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ABSTRACT minimization of a weighted least-squares (WLS) criterion

In this paper, we investigate the quality of a weighted leastWhere the parameter-dependent weights are chosen in order

A .10 smooth out the discontinuities of the unweighted crite-
square (WLS) parameter estimation method based on blnaFyon (classical criterion [10, 11]). The consistegncy ofsthi
observations when only a finite number of samples are avail- ’ o

pproach can be guaranteed, even in the presence of mea-

able. An upper bound of the number of samples that are ne(g_urement noise, provided the signal at the quantizer'siispu
essary for identifying system with a given accuracy is thec’_Gaussian and centred. This method is also adapted to the test

retically derived. The accuracy is defined in the sense of cor microelectronic devices such as MEMS and NEMS [2, 3].

relation coefficient between the system parameters and o herefore. in this paper we study the quality of this WLS ap-
estimated system parameters. Furthermore, we compare the- ' papel y 4 y : P
oretical results with simulations in order to study the diyi proach when only a finite number of samples are available as

: it hasn’t been already investigated.
of the resuilts practically. It should be mentioned that the Cramer-Rao bound
(CRB) is usually used to determine the efficiency and quality
1. INTRODUCTION of estimation methods in previous papers [1, 8, 9]. However,

Today, system identification based on binary-valued outpuf'® CRB is difficult to establish in our proposed approach,
observations play an important role in many applications ifPecause there exists no analytical expression of the optima
different domains such as switching sensors and industrij@rameters in this technique [2]. Therefore, we define an-
sensors in automotive applications, chemical procesosens Other criterion to analyze the quality and performance isf th
for vacuum, pressure, and power levels; traffic condition in Méthod based on estimation accuracy and the number of nec-
dicators in the asynchronous transmission mode (ATM) neteSSary samples to identify the system in the noise-free case
works; gas content sensors in gas and oil industry. In medica 1 NiS paper is organized as follows. Section 2 introduces
applications, estimation and prediction of causal effedts the framework and our_WLS method_to estlr_nate the system
dichotomous outcomes are closely related to binary-valueBarameters based on binary data, while Section 3 presents th
output systems [1]. In the context of micro devices, it can bdheoretical results to investigate the quality of our eation
also used to estimate the parameters of MEMS and NEM&€thod. Section 4 resumes some simulations to study the
[2, 3]. Other applications can be found in [1]. validity of the _results which are fastabhshed in S_ect|on_|3. F

In 1998, Wigren has developed a Ieast-mean-squaré&a”y’ conclusions and perspectives are drawn in Section 5.
(LMS) approach to the problem of online parameter estima-
tion from quantized observations [4]. This method is based 2. PRELIMINARIES
on an approximation of the quantizer, which makes it pos-
sible to define an approximate gradient of the least-squarésl Framework and notations
criterion [4, 5]. In [1], another method for parameter esti- . . L . .
mation from binary (or quantized) data was introduced. Th% g;ﬂ;(e:}?lnﬁzl;'jse;?igiltsecirrer;tgl;tllsrger:ens\/;c:ﬁ:et Ié??:;;ﬁf n\:\r/]z
unknown system is excited by a periodic signal and, as iri1mpulse response can be represented byacolumﬁ \)@@tﬂ
[6, 7]; the threshold of the quantizer is randomly specifigd b 8L . . Letu be the known scalar value of the system input
a partially known dithering signal. This approach is gehera ( ).':1 ’ ' , y b
ized in [8], where it is shown that the cumulative distrilouti attimel. We al.so defing; as the (scalar) value of the system
function (cdf) of the threshold does not have to be knownOUtpUt’ so that:
a priori: it can be estimated along with the parameters of Y= qu97
the system. This work has also been extended from finite
impulse response (FIR) systems to infinite impulse responsghereqg = (uk)l(:FL+1 is the (column) vector of observa-
(IIR) systems and to nonlinear Wiener systems [9]. tions at timd .

In [2], we recently presented an alternative approach to Let d; be a known additive dithering signal at the quan-
estimate the parameters of a finite impulse response sy8zer’s input. The system output is measured via a 1-bit ADC
tem using binary observations. This method relies on theo that only the siga = S(z) of the system output is known,
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Figure 1: Block diagram of the system.

where _ Jy and vice versa. Fig. 2 shows criterid@' comparing
S)=1 ,ifx>0 with JN for N = 500 which can illustrate (3). As it's seen
Sk =-1 , otherwise in this figure, all thed that minimizeJ) also minimizeJ)

andz =y, +d. (p = 1in this example). Based on this equivalence between

We are interested in finding an estim&ef 6, based on the two criteria, we establish in the next section some non-
N observations ofy,s and, if need beg,. Let us consider asymptotical properties o]{;‘ and see how they apply tlg‘
thatu; andd, are stationary, independent, white Gaussian an¢h order to investigate the estimation quality and perfaroea

centred. It is also assumed th@thas lengthL and o, =  efficiency of our WLS criteria.

