

Synthesis of phosphorylated calix[4]arene derivatives for the design of solid phases immobilizing uranyl cations.

Agnes Hagege, Zouhair Asfari, Elias Bou Maroun, Eric Quéméneur, Claude

Vidaud

► To cite this version:

Agnes Hagege, Zouhair Asfari, Elias Bou Maroun, Eric Quéméneur, Claude Vidaud. Synthesis of phosphorylated calix[4]arene derivatives for the design of solid phases immobilizing uranyl cations. Supramolecular Chemistry, Taylor & Francis: STM, Behavioural Science and Public Health Titles, 2009, 21 (07), pp.585-590. <10.1080/10610270802588301>. <hr/>hal-00520014>

HAL Id: hal-00520014 https://hal.archives-ouvertes.fr/hal-00520014

Submitted on 22 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Supramolecular Chemistry

Synthesis of phosphorylated calix[4]arene derivatives for the design of solid phases immobilizing uranyl cations.

Journal:	Supramolecular Chemistry	
Manuscript ID:	GSCH-2008-0138.R1	
Manuscript Type:	Full Paper	
Date Submitted by the Author:	10-Oct-2008	
Complete List of Authors:	HAGEGE, Agnes; CNRS, IPHC-Analytical Sciences Asfari, Zouhair; CNRS-IPHC Bou Maroun, Elias; CNRS-IPHC Quéméneur, Eric; CEA-IBEB-SBTN Vidaud, Claude; CEA-IBEB-SBTN	
Keywords:	: Phosphorous-Calix[4]arenes, Uranyl immobilization, Solid supports, Anchoring arms	
	·	

With the aim of developing supports for uranyl cation immobilization, new 1,3alternate bearing both phosphonic acid functions as chelating site and Nsuccinimide-4-oxabutyrate as anchoring arm were synthesized. These compounds were proved to be coupled on a hydrazide gel and to complex uranium successfully.

Elias Bou Maroun, Agnès Hagège, Christian Basset, Eric Quéméneur, Claude Vidaud, Zouhair Asfari

Synthesis of new phosphorylated calix[4]arene derivatives for the conception of novel supports immobilizing uranyl.

URL: http:/mc.manuscriptcentral.com/tandf/gsch Email: suprachem@mail.cm.utexas.edu

Synthesis of phosphorylated calix[4]arene derivatives

Deleted: uranyl-affine

for the design of solid phases immobilizing uranyl cations.

Elias Bou Maroun¹, Agnès Hagège¹, Christian Basset², Eric Quéméneur², Claude Vidaud², Zouhair Asfari 1,*

¹Laboratoire de Chimie Analytique et Minérale, UMR 7178 ULP/CNRS/IN2P3 (LC4), ECPM,

25 rue Becquerel, F-67087 Strasbourg Cedex, France.

² CEA IBEB, SBTN, Marcoule Research Center, 30207 Bagnols-sur-Cèze, France.

* corresponding author : phone : +33. 3. 90.24.26.94 ; fax : +33. 3. 90.24.27.25 ; e-mail : asfariz@ecpm.u-strasbg.fr

Abstract

With the aim of developing supports for uranyl cations immobilization, new 1,3-alternate calix[4]arenes bearing both phosphonic acid functions as chelating sites and N-succinimide-4-oxabutyrate as the anchoring arm were synthesized in good yields. The coupling of such calixarenes to a gel was performed and a successful immobilization of uranyl cations was obtained.

Keywords: Phosphorous-Calix[4]arenes; Uranyl <u>cations</u> immobilization; Solid supports; Anchoring arms

Introduction

Uranium, especially under its uranyl ion form $(UO_2^{2^+})$, is widespread in the environment, naturally occurring in various minerals but also resulting from both nuclear civil and military uses. Regarding to the complexity of biological matrices, studying its speciation *in vivo* still requires innovative tools. Thus, the design and synthesis of macrocyclic ligands which could preorganize uranyl chelating functions is <u>of primary importance in the development of such</u> tools.

