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ABSTRACT

In this paper, we investigate the quality of a weighted least-
square (WLS) parameter estimation method based on binary
observations when only a finite number of samples are avail-
able. An upper bound of the number of samples that are nec-
essary for identifying system with a given accuracy is theo-
retically derived. The accuracy is defined in the sense of cor-
relation coefficient between the system parameters and our
estimated system parameters. Furthermore, we compare the-
oretical results with simulations in order to study the validity
of the results practically.

1. INTRODUCTION

Today, system identification based on binary-valued output
observations play an important role in many applications in
different domains such as switching sensors and industry
sensors in automotive applications, chemical process sensors
for vacuum, pressure, and power levels; traffic condition in-
dicators in the asynchronous transmission mode (ATM) net-
works; gas content sensors in gas and oil industry. In medical
applications, estimation and prediction of causal effectswith
dichotomous outcomes are closely related to binary-valued
output systems [1]. In the context of micro devices, it can be
also used to estimate the parameters of MEMS and NEMS
[2, 3]. Other applications can be found in [1].

In 1998, Wigren has developed a least-mean-squares
(LMS) approach to the problem of online parameter estima-
tion from quantized observations [4]. This method is based
on an approximation of the quantizer, which makes it pos-
sible to define an approximate gradient of the least-squares
criterion [4, 5]. In [1], another method for parameter esti-
mation from binary (or quantized) data was introduced. The
unknown system is excited by a periodic signal and, as in
[6, 7]; the threshold of the quantizer is randomly specified by
a partially known dithering signal. This approach is general-
ized in [8], where it is shown that the cumulative distribution
function (cdf) of the threshold does not have to be known
a priori: it can be estimated along with the parameters of
the system. This work has also been extended from finite
impulse response (FIR) systems to infinite impulse response
(IIR) systems and to nonlinear Wiener systems [9].

In [2], we recently presented an alternative approach to
estimate the parameters of a finite impulse response sys-
tem using binary observations. This method relies on the

minimization of a weighted least-squares (WLS) criterion
where the parameter-dependent weights are chosen in order
to smooth out the discontinuities of the unweighted crite-
rion (classical criterion [10, 11]). The consistency of this
approach can be guaranteed, even in the presence of mea-
surement noise, provided the signal at the quantizer’s input is
Gaussian and centred. This method is also adapted to the test
of microelectronic devices such as MEMS and NEMS [2, 3].
Therefore, in this paper we study the quality of this WLS ap-
proach when only a finite number of samples are available as
it hasn’t been already investigated.

It should be mentioned that the Cramer-Rao bound
(CRB) is usually used to determine the efficiency and quality
of estimation methods in previous papers [1, 8, 9]. However,
the CRB is difficult to establish in our proposed approach,
because there exists no analytical expression of the optimal
parameters in this technique [2]. Therefore, we define an-
other criterion to analyze the quality and performance of this
method based on estimation accuracy and the number of nec-
essary samples to identify the system in the noise-free case.

This paper is organized as follows. Section 2 introduces
the framework and our WLS method to estimate the system
parameters based on binary data, while Section 3 presents the
theoretical results to investigate the quality of our estimation
method. Section 4 resumes some simulations to study the
validity of the results which are established in Section 3. Fi-
nally, conclusions and perspectives are drawn in Section 5.

2. PRELIMINARIES

2.1 Framework and notations

Let us consider a discrete-time invariant linear systemH. We
assumeH has a finite impulse response of lengthL, i.e. the
impulse response can be represented by a column vectorθ =
(θl )

L
l=1 . Let ul be the known scalar value of the system input

at timel . We also defineyl as the (scalar) value of the system
output, so that:

yl = φT
l θ ,

whereφl = (uk)
l
k=l−L+1 is the (column) vector of observa-

tions at timel .
Let dl be a known additive dithering signal at the quan-

tizer’s input. The system output is measured via a 1-bit ADC
so that only the signsl = S(zl ) of the system output is known,



Figure 1: Block diagram of the system.

where
{

S(x) = 1 , if x≥ 0
S(x) = −1 , otherwise,

andzl = yl +dl .
We are interested in finding an estimateθ̂ of θ , based on

N observations oful ,sl and, if need be,dl . Let us consider
thatul anddl are stationary, independent, white Gaussian and
centred. It is also assumed thatθ̂ has lengthL and σu =
1. The estimated quantities are denoted by a hat (e.g. ˆsl =
S(ẑl )). These notations are summed up in Fig. 1.