1. The estimated quantities are denoted by a hat @.g. ~

S(2)). These notations are summed up in Fig. 1. 3. CONSEQUENCE OF A FINITE NUMBER OF
SAMPLES

2.2 WLS approach for parameter estimation based on

binary observation In order to investigate the quality of our WLS approach for

~_ parameter estimation based on binary observation intestiuc
In [2], we proved that the problem of parameter estimationn 2.2 [2], the relation between accuracy (in the sense of cor
from binary measurement can be treated by minimizing WLSelation coefficient betweenandz) and the number of nec-

criteria of the form: essary samples for identifying a system is figured out.
N The purpose of this section is to determine how many
z ZZP (s _g)z samplesN are necessary to estimate a given system with
N (é) _ 15 p>1 ) lengthL by a given "accuracy”. To ensure the quality of the
p 4 = estimation, a sufficient condition is that:

V8,3 (8) ~J3 ().

in which the ternzfp acts as a (positive) weight to the binary- Or, in other words, a sufficient condition is that we are
valued errors — § )2 and smoothes out the discontinuities of "close” to the limiting case while N goes to infinity
the unweighted criterion (classical criterion). (N — ). Regardinglyl (6) with a fixed 6 as a random

We have already established the properties}o“bandJlN variable (the value of which changes from one experiment
such as convexity and estimator consistency under a profi® the other), one can consider that the number of necessary
abilistic framework, wherN goes to infinity in [2]. Some SamplegN) is large enough when:
analytical expression andJy were also derived, which A
are given here: % ' var(Jp (9)2 <1 (@)
1 E(3 (9))
Jo (8) = = arccosr), _ _ _

m We have not been able to obtain a satisfactory expression

. 1 for any of these quantities except in the case 0. How-
J(6)== (arcco$r) —ry1- 2) : ever, because of the "equivalence” betwelBhand J) (3),
i reasonably good results can be expect&ﬂg‘ ifs used instead
of JQ in (4) . This is motivated by the fact that is mentioned
in the previous section (3). Therefore, from (3) and (4), we
) Udz L0Th can consider thatl is large enough when:

r(6,6)= —. (2) A
\/07+676,/0%+ 676 var (3’ (6))
E(3) ()"
As itis illustrated in Fig. 3, when N is small, the probalyilit

N =0=J3'=0vp>1 (3)  thatJ) = 0 for 6 # 6 is non zero. Increasiny reduces the

variance ofJ(’)\l which reduces the misestimating probability
i.e. thatd) andJy are equivalent in the noise-free case [2] of g.

in the sense that all thé that minimizeJ)! also minimize Since Y4(s — §)? takes only two values (0 or 1), it can

wherer is the correlation coefficient afandZ In the noise-
free case, this boils down to:

(5)

In addition, it has been shown that:
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Figure 2: Comparison 013‘ with .Ji\‘ in order to verify (3) for

N =500 andd = [1, —1].
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Figure 3: Histogram off, J2°°andJ2>°for 6 = [1,
=111

—1] and

be considered as a Bernoulli random variable with parametd#ecause of the stationarity hypothesis, this can be further

g. The value ofyis equal to:

(6)
=5~ ECOV(SI S)-
From [12], (6) reduces to:
q= 1 (1 garcsm(cov(zk zk))>
= 7—1_[arcco$r) =J5(r),
thus,
(8) = ZE( (5 (6) - )2) = J2(r).
The numerator of (5) is also given by:
A /A 2
var(3' (8)) = I\Tzvar< (8(6)-s)° (6)4_3) )
(7
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Expanding the right-hand side of (7) leads to:

. 1 N
var(Jo (0)) = N2 kzlvar k)
N N
+ cov(A(k),A(l)).
k=11=TT#k

transformed into:

var(3 (8)) = %(Nvar( ®))
5 N- (8)
+ Z (N—K)cov(A(t),A(t+K)).

The second term on the right-hand side is split in two parts:

i
I\

(N—=Kk)cov(A(t),A(t+k)) =

7\_
L]
il

(N —Kk)cov(A(t),Alt +k)) + 9)

P
z |
K
[uN

(N —Kk)cov(A(t),
Cr1

At +K)).

=
i

SinceH has length. and the input signal is white, the sec-
ond term of the right-hand side of (9) equals 0. The Cauchy-
Schwartz inequality is then used to yield:

(N = K)cov(A(t), At+Kk) <

x
— ’[‘Ml_

(N—=K)var(A(t)) =L <N - LJZF1> var(A(t)).

=
Il

1
This can be injected into (8):

var(3 (6)) < NA-ED 2

Now var(A(t)) can be split into:

L(L+1)

var(A(t)).  (10)

var(A(t)) = var<£11r (5(6) —a)2> .
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Figure 4: Plot -r vs. %H for different values of. and comparison with the theoretical prediction derivedf(d4).