Among them, calixarenes represent an interesting class of macrocycles. On the one hand, they might adopt pseudoplanar configuration. However, in contrast to homooxacalix[4]arenes and tetrathiacalix[4]arenes [1-3], the crystal structure of the complex between the simple calix[4]arene and UO_2^{2+} evidenced that the 1,3-oxygen atom distance is far from the ideal distance required for an internal complex [3]. On the other hand, calix[4]arenes can adopt an 1,3-alternate conformation where the uranyl cation binding sites can be remote from the anchoring arm designed for a covalent bond to a polymer support.

Calix[4]arenes functionalized by various complexing groups were then used as extractants of uranyl ion, i.e. carboxylic acid [4-8], carboxylic acid-amide [9,10], ester [11], hydroxamate [12] or semicarbazone functions [13]. Phosphoryl groups have also been proved to be suitable for

Deleted: In an attempt to

Deleted: on

Deleted:

Deleted: especially under its uranyl ion form (UO_2^{2+})

Deleted: instrumental
Deleted: affine molecular systems

Deleted: Formatted: Indent: First line: 0 pt Deleted: since

uranyl cation complexation. The solvent extraction of uranium(VI) was widely studied by neutral or acid organo-phosphorus extractants [14-21]. A recent work of Taran et al. reported that bisphosphonates were powerful uranyl ligands [22]. Several papers described the synthesis of phosphonatocalix[4]arenes [23-31]. Some of them were also functionalized with an anchoring arm to be immobilized on solid supports [7,8,13]. However, none of these phosphoruscontaining calixarenes were used to extract the uranyl ion.

Consequently, the purpose of the present work was also to provide bifunctional ligands which could simultaneously bind uranium and be immobilized on solid supports.

In this work, the synthesis of two phosphorus-containing calix[4]arenes in the 1,3 alternate conformation bearing both phosphonic acid and N-hydroxysuccinimide ester entities is reported. Their incorporation into a macromolecular matrix is also demonstrated.

Results and discussion

1. Conception of uranyl cation immobilizing agents: Synthesis of several (phosphonic acid)calix[4]arenes

Phosphorus containing calixarenes modified to provide an N-hydroxysuccinimide moiety able to react with NH₂ groups of a solid support were synthesized. As it is established that the 1,3alternate conformation of calixarenes seems to be the most favorable for metal complexation [32-34], the synthesis was designed to produce the new calixarenes with this preferred conformation.

Calixarenes 6 and 9 were obtained via a five-step synthesis. The synthetic pathway is illustrated in Fig.4.

[insert figure 1 about here]

Calix[4]arene 1 was first O-alkylated in the presence of K₂CO₃ with 1 equivalent of methoxyethoxy-p-toluenesulfonate to obtain the monoalkoxycalix[4]arene 2 in a 68 % yield. The cone conformation, stabilized by hydrogen bonds, was revealed by the presence of two AB systems at 4.49 and 3.48 ppm (J = 13.0 Hz) and at 4.31 and 3.46 ppm (J = 13.0 Hz), in the ¹H-

use the potential of p		
Deleted: for uranyl complexation and to modify these ligands so that they		
Deleted: and far enough away from the complexation site to allow a subsequent protein immobilization.		
Formatted: Subscript		
Deleted: oriented		
Deleted: obtain		
Deleted: in such a preferential		

Deleted: The aim of this work was to

us

Deleted: was	
Deleted: and	
Deleted:	

Supramolecular Chemistry

<u>NMR spectrum</u>, attributed to the methylenic protons $ArCH_2Ar$. The calixarene derivative **2** was then functionalized by reacting 1 equivalent of ethyl-4-bromobutyrate to obtain compound **3** in a 56 % yield. The cone conformation was proved to be maintained by the ¹H NMR spectrum of compound **3** which revealed two AB systems at 4.42 and 3.38 ppm (J = 13.0 Hz) and at 4.28 and 3.38 ppm (J = 13.0 Hz), attributed to the methylenic protons $ArCH_2Ar$.

