transport coefficients in concentrated FCC alloys are due to

Bocquet [9] and Chaturvedi and Allnatt [12, 13] ; they will be compared to both approximations of

the SCMF theory on the basis of Monte Carlo simulations made by Bocquet [9].

Those simulations involve only two jump frequencies wL and wR (with wL < wR), and dumbbells
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are allowed different stabilities as a function of their composition. Five sets of frequencies are possible

as a function of the relative stabilities of AA, AB and BB in a binary alloy. If we denote AA > AB

the fact that AA is more stable than AB, the five models are :

• Model 1, BB > AB > AA, wBB/A = wL, wBA/A = wL;

• Model 2, BB = AB > AA, wBA/A = wL;

• Model 3, BB < AB > AA, wBA/A = wL, wAB/B = wL;

• Model 4, BB > AB < AA, wBB/A = wL, wAA/B = wL;

• Model 5, BB > AB = AA, wAB/B = wL,

all other jump frequencies being equal to wR. Furthermore, rotation was discarded in all simulations.

Figures 4 and 5 show the results of all four theories in terms of the correlation coefficients f
(i)
ij

for the frequency models 1, 2, 3 and 5 for which the results of the model of Chaturvedi and Allnatt

were available. As was already noted by Bocquet and Chaturvedi and Allnatt, the accuracy of all

theories is strongly dependent on the chosen frequency model and on the correlation coefficient itself.

In terms of relative accuracy of the competing models, no simple conclusion can be drawn except

for the fact that the second shell approximation of the SCMF theory is more accurate than the

first shell approximation, as expected. Apart from this simple result, we see for example that the

SCMF is roughly more accurate than both others for the cross coefficient f
(A)
AB . As for fBB, all three

theories (the first shell approximation being discarded) present a comparable accuracy, excepted for

the frequency models 1 and 5 where Bocquet’s effective field theory is clearly more efficient. In

models 2 and 3, it appears even sufficient to use the convenient first shell approximation to reach a

satisfying value of all correlation coefficients. The same comments can be done concerning the

tracer correlation factors, which are plotted on figure 6 for the same frequency models.
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One can generally notice that the first shell approximation of the SCMF overestimates

the correlation coefficients, while the formalism of Chaturvedi always underestimates

those coefficients, when compared to Monte Carlo simulations.

[ Insert Figure 4 about here ]

[ Insert Figure 5 about here ]

[ Insert Figure 6 about here ]

Previous work on the vacancy case [3] have already emphasized the parallel between the SCMF

theory and the random lattice gas approach by Okamura and Allnatt [29] or Moleko, Allnatt and All-

natt [2], which use the same formalism as the theory of Chaturvedi and Allnatt. Although the SCMF

focuses on non-equilibrium systems whereas the random lattice gas formalism deals with equilibrium

fluctuations, the kinetic equations are of the same nature in both theories. In the interstitial case,

Equations (14) and (15) correspond to Equations (15) and (16) in ref. [12]. However, Chaturvedi

and Allnatt had to take into account all 2-point moments whatever the distance between both points

in order to carry out a Fourier transformation, which considerably enhanced the geometrical com-

plexity of the calculation. In the present version of the SCMF, only nearest-neighbour two-point

moments are accounted for. In the vacancy case, such an approximation did not have any important

effect on the obtained correlation factors [4]. We can see on figures 4, 5 and 6 that the equivalent

approximation for the interstitials case (second shell approximation) is equally convenient for the

interstitial mechanism and leads to a simpler calculation than the model of Chaturvedi and Allnatt.

Furthermore, the equality LAB = LBA is always fullfilled by the SCMF theory, whereas it was not

the case in Chaturvedi and Allnatt’s formalism.