2.2 WLS approach for parameter estimation based on
binary observation

In [2], we proved that the problem of parameter estimation
from binary measurement can be treated by minimizing WLS
criteria of the form:

JN
p

(

θ̂
)

=
1
4

N

∑
l=1

ẑ2p
l (sl − ŝl )

2

N

∑
l=1

ẑ2p
l

, p≥ 1 (1)

in which the term ˆz2p
l acts as a (positive) weight to the binary-

valued error(sl − ŝl )
2 and smoothes out the discontinuities of

the unweighted criterion (classical criterion).
We have already established the properties ofJN

0 andJN
1

such as convexity and estimator consistency under a prob-
abilistic framework, whenN goes to infinity in [2]. Some
analytical expression ofJ∞

0 andJ∞
1 were also derived, which

are given here:

J∞
0

(

θ̂
)

=
1
π

arccos(r),

J∞
1

(

θ̂
)

=
1
π

(

arccos(r)− r
√

1− r2
)

,

wherer is the correlation coefficient ofz andẑ. In the noise-
free case, this boils down to:

r
(

θ , θ̂
)

=
σ2

d +θ T θ̂
√

σ2
d +θ Tθ

√

σ2
d + θ̂ T θ̂

. (2)

In addition, it has been shown that:

JN
0 = 0⇐⇒ JN

p = 0,∀p≥ 1, (3)

i.e. thatJN
0 andJN

p are equivalent in the noise-free case [2]

in the sense that all thêθ that minimizeJN
0 also minimize

JN
p and vice versa. Fig. 2 shows criterionJN

0 comparing
with JN

1 for N = 500 which can illustrate (3). As it’s seen
in this figure, all theθ̂ that minimizeJN

0 also minimizeJN
p

(p = 1 in this example). Based on this equivalence between
the two criteria, we establish in the next section some non-
asymptotical properties ofJN

0 and see how they apply toJN
p

in order to investigate the estimation quality and performance
efficiency of our WLS criteria.

3. CONSEQUENCE OF A FINITE NUMBER OF
SAMPLES

In order to investigate the quality of our WLS approach for
parameter estimation based on binary observation introduced
in 2.2 [2], the relation between accuracy (in the sense of cor-
relation coefficient betweenz andẑ) and the number of nec-
essary samples for identifying a system is figured out.

The purpose of this section is to determine how many
samplesN are necessary to estimate a given system with
lengthL by a given ”accuracy”. To ensure the quality of the
estimation, a sufficient condition is that:

∀θ̂ ,JN
p

(

θ̂
)

≈ J∞
p

(

θ̂
)

.

Or, in other words, a sufficient condition is that we are
”close” to the limiting case while N goes to infinity
(N −→ ∞). RegardingJN

p

(

θ̂
)

with a fixed θ̂ as a random
variable (the value of which changes from one experiment
to the other), one can consider that the number of necessary
samples(N) is large enough when:

var
(

JN
p

(

θ̂
))

E
(

JN
p

(

θ̂
))2 < 1. (4)

We have not been able to obtain a satisfactory expression
for any of these quantities except in the casep = 0. How-
ever, because of the ”equivalence” betweenJN

p andJN
0 (3),

reasonably good results can be expected ifJN
0 is used instead

of JN
p in (4) . This is motivated by the fact that is mentioned

in the previous section (3). Therefore, from (3) and (4), we
can consider thatN is large enough when:

var
(

JN
0

(

θ̂
))

E
(

JN
0

(

θ̂
))2 < 1, (5)

As it is illustrated in Fig. 3, when N is small, the probability
thatJN

0 = 0 for θ̂ 6= θ is non zero. IncreasingN reduces the
variance ofJN

0 which reduces the misestimating probability
of θ .