The introduction of the phosphorus-containing functions was performed by O-alkylation with 2.1 equivalents of diethylphosphonoylmethoxy-p-toluenesulfonate or (a)diethylphosphonoylpropoxy-p-toluenesulfonate (b) in the presence of K_2CO_3 to yield calixarene 4 and a mixture of compounds 7 and 7' respectively. The 1,3-alternate conformation of compound 4 was confirmed by the presence in the ¹H NMR spectrum of a singlet for the methylenic protons ArCH₂Ar at 3.49 ppm and by the ³¹P NMR spectrum which showed a singlet at 21.8 ppm. Compounds 7 and 7' were further separated by gel chromatography and were shown to be the expected diethylphosphonate calix[4]arene in two different conformations. Compound 7 was proved to be in the 1,3-alternate conformation, confirmed by the absence of any AB system in the ¹H NMR spectrum for the methylenic protons ArCH₂Ar and the presence of a singlet at 33.5 ppm in the ³¹P NMR spectrum indicating the presence of two equivalent phosphorous atoms. Compound 7' was shown to be in the partial cone conformation. The ¹H NMR spectrum revealed an AB system at 4.05 ppm and at 3.09 ppm (J = 13.0 Hz), corresponding to 4 methylenic protons ArCH₂Ar. The singlet corresponding to the other 4 methylenic protons ArCH₂Ar was located in the multiplet at 3.92-3.57 ppm. The ³¹P NMR spectrum confirmed this conformation, revealing two singlets at 34.1 ppm and 33.1 ppm for the two different phosphorous atoms.

Calixarenes **5** and **8** were obtained by transesterification using trimethylbromosilane and subsequent hydrolysis of the trimethylsilylesters in a nearly quantitative yield. Finally, the activation of the carboxylic groups was performed using 2 equivalents of NHS and 2 equivalents of EDC to obtain calixarenes **6** and **9** with a 64 % and a 45% yield respectively. For all these compounds, the absence of any AB system in the ¹H NMR spectra confirmed that the 1,3-alternate conformation was maintained.

2. Immobilization of calixarenes 6 and 9 on a gel column

Immobilization was performed by incubating the Ultralink hydrazide gel (15 μ mol NH₂ functions per g) with calixarenes quantities corresponding to 20% of the total amount of NH₂ groups.

Since the calixarenes synthesized in this paper are based on a succinimide ester that is commonly used for reactive amine crosslinking, the ester hydrolysis is a limiting factor. Two buffers were tested for the coupling: a HEPES buffer (pH 8.0) and a borate buffer (pH 9.2). A higher pH was shown to favor the nucleophilic attack to the detriment of the ester hydrolysis, and pH 9.2 was thus used in further experiments.

The repeatability of the coupling was then evaluated on 2 different gels using compound **6**. An average value of $(32 \pm 2)\%$ (% mol) of coupled calixarene **6** was found.

The same experiment conducted with calixarene **9** led to 28.5% (% mol), which seems to indicate that the alkyl chain length has no influence on the coupling.

Improvement of the coupling extent was investigated by performing successive calixarene **6** additions and incubations. Results are reported in Table 1 and show that a maximum of 2 μ mol calixarene **6** / g gel is obtained.