On the second hand, the complexity of Bocquet’s effective field theory is comparable to the SCMF

one, and the former is expected to be superior to the present SCMF version in strongly correlated

systems. Namely, the prediction of extreme correlation effects like a percolation threshold by SCMF
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requires to account for n-point moments with n � 2 or to introduce a decoupling scheme in the

kinetic equations, as was the case for the vacancy mechanism [3]. This scheme, formally parallel to

the one introduced by Moleko, Allnatt and Allnatt [2], was comparable to the effective field theory

of Manning [1] when applied to a binary alloy, but proved to be more efficient in presence of a

third component. In conclusion, in systems presenting limited frequency ratios, the SCMF seems to

be a reasonable alternative to Bocquet’s formalism for the calculation of the transport coefficients,

and appears superior to the formalism of Chaturvedi and Allnatt, the SCMF theory combining a

comparable accuracy with a greater simplicity.

5.2 Comparison with Monte Carlo simulations in a BCC alloy

One direct advantage of the SCMF theory is its ability to treat the BCC concentrated alloy. In the

same spirit as in FCC crystals, Bocquet [10] failed to find a satisfactory effective field approximation

to calculate the correlation coefficients, and attributed his difficulties to the possibility for a dumbbell

to jump towards a same target site in two or three different jumps with two or three different final

orientations. Nevertheless, Monte Carlo simulations were performed in two-frequency systems [10, 11]

in the same manner as in the FCC structure [9]. On the other hand, Sharma et al. [14] attempted

to adapt the formalism of Chaturvedi and Allnatt to the BCC concentrated alloy but could not

complete the calculation because of the geometrical complexity of their formalism. However, they

provided with a relation between the four collective correlation coefficients, proving that only one

coefficient out of four may be independent under some assumptions. Monte Carlo calculations by

Belova and Murch were presented to support their result. Unfortunately, their simulations include

the RT2 mechanism, which was not treated by this version of the SCMF. Consequently, we will

compare the SCMF results to the Monte Carlo simulations by Bocquet [10, 11].

[ Insert Figure 7 about here ]
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The results of both approximations of the SCMF theory are to be seen in figure 7. In figures 7(a)

and 7(b), the correlation coefficients are derived from the frequency model 5 described in paragraph

5.1 for a jump frequency ratio equal to 10, where only the RT mechanism is taken into account

(τ = 0 and wR
AB = 0 in all equations). We can see that the BCC results are very similar to the case

of the FCC structure (figures 5(c) and 5(d)) : the first shell approximation of the SCMF theory is

sufficient except for the coefficient fBB, but this lack of accuracy is corrected by the second shell

approximation. The comparison of the SCMF theory with Monte Carlo simulations within the

framework of Bocquet’s other models are of the same type as in the FCC structure.

Figures 7(c) and 7(d) deal with the correlation coefficients for another two-frequency model,

where a single jump frequency is attributed as a function of the atomic species which actually moves

from one site to another :

wA ≡ wXA/Y ∀ X, Y. (60)

In these particular Monte Carlo simulations [11], simple translation is accounted for with the ratio

τ = 1 and the rotation frequencies of the dumbbells are set to zero. For jump ratios wA/wB equal to

2 and 10, one can see that the first shell approximation of the SCMF already gives a very satisfying

value of the correlation coefficients. Only the factor f
(B)
BA is not exactly predicted for a jump frequency

ratio of 10, but once again the second shell approximation appears sufficient to achieve a quantitative

agreement with the simulations. It is to notice that, with such a set of jump frequencies, all dumbbells

have the same stability, which was not the case in figures 7(a) and 7(b).

As in the FCC case, treating alloys with high frequency ratios would certainly require to integrate

a decoupling scheme to the present version of the SCMF. However, building such a scheme in the

BCC structure would probably present additional difficulties due to the degeneracy of the jump

mechanisms T and RT, which let the dumbbell jump from one given site to the same target site with

several different final orientations. For example, in the first shell approximation, this degenerency may
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be the cause of the appearance of the frequency W ′ in the expression of the correlation coefficients.

This frequency is the only notable difference between the expressions in the BCC and FCC structures

(for which it is absent), although a satisfying interpretation is still missing.