Since 1/4(sl − ŝl )
2 takes only two values (0 or 1), it can
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Figure 2: Comparison ofJN
0 with JN

1 in order to verify (3) for
N = 500 andθ = [1,−1].

be considered as a Bernoulli random variable with parameter
q. The value ofq is equal to:

q = E

(

1
4

(

ŝl
(

θ̂
)

−sl
)2
)

= E

(

1
2
− 1

2
ŝl sl

)

=
1
2
− 1

2
cov(ŝl ,sl ) .

(6)

From [12], (6) reduces to:

q =
1
2

(

1− 2
π

arcsin(cov(ẑk,zk))

)

=
1
π

arccos(r) = J∞
0 (r),

thus,

E
(

JN
0

(

θ̂
))

=
1
N

N

∑
l=1

E

(

1
4

(

ŝl
(

θ̂
)

−sl
)2
)

= J∞
0 (r).

The numerator of (5) is also given by:

var
(

JN
0

(

θ̂
))

=
1

N2 var

(

N

∑
l=1

(

ŝl
(

θ̂
)

−sl
)2

4

)

=
1

N2 var

(

N

∑
l=1

∆(l)

)

.

(7)

Expanding the right-hand side of (7) leads to:

var
(

JN
0

(

θ̂
))

=
1

N2

N

∑
k=1

var(∆(k))

+
1

N2

N

∑
k=1

N

∑
l=1,l 6=k

cov(∆(k),∆(l)) .

Figure 3: Histogram ofJ∞
0 , J2500

0 andJ250
0 for θ = [1,−1] and

θ̂ = [1,1,−1].

Because of the stationarity hypothesis, this can be further
transformed into:

var
(

JN
0

(

θ̂
))

=
1

N2 (Nvar(∆(t)))

+
2

N2

N−1

∑
k=1

(N−k)cov(∆(t) ,∆(t +k)) .
(8)

The second term on the right-hand side is split in two parts:

N−1

∑
k=1

(N−k)cov(∆(t),∆(t +k)) =

L

∑
k=1

(N−k)cov(∆(t),∆(t +k))+

N−1

∑
k=L+1

(N−k)cov(∆(t),∆(t +k)) .

(9)

SinceH has lengthL and the input signalu is white, the sec-
ond term of the right-hand side of (9) equals 0. The Cauchy-
Schwartz inequality is then used to yield:

L

∑
k=1

(N−k)cov(∆(t),∆(t +k)) ≤

L

∑
k=1

(N−k)var(∆(t)) = L

(

N− L+1
2

)

var(∆(t)) .

This can be injected into (8):

var
(

JN
0

(

θ̂
))

≤ N(2L+1)−L(L+1)

N2 var(∆(t)) . (10)

Now var(∆(t)) can be split into:

var(∆(t)) = var

(

1
4

(

ŝl
(

θ̂
)

−sl
)2
)

.
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Figure 4: Plot 1− r vs. N
2L+1 for different values ofL and comparison with the theoretical prediction derived from (14).

As 1/4
(

ŝl
(

θ̂
)

−sl
)2

is a Bernoulli random variable with pa-
rameterq = J∞

0 (r), thus, we obtain:

var(∆(t)) = J∞
0 (r)−J∞

0
2(r). (11)

As a consequence, (11) can be injected into (10):

var
(

JN
0

(

θ̂
))

≤N(2L+1)−L(L+1)

N2 ×

J∞
0 (r)(1−J∞

0 (r)) .
(12)

WhenN is large with respect toL, (12) reduces to:

var
(

JN
0

(

θ̂
))

≤ 2L+1
N

J∞
0 (r)(1−J∞

0 (r)) .