3. Immobilization of uranyl ions on a gel column

Assessment of the complexation efficiency on a modified gel was performed. <u>1 g of the Ultralink</u>, hydrazide gel coupled with 2 µmol calixarene **6** / g was incubated overnight in the presence of 5 equivalents of uranyl acetate. A similar experiment was also conducted with the same quantity <u>of a</u> non-coupled gel. The uranyl <u>cation</u> content in the eluates was quantified and found to be 7.5 µmol for the eluates of the gel bound with calixarene **6** and 9.9 µmol for the blank. Consequently, (2.4 ± 0.1) µmol uranyl cation / g were immobilized on the modified gel, which corresponds to a 100% immobilization (refering to the calixarene). For the non-coupled gel, the immobilized concentration was found to be as low as (0.1 ± 0.1) µmol uranyl cation / g. It seems then that the immobilization of the uranyl cation, occurs through the formation of a 1:1 (uranyl:calixarene) complex. The total release of the uranyl cation from the blank gel shows the absence of non specific interactions and reinforces this assumption.

Deleted: The	
Delete de un	
. 1 Deleted: on	

Deleted: the presence of calixarene on the gel allows Deleted: , which is likely to

Conclusion

The synthesis of new phosphorous-containing calix[4]arenes bearing phosphonic acid functions on one side and NHS activated carboxylic functions on the other side, was achieved. With the aim of providing solid supports, the coupling of these compounds to a solid support was performed. A coupling extent of 2 µmol calixarene **6** / g gel was obtained. Under the used conditions, a quantitative immobilization of uranyl cations was shown to occur through the formation of an 1:1 UO_{4}^{2+} :calixarene **6** complex. Further studies will be performed to improve the coupling extent of calixarene **6** on such support. However, the use of these heterofunctional macrocycles for many other usages into supramolecular devices could be further envisioned.

Experimental

1. Synthesis

All reagents and solvents were commercial and were used without further purification. Reagents for the synthesis were all Sigma-Aldrich and Prolabo products Calix[4]arene was prepared according to the literature [35]. Chromatography used SiO₂ columns with Kieselgel Merck (art. 11567). The melting points were taken on a Büchi 535 apparatus in capillaries sealed under nitrogen. ¹H NMR and ³¹P NMR spectra were respectively recorded at 300 MHz and 400 MHz on a Bruker Avance spectrometer. For ¹H NMR spectra, CHCl₃ (δ = 7.26 ppm) was used as an internal standard in CDCl₃ and CHD₂OD (δ = 3.31 ppm) was used as an internal standard in CD₃OD. For ³¹P NMR spectra, 85 % H₃PO₄ was used as an external reference. MALDI-TOF mass spectra were obtained with a Bruker Autoflex II equipped with a N₂ laser (λ = 337nm) using α -cyano-4-hydroxycinnamic acid as matrix. Elemental analyses were performed at the Service de Microanalyse of the Institut de Chimie de Strasbourg.

Deleted: di

Deleted: , followed by a subsequent immobilization of uranyl.
Formatted: Subscript
Formatted: Superscript
Formatted: Font: Bold, Complex Script Font: Bold
Deleted:
Deleted: investigate the use of such supports in IMAC for the selective selection of proteins
Formatted: Font: Bold, Complex Script Font: Bold
Formatted: Indent: First line: 0 pt
Deleted: ¶

1.1 Synthesis of 1,3-[di-(oxamethyl-phosphonic acid)], 2-(N-succinimide-4-oxabutyrate),
4-(methoxyethoxy)-calix[4]-arene (6).

1.11. Mono-methoxyethoxy-calix[4]arene (2). A suspension of calix[4]arene 1 (12.73, g, 30.0_{-} mmol) and K₂CO₃ (2.16, g, 15.6 mmol) in acetonitrile (500 mL) was stirred for 30 min at room temperature under a nitrogen atmosphere. Methoxyethyl *p*-toluenesulfonate (6, 91 g, 12.0 mmol) was then added and the mixture was stirred and refluxed for 4 days. After removal of the solvent, 400 mL of CH₂Cl₂ and 400 mL of water were added and the mixture was stirred and acidified with HCl 1M. The organic layer was recovered and dried over anhydrous Na₂SO₄. After removal of the solvent, compound 2 was purified by column chromatography (SiO₂, eluent: CH₂Cl₂) and obtained as a white powder.