5.3 Sharma et al. relations

As was mentioned in the preceeding paragraph, the main result of the work of Sharma

et al. [14] consisted in a set of relations between the correlation coefficients in a concen-

trated binary BCC alloy. Using the notations of the present paper, those relations are

expressed as :

fBB = 1−
(

WAB/X

WBA/X

)2
WA

WB

(1− fAA) (61)

f
(A)
AB =

WAB/X

WBA/X

(1− fAA) (62)

f
(B)
AB =

WAB/X

WBA/X

× WA

WB

(1− fAA). (63)

From the expressions of the correlation coefficients in Equations (56) and (57), it

is very simple to show that the above relations are always fulfilled by the first shell

approximation of the SCMF in a BCC alloy. We also observed a numerical agreement of

the second shell approximation with the Sharma et al. relations, although an analytical

proof is not available. A more interesting feature is that the same is true for the

FCC structure (see Equations (43) and (44) for the first shell approximation). This

unexpected similarity supports the hypothesis of Sharma et al., that these relations may

be of general validity for the dumbbell mechanism in any concentrated random alloy,

as the analogous relations of Moleko and Allnatt [30] for the vacancy mechanism.

It is also worth pointing out that the Sharma et al. relations are fulfilled at the

same time by both approximations of the SCMF theory, as well as by the formalism of

Chaturvedi, which should correspond to the SCMF formalism including infinite-range
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pair effective interactions.. The situation is the same with the Moleko and Allnatt rela-

tions for the vacancy mechanism, which are fulfilled by the SCMF formalism whatever

the range of pair effective interactions [4, 3]. Considering eventually the good agree-

ment of Equations (61)-(63) with Monte Carlo simulations [14], the authors highlight

the importance of such relations for further developments on the topic of diffusion by

the dumbbell mechanism.

5.4 Incidence of the jump frequency model

In this paragraph we propose an interpretation of the correlation effects obtained by the SCMF

theory as the probability of a backward displacement after one given jump : such an interpretation

was extensively used for the vacancy mechanism [1, 3], and was used among others by Bocquet [26]

for the dumbbell mechanism. Let us consider a FCC alloy, in which each atom of a dumbbell has

four target sites, and in this alloy a particular jump AB → C. After this jump, the resulting BC

dumbbell can either operate a reverse jump with the frequency wCB/A or any other jump with a total

escape frequency. In the SCMF formalism, the first shell and second shell approximations consist in

approximating those two frequencies.

The competition between a single return frequency and a mean escape frequency is only taken

into account by the SCMF theory for the second shell aproximation (see Equation (38) and the

subsequent remark) : in this approximation, the return frequency is

w
(2)
ret = wCB/A, (64)

and the escape frequency becomes

H(2) =
∑
X

4wBC/XcX + 3wCB/XcX , (65)

as if atoms A, B and C were embedded in an average medium. In the first shell approximation, the

backward frequency wCB/A does not appear in the formalism. An interpretation of this absence is

31

Page 31 of 58

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

that the defect BC may ‘forget’ the nature of atom A after the first jump : the return and escape

frequencies would then have the values :

w
(1)
ret =

∑
X

wCB/XcX (66)

H(1) =
∑
X

4wBC/XcX + 3wCB/XcX . (67)

One way to consider the influence of the jump frequency model on the accuracy of both approx-

imations is then to study the incidence of the frequency model in terms of return frequency, as the

escape frequency is the same for both approximations. If the jump frequencies depend only on the

jumping species, the return frequency is wB in both approximations : as a consequence, the difference

between first and second second shell may not be important, which agrees with the results shown on

figure 7 for jump frequency ratios of 2 and 10. Nevertheless, this interpretation in terms of return

and escape frequencies is only approximate, and it is to expect that, for higher jump frequency ratios,

the difference between both approximations should increase. On the other hand, if the dumbbells

are allowed different stabilities, e.g. if BC is more stable than AB, the return frequency in second

shell will be lower and more accurate than the return frequency in first shell :

wCB/A <
∑
X

wCB/XcX . (68)