Thus, a sufficient condition for (5) to hold is (in the limit of
largeN):

N
2L+1

>
1

J∞
0 (r)

−1. (13)

Whenr is close to 1, assumingN
2L+1 >> 1, a Taylor series

expansion can be applied to (13), which yields:

e= 1− r ≈ π2

2

(

2L+1
N

)2

, (14)

wheree= 1− r is the error on the correlation coefficient, i.e.
the accuracy of the method.

Suppose, for example, that we want to make sure that
the error on the correlation coefficient between the nominal
and estimated system is about 0.01. Lettinge= 0.01 in (14)
yields:

N ≈ 10π√
2

(2L+1) ≈ 22(2L+1).

Choosing N according to (14) thus ensures thatθ̂ , the
parameter vector resulting from the optimization, is ”close”
to θ in the sense that their correlation coefficient (given by
(2)) is aboutr = 0.99. The simulation results are shown in
the next section to confirm the theoretical results.

4. SIMULATION RESULTS AND DISCUSSION

In this section, the validity of the results established in pre-
vious section is put to the test. Four impulse responses of
lengths 2, 4, 8 and 16 are analyzed: they consist of repetitions
of the sequence [1,-1] (oscillatory behaviour is commonplace
in MEMS devices). A sequence ofN samples of a white
Gaussian noise with zero mean and unit variance is applied
at the system input. A dithering signal (of the same nature
as the input signal) is applied at the input of the comparator.
A parameter vector is estimated thanks to the gradient algo-
rithm proposed in [2] and its correlation coefficient with the
nominal parameter vector is calculated and stored. The al-
gorithm is stopped whenJN

1 = 0, which is always achievable
in the noise-free case. This experiment is repeated a large
number of times (typically 104) in order to precisely deter-
mine the average value ofr for a given number of samples
and thus, the accuracy of the method(e= 1− r).

Fig. 4 illustrates the accuracy of the estimation(e) ver-
susN/(2L+1) obtained forσd = 0. These simulation re-
sults for different lengths of impulse response(L) are ob-
tained fromJN

1 . Note that the same simulation results can
be also obtained withJN

p , p ≥ 0 because of (3). The simu-
lations agree rather well with the theoretical results obtained
in the previous section. It confirms thate is inversely propor-
tional to (N/2L+1)2. However, it should be noted that the
experimental value of the accuracy is not only a function of
N/(2L+1) but also ofL (Fig. 4), i.e. the error behaves as:

e= 1− r = K(L)

(

2L+1
N

)2

,

whereK(L) is a factor which depends on the filter that should
be identified and its impulse response length. In the presence
case, the number of necessary samples for reaching a given
accuracy is overestimated by (14). This is a consequence of
using the Cauchy-Schwartz inequality for going from (9) to
(10).

Whenσd 6= 0, the same results as in Fig. 4 are obtained.
However, one must keep in mind that in this case,r repre-
sents the correlation betweenz and ẑ, not θ and θ̂ . Thus,
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Figure 5: (a) Correlation coefficient error (1− r and 1−c) vsσd, (b) Relative amplitude error

(

1− ‖θ̂‖
‖θ‖

)

vsσd for L = 2 and

N
2L+1 = 20.

supposingσd is large with respect toθ Tθ andθ̂ T θ̂ , r (2) can
be close to 1 regardless of whetherθ̂ is actually ”close” toθ .
Consequently, it is also interesting to plot the cosine of the
angle made bŷθ andθ :

c =
θ T θ̂

√
θ Tθ

√

θ̂ T θ̂
,

versusσd compared withr versusσd (Fig. 5-a). These re-
sults show that asσd decreases, thus the angle made byθ̂
andθ becomes smaller. On the other hand, too large or too
small dither is detrimental to the quality of the identification
as it is shown in Fig. 5.

5. CONCLUSION

In this paper, estimation quality of a weighted least-square
(WLS) approach to parameter estimation problems based on
binary observations is investigated in the case of existence of
only a finite number of samples. The relation between ac-
curacy and the number of samples for identifying a system
is figured out. Furthermore, simulation results were com-
pared with good agreement to the theoretical results. This
work will be extended to the cases when measurement noise
is present at the input of the comparator.
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