As1/4(§ (6) - s)z is a Bernoulli random variable with pa- 4. SIMULATION RESULTSAND DISCUSSION

rameter = Jy'(r), thus, we obtain: In this section, the validity of the results establishediie-p

vious section is put to the test. Four impulse responses of
lengths 2, 4, 8 and 16 are analyzed: they consist of repegitio
of the sequence [1,-1] (oscillatory behaviour is commoogla

in MEMS devices). A sequence &f samples of a white

var(A(t)) = 35 (r) - 352(1). (11)

As a consequence, (11) can be injected into (10):

N /A N(2L+1)—L(L+1) Gaussian noise with zero mean and unit variance is applied
var(Jp (6)) < N2 X (12)  atthe system input. A dithering signal (of the same nature
I A-30r). as the input signal) is applied at the input of the comparator
A parameter vector is estimated thanks to the gradient algo-
WhenN is large with respect th, (12) reduces to: rithm proposed in [2] and its correlation coefficient witketh
nominal parameter vector is calculated and stored. The al-
var(J(')\' (é)) < 2L+ 1380(r) (1-32(r). gorithm is stopped Wheﬂf‘ = 0, which is always achievable
- N in the noise-free case. This experiment is repeated a large

number of times (typically 1%) in order to precisely deter-
mine the average value offor a given number of samples
N 1 and thus, the accuracy of the methed=1—r).

A+1 T 1 (13) Fig. 4 illustrates the accuracy of the estimati@ ver-

0 susN/ (2L + 1) obtained forog = 0. These simulation re-
Whenr is close to 1, assumina% >> 1, a Taylor series sults for different lengths of impulse respondg are ob-
expansion can be applied to (13), which yields: tained fromJY. Note that the same simulation results can
be also obtained Witﬂy, p > 0 because of (3). The simu-
lations agree rather well with the theoretical results ivleta
in the previous section. It confirms thais inversely propor-
tional to (N/2L 4+ 1)%. However, it should be noted that the
wheree=1—r is the error on the correlation coefficient, i.e. experimental value of the accuracy is not only a function of

Thus, a sufficient condition for (5) to hold is (in the limit of
largeN):

e=1l-r~—
N

2
7;2<2L+1> 7 (14)

the accuracy of the method. N/(2L + 1) but also ofL (Fig. 4), i.e. the error behaves as:
Suppose, for example, that we want to make sure that )
the error on the correlation coefficient between the nominal em1-r=K(L) (2L+ 1)
and estimated system is aboudD. Lettinge= 0.01 in (14) N ’
yields: 1077 whereK (L) is a factor which depends on the filter that should
N ~ ﬁ(2L +1)~22(2L+1). be identified and its impulse response length. In the presenc

R case, the number of necessary samples for reaching a given
ChoosingN according to (14) thus ensures th@f the accuracy is overestimated by (14). This is a consequence of
parameter vector resulting from the optimization, is "efbs using the Cauchy-Schwartz inequality for going from (9) to
to @ in the sense that their correlation coefficient (given by(10).
(2)) is aboutr = 0.99. The simulation results are shown in  Whenay # 0, the same results as in Fig. 4 are obtained.
the next section to confirm the theoretical results. However, one must keep in mind that in this casegpre-
sents the correlation betweerandZ not 8 and 6. Thus,
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supposingiy is large with respectAtéT 6and87é,r (2) can
be close to 1 regardless of whetlkis actually "close” tof.
Consequently, it is also interesting to plot the cosine ef th

[3] J. Juillard, K. Jafari, and E. Colinet, “Asymptotic con-
sistency of weighted least-square estimators for pa-
rameter estimation problems based on binary measure-

angle made by and6:
670

ments,” Proceedings of the 15th IFAC Symposium on
System Identificatiqrpp. 72—77, 2009.

[4] T. Wigren, “Adaptive filtering using quantized output

measurements|EEE Transactions on Signal Process-

ing, vol. 46, no. 12, pp. 3423-3426, 1998.

[5] —, “Approximate gradients, convergence and posi-
tive realness in recursive identification of a class of non-
linear systems,International Journal of Adaptive Con-
trol and Signal Processingol. 9, pp. 325-354, 1995.

[6] E. Rafajlowicz, “Linear systems identification from
random threshold binary datdEEE Transactions on

In this paper, estimation quality of a weighted least-squar Signal Processingvol. 44, no. 8, pp. 2064-2070, 1996.
(WLS) approach to parameter estimation problems based or7] ——, “System identification from cheap, qualitative
binary observations is investigated in the case of existefic output observationsJEEE Transactions on Automatic
only a finite number of samples. The relation between ac-  Control, vol. 41, no. 9, pp. 1381-1385, 1996.

curacy and the number of samples for identifying a system[g] L. Wang, G. Yin, and J. Zhang, “Joint identification of
is figured out. Furthermore, simulation results were com-  plant rational models and noise distribution functions
pared with good agreement to the theoretical results. This  ysing binary-valued observationgutomaticavol. 42,
work will be extended to the cases when measurement noise  no. 4, pp. 535-547, 2006.

is present at the input of the comparator. [9] Y. Zhao, L. Wang, G. Yin, and J. Zhang, “Identification
of Wiener systems with binary-valued output observa-
tions,” Automatica vol. 43, no. 10, pp. 1752-1765,

versusgy compared withr versusay (Fig. 5-a). These re-
sults show that agy decreases, thus the angle madetby
and 6 becomes smaller. On the other hand, too large or too
small dither is detrimental to the quality of the identificat

as it is shown in Fig. 5.

5. CONCLUSION
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