As a consequence, the second shell approximation should be more efficient in terms of correlation

effects than the first shell approximation. In conclusion, for a given jump frequency ratio, the

contribution of the second-shell approximation with respect to the first-shell will be more important

in presence of a difference of stabilities between dumbbells. The first-shell approximation will then

be prefered for systems with limited jump frequency ratios and without important differences of

dumbbell binding energies. Nevertheless, a more careful analysis is required to make a parallel

between the approximations of the SCMF theory and the actual paths of the defect, as was done

recently for the vacancy mechanism [3] : in particular, the different efficiency of the SCMF method
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as a function of the different models proposed by Bocquet is still not clear.

6 Conclusion

We presented a new self-consistent mean field (SCMF) theory to calculate the transport coefficients

in alloys with interstitial mechanism. This theory is an adaptation of the recent SCMF model suc-

cessfully proposed for the vacancy mechanism, and is based on a thermodynamic-like description of a

non-equilibrium partition function and classical kinetic equations. Under judicious assumptions, this

theory provides with simple analytic expressions of the transport coefficients (first shell approxima-

tion) or a more complex calculation (second shell approximation). The results are found as accurate

as competing theories by Bocquet [9] or Chaturvedi and Allnatt [12, 13] in FCC non-interacting

concentrated alloys with limited jump frequency ratios, although the SCMF theory seems easier to

generalize to more complex systems. In BCC non-interacting concentrated alloy, the SCMF theory is

the first yet to complete the calculation of the transport coefficients, and exhibits a good agreement

with Monte Carlo simulations for jump frequency ratios equal to 10. Compared to the Chaturvedi

and Allnatt [12, 13] formalism, the SCMF theory uses very similar kinetic equations although in a

less complex framework : this consideration lets expect a good efficiency of the SCMF also in dilute

alloys, which will be the subject of a coming article.

Generally speaking, the existence of an analytic expression of the correlation co-

efficients in a concentrated alloy in both structures is a valuable tool for the further

developments of this theory and for the study of transport by interstitial mechanism.

Simple relations between the correlation coefficients, introduced by Sharma et al. [14],

were also supported by this work. Another important investigation could concern the role of

the on-site rotation on correlation effects, which was discarded in the above Monte Carlo simulations

: this particular mechanism is characteristic of the dumbbell mechanism and deserves in our opinion
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a complete study. Next efforts will be devoted to extend the domain of validity of the SCMF in

concentrated alloys to strongly correlated systems or to alloys with a more complete thermodynamic

description, as was done recently for the vacancy case [5, 3].
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Appendix A : Linearization of the kinetic equations

We detail above the linearization for one pair of terms in Equation (14), the procedure being similar

for the other terms. We consider the quantity ∆βα
σA/B which controls the transitions between the

dumbbells σAβ on site s and ABα on site i :

∆βα
σA/B = 〈nσAβ

s nB
i γβα

si wβα
σA/B − nABα

i nσ
s γ

αβ
is wαβ

BA/σ〉. (69)

We first apply Equation (5) to change this expression into an equilibrium average :

∆βα
σA/B = 〈nσAβ

s nB
i γβα

si wβα
σA/BP1(n)− nABα

i nσ
s γ

αβ
is wαβ

BA/σP1(n)〉(0), (70)

where 〈〉(0) stands for an equilibrium average over all configurations weighted by P̂0.