Yield: 9.91, g (68%) mp 224-225 °C. ¹H-NMR (300MHz, CDCl₃) δ (ppm): 9.86 (s, 1H, ArOH), 9.24 (s, 2H, ArOH), 7.12-7.00 (m, 8H, ArH_{meta}), 6.89 (t, 1H, J = 7.5 Hz, ArH_{para}), 6.72-6.65 (m, 3H, ArH_{para}), 4.49 (d, 2H, J = 13.0 Hz, ArCH₂Ar), 4.35-4.32 (m, 2H, CH₂CH₂OCH₃), 4.31 (d, 2H, J = 13.0 Hz, ArCH₂Ar), 4.04-4.01 (m, 2H, CH₂CH₂OCH₃), 3.62 (s, 3H, OCH₃), 3.48 (d, 2H, J = 13.0 Hz, ArCH₂Ar), 3.46 (d, 2H, J = 13.0 Hz, ArCH₂Ar). Anal. Calcd. for C₃₁H₃₀O₅ (%): C, 77.16; H, 6.27. Found C, 77.43; H, 6.00

1.12. 1-(Ethyl-4-oxabutyrate), 3-(methoxyethoxy)-calix[4]arene (3). Mono-methoxyethoxycalix[4]arene **2** (4.83 g, 10.0 mmol) and K₂CO₃ (0.72 g, 5.2 mmol) were suspended in ______ acetonitrile (200 mL) and stirred for 1 h at room temperature under a nitrogen atmosphere. $Br(CH_2)_3C(O)OCH_2CH_3$ (2.34, g, 12.0 mmol) was then added and the resulting solution was refluxed for 4 days. After evaporation of the solvent in vacuo, the residue was taken up in CH_2CI_2 (300 mL) and in water (300 mL) and the resulting mixture was acidified then separated in order to recover the organic layer which was dried over anhydrous Na_2SO_4 . After evaporation of the solvent, compound **3** was purified by column chromatography (SiO₂, eluent: CH_2CI_2 /acetone 98/2 v/v) and obtained as a white powder.

Yield: 3.3<u>6</u>, g (56%), mp 165-166 <u>°C</u>. ¹H-NMR (300MHz, CDCl₃) δ (ppm): 7.93 (s, 2H, ArOH), 7.06 (d, 4H, *J* = 7.5 Hz, Ar*H*_{meta}), 6.90 (d, 4H, *J* = 7.5 Hz, Ar*H*_{meta}), 6.76-6.71 (m, 2H, Ar*H*_{para}),

Deleted: 5	
Deleted: 56	
Deleted: 908	

Deleted: 2

Deleted: e	
Deleted: 826	
Deleted: 719	
Deleted: 719	

Deleted: 1

Deleted: 55

Supramolecular Chemistry

6.65 (t, 2H, J = 7.5 Hz, ArH_{para}), 4.42 (d, 2H, J = 13.0 Hz, $ArCH_2Ar$), 4.28 (d, 2H, J = 13.0 Hz, ArCH₂Ar), 4.23-4.16 (m, 4H, COOCH₂CH₃ + CH₂CH₂OCH₃), 4.07 (t, 2H, J = 6.1 Hz, CH₂CH₂CH₂COOEt), 3.95-3.92 (m, 2H, CH₂CH₂OCH₃), 3.56 (s, 3H, CH₂OCH₃), 3.38 (d, 4H, J = 13.0 Hz, $ArCH_2Ar$), 2.90 (t, 2H, J = 7.4 Hz, CH_2COOEt), 2.41-2.32 (m, 2H, CH_2CH_2COOEt), 1.29 (t, 3H, J = 7.2 Hz, COOCH₂CH₃). Anal. Calcd. for C₃₇H₄₀O₇ (%): C, 74.47; H, 6.76. Found C, 74.68; H, 6.52

1.13. Diethylphosphonoylmethoxy-p-toluenesulfonate (a). A solution of triethylamine (10,12] g, 100.0 mmol) in CH₂Cl₂ (50 mL) was added dropwise to a stirred mixture of diethyl(hydroxy-methyl)phosphonate (8,41 g, 50.0 mmol) and *p*-toluenesulfonyl chloride (10,01 g, 52.5 mmol) in CH₂Cl₂ (450 mL) at *ca.* 0 °C. The resulting mixture was cooled to room temperature and stirred for 15 h. It was then extracted with 300 mL of acidified aqueous solution and dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel. CH₂Cl₂ was used as the first mobile phase then CH₂Cl₂/acetone (98/2, v/v). Compound **a** was recovered as a viscous liquid.

Yield: 12,93 g (80%).¹H-NMR (300MHz, CDCl₃) δ (ppm): 7.79 (d, 2H, J = 8.1 Hz, ArH), 7.36 (d, 2H, J = 8.1 Hz, ArH), 4.19-4.09 (m, 6H, SO₃CH₂P + POOCH₂CH₃), 2.45 (s, 3H, CH₃Ar), 1.31 (t, 6H, J = 7.1 Hz, POOCH₂CH₃).

1.14. 1,3-[Di-(oxamethyl-diethylphosphonate)], 2-(ethyl-4-oxabutyrate), 4- (methoxyethoxy)-calix[4]arene (4). A suspension of 1-(ethyl-4-oxabutyrate), 3- (methoxyethoxy)-calix[4]arene **3** (1.79, g, 3.0 mmol) and K_2CO_3 (4,15 g, 30.0 mmol) in acetonitrile (100 mL) was stirred for 2 h at room temperature under nitrogen atmosphere. Diethylphosphonoylmethoxy-*p*-toluenesulfonate **a** (2.03, g, 6.3 mmol) was then added and the mixture was refluxed for 10 days. After filtration of the mixture, the solvent was removed under vacuo and the residue was taken up in CH₂Cl₂ (200 mL). 200 mL of water were added and the mixture was acidified with 1 M HCI. The organic layer was separated, dried over anhydrous Na₂SO₄, filtered and concentrated. The resulting residue was purified by column

Deleted: 119	

Deleted: 928

Deleted: 407

Deleted: 009

Deleted: d	
Deleted: 0	
Deleted: 146	
Deleted: 1	

chromatography (SiO₂, eluent: CH_2CI_2 /acetone 90/10 v/v). Compound **4** was obtained as a pure yellow viscous liquid.

Yield: 1 <u>69</u> g (63%). ¹H-NMR (300MHz, CDCl₃) δ (ppm): 7.25-7.21 (m, 4H, ArH_{meta}), 7.11-7.08 (m, 2H, ArH_{meta}), 6.99-6.96 (m, 2H, ArH_{meta}), 6.68-6.57 (m, 4H, ArH_{para}), 4.29-4.17 (m, 6H, ArOCH₂ + COOCH₂CH₃), 4.07 (d, 4H, J = 9.2 Hz, ArOCH₂P), 3.91-3.88 (m, 2H, CH₂OCH₃), 3.77-3.64 (m, 8H, POOCH₂), 3.59 (s, 3H, CH₂OCH₃), 3.49 (s, 8H, ArCH₂Ar), 2.53 (t, 2H, J = 7.2 Hz, CH₂COOEt), 2.20 (q, 2H, J = 7.2 Hz, CH₂CH₂CH₂COOEt), 1.42 (t, 12H, J = 7.1 Hz, POOCH₂CH₃), 1.24 (t, 3H, J = 7.1 Hz, COOCH₂CH₃). ³¹P NMR (400 MHz, CDCl₃) δ (ppm): 21.8. Anal. Calcd. for C₄₇H₆₂O₁₃P₂ (%): C, 62.94; H, 6.97. Found C, 62.76; H, 7.