The next step is to expand Equation (6) to the first order with respect to the non-equilibrium

quantities βδµA
i (t) and βĥ(t). Those quantities are assumed to be close to zero as the system is close

to equilibrium :

∆βα
σA/B = 〈nσAβ

s nB
i γβα

si wβα
σA/B

[
1 + β

(
δΩ(t)

+δµA
s (t) + δµσ

s (t) + δµB
i (t) + δµI

s(t)− ĥ
σAβ
s (t)

)]
−nABα

i nσ
s γ

αβ
is wαβ

BA/σ

[
1 + β

(
δΩ(t)

+δµA
i (t) + δµB

i (t) + δµσ
s (t) + δµI

i (t)− ĥABα
i (t)

)]
〉(0), (71)

where ĥABα
i is the partial derivative of ĥ with respect to the occupation number nABα

i . In this

expression we have omitted the terms of the form ĥA
i where A is a substitutional atom, because they

are of a higher order in terms of the dumbbell concentration. Furthermore, the time dependence of

the effective interactions will be dropped in the rest of the article, given that the kinetic equations

are to be solved in steady state. Note that we use the property of the occupation numbers

nA
i nB

i = nA
i δAB, (72)
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where δAB is the Kroenecker symbol, to derive the more general expression :

〈nABα
i ĥ〉(0) = 〈nABα

i ĥABα
i 〉(0). (73)

Eventually, we take advantage of the detailed balance (Equation (16)) to derive the expression :

∆βα
σA/B = β〈nσAβ

s nB
i γβα

si wβα
σA/B

[
(δµA

s + δµI
s)− (δµA

i + δµI
i )− ĥ

σAβ
s + ĥABα

i

]
〉(0). (74)

We note that the difference of the non-equilibrium part of the chemical potentials (δµA
s − δµA

i )

is equal to the difference of the total chemical potentials (µA
s − µA

i ) since the chemical potential

at equilibrium is uniform. Furthermore, in all kinetic equations of n-point moments, the chemical

potentials of the atomic species will always be grouped with the one of defects in the form µA
i + µI

i .

Subsequently, we will replace the latter expression by µA
i , given that the chemical potential of defects

will not appear separately in the kinetic equations. The simple final form of ∆βα
σA/B is :

∆βα
σA/B = β〈nσAβ

s nB
i γβα

si wβα
σA/B(µA

s − µA
i − ĥ

σAβ
s + ĥABα

i )〉(0). (75)

Appendix B : Equilibrium concentrations of the different

dumbbell configurations

Several methods are available to calculate the equilibrium concentration of the different species of

dumbbells in a multicomponent alloy. In the case of a non-interacting alloy, it may be most convenient

to simply solve the equations of the detailed balance, of the type of Equation (16). We present here

a more general calculation within the grand canonical ensemble, which will be easier to generalize

to more complex systems. The principle of this method is to minimize the grand potential of the

system. It is expressed as :

Ω =
∑

A,B,α

(
εABxABα + kBTL(xABα)

)
+
∑

A

kBTL(xA)

+
∑

A

λA(xA + 2
∑

α

xAAα +
∑

α,B 6=A

xABα − cA)

+λI(
∑

A,B,α

xABα − cI), (76)
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where notations are defined as follows : xA and xABα are the unknown concentrations of species A and

dumbbells ABα at equilibrium, kBT is the temperature multiplied by the Boltzmann constant, L(x) =

x ln x− x is the entropy term, cA and cI are the imposed value for the equilibrium concentration of

species A and the total concentration of dumbbells, εAB is the binding energy of the dumbbell AB,

and the factors λ are Lagrange operators used to calculate the x values. Although the dumbbells are

divided into different species, one must take one unique factor λI for all dumbbells.

To reach those values, the first step is to minimize the energy of the system with respect to the

x terms :

∂Ω

∂x
= 0, (77)

which gives rise to a relation between the x and the Lagrange operators :

xA = exp

[
− λA

kBT

]
(78)

xABα = exp

[
−εAB + λA + λB + λI

kBT

]
. (79)

In a last step, the Lagrange operators are calculated so as to satisfy the required concentrations.

In the point approximation, this condition states simply :

xA = cA (80)∑
α,A,B

xABα = cI , (81)

which leads to the concentrations of the different types of dumbbells. In a binary FCC alloy AB,

the resulting concentrations of dumbbells are :

cAA =
PAA

PAA + PBB + 2
× cI

3
(82)

cBB =
PBB

PAA + PBB + 2
× cI

3
(83)

cAB =
2

PAA + PBB + 2
× cI

3
, (84)

37

Page 37 of 58

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

where the factors PAA and PBB are defined as :

PAA =
cA

cB

exp

(
εAB − εAA

kBT

)
(85)

PBB =
cB

cA

exp

(
εAB − εBB

kBT

)
. (86)

It is worth noting that the same result could be achieved by solving the equations of the detailed

balance (Equation (16)) taking advantage of the relation between the binding energies and the jump

frequencies :

wBB/A

wAB/B

= exp

(
εBB − εAB

kBT

)
(87)

wAA/B

wBA/A

= exp

(
εAA − εAB

kBT

)
. (88)

Appendix C : Summation of effective interactions

In this paragraph we detail the calculation of the expression

SAB+
‖ C ≡ 〈nABα

i nC
j ĥABα

i 〉(0), (89)

which appears in all kinetic equations. Here we consider that the effective interactions associated

to the complex ABC is vAB+
‖ C in a FCC structure, the procedure being the same for other relative

orientations as well as for the BCC structure. As shown in figure 1, atom C is situated on a ‘j+’-type

site.

We start by recalling the absence of interactions involving substitutional atoms : as a consequence,

it is straightforward to derive the equality :

〈nABα
i nC

j nD
k . . .〉(0) = 〈nABα

i 〉(0)〈nC
j . . .〉(0)〈nD

k 〉(0) . . .

= cABcCcD . . . , (90)

where the sites i, j, . . . are omitted because the equilibrium state of the system is uniform.

38

Page 38 of 58

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

In a second step, considering the form of the effective Hamiltonian (Equation (7)), we can express

the derivative of ĥ with respect to the occupation numbers as :

ĥABα
i = vAB +

∑
σ

4(nσ
j+vAB+

‖ σ + nσ
j0vAB+

⊥σ − nσ
j−vBA+

‖ σ) (91)

Eventually, with help of Equation (72), we can then calculate the expression

SAB+
‖ C = cABcC

[
vAB +∑

σ

(3vAB+
‖ σ + 4vAB+

⊥σ − 4vBA+
‖ σ)cσ) + vAB+

‖ C

]
(92)

= cABcC

[
vAB + 4

∑
σ

(vAB+
‖ σ + vAB+

⊥σ + vBA+
‖ σ)cσ)

−
∑

σ

vAB+
‖ σcσ + vAB+

‖ C

]
. (93)

Given the definitions of the compact notations (Equations (30) and (31)), this expression be-

comes :

SAB+
‖ C = cABcC

[
hAB − vAB+

‖ C

]
(94)

Appendix D : Expression of the two-point moments

All missing two-point moments are given here to allow the calculation of the transport coefficients.

FCC structure :

d〈n
AB0

‖C

ij 〉
dt

= (WAB/C − cCWAB/X)(µB
j+ − µB

i )

+
∑

σ

WAB/σcC(−hσB + vσB+
‖ A + vAB0

‖σ − vAB0
‖C)

+2
∑

σ

WAB/σcC(vσB0
‖C − vAB0

‖C)

+WAB/C(hCB − vCB+
‖ A − vAB0

‖C)

+cCWR
AB(vAB+

‖ C + vBA+
‖ C + 2vAB0

⊥C − 4vAB0
‖C)WR

AB. (95)
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BCC structure :

d〈n
AB+

‖ C

ij 〉
dt

= (2 + τ)(WAB/C + cCWAB/X)(µB
j+ − µB

i )

−2(2 + τ)cCWBA/X(µA
i − µA

j−)

+ WAB/C

[
(1 + τ)hCB − ((1 + τ)vCB+

‖ A + vCB0
‖A)

+(2 + τ)(hAB − vAB+
‖ C)
]

+
∑

σ

cCWAB/σ

[
(1 + τ)hσB − ((1 + τ)vσB+

‖ A + vσB0
‖A)

−(2 + τ)vAB+
‖ σ + (2 + τ)(hAB − vAB+

‖ C)
]

+ 2
∑

σ

cCWBA/σ

[
− (1 + τ)hσA + ((1 + τ)vσA+

‖ B + vσA0
‖B)

+(2 + τ)vBA+
‖ σ + (2 + τ)(hAB − vAB+

‖ C)
]

+ (−2hAB + vAB0
‖C + vAB0

⊥C + vAB+
⊥C − 3vAB+

‖ C)WR
AB. (96)

d〈nAB0
⊥C

ij 〉
dt

= −6(2 + τ)cCWR
ABvAB+

⊥C

+(vAB+
‖ C + vAB+

⊥C + vBA+
‖ C + vBA+

⊥C)cCWR
AB. (97)
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Figure 1 : Geometry of the 〈100〉 dumbbell in the FCC structure in the case of a one-dimensional

diffusion along the X axis. The configurations to be taken into account are (a) : AB0 ; (b) :

AB0
‖C ; (c) : AB0

⊥C ; (d) : AB+ ; (e) : AB+
‖ C ; (f) : AB+

⊥C. Four sites j+ and four sites

j− are present in this structure. Target sites for atom B are sites S1, S2, S3 and S4 for the

dumbbell AB0, sites S4, S5, S6, S7 for the dumbbell AB+.

Figure 2 : Geometry of the 〈110〉 dumbbell in the BCC structure in the case of a one-dimensional

diffusion. The configurations to be taken into account are (a) : AB0 ; (b) : AB0
‖C ; (c) :

AB0
⊥C ; (d) : AB+ ; (e) : AB+

‖ C ; (f) : AB+
⊥C. Four sites j+ and four sites j− are present in

this structure. Target sites for atom B are sites S1 and S5 for the dumbbell AB0, sites S7 and

S8 for the dumbbell AB+.

Figure 3 : Illustration of the antisymmetry property of the effective interactions in the BCC struc-

ture. The effective interactions associated to the marked atoms are respectively : (a) −vAB0
‖C ;

(b) −vAB+
‖ C ; (c) −vAB+

⊥C .

Figure 4 : Correlation coefficients in a AB concentrated FCC alloy as a function of the concen-

tration C(B) for the frequency models 1 (top) and 2 (bottom) with wR/wL = 10. The full

triangles stand for the Monte Carlo simulations by Bocquet [9], empty triangles for the theory

of Chaturvedi and Allnatt [13], dashed lines for the theory of Bocquet [9]. The SCMF results are

plotted in dotted lines (first shell approximation) and solid lines (second shell approximation).

Figure 5 : Correlation coefficients in a AB concentrated FCC alloy as a function of the concen-

tration C(B) for the frequency models 3 (top) and 5 (bottom) with wR/wL = 10. The full

triangles stand for the Monte Carlo simulations by Bocquet [9], empty triangles for the theory

of Chaturvedi and Allnatt [13], dashed lines for the theory of Bocquet [9]. The SCMF results are

plotted in dotted lines (first shell approximation) and solid lines (second shell approximation).
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Figure 6 : Tracer correlation coefficients in a AB concentrated FCC alloy as a function of the

concentration C(B) for several Bocquet’s models with wR/wL = 10. The full triangles stand

for the Monte Carlo simulations by Bocquet [9], empty triangles for the theory of Chaturvedi

and Allnatt [12], dashed lines for the theory of Bocquet [9]. The SCMF results are plotted

in dotted lines (first shell approximation) and solid lines (second shell approximation). (a) :

model 1 ; (b) : model 2 ; (c) : model 3 ; (d) : model 5 ;

Figure 7 : Correlation coefficients in a AB concentrated BCC alloy as a function of the concentra-

tion C(B) for the frequency model 5 (top) with wR/wL = 10, and for equation (60) (bottom)

with wA/wB = 10. The full symbols stand for the Monte Carlo simulations by Bocquet [10, 11].

The SCMF results are plotted in dotted lines (first shell approximation) and solid lines (second

shell approximation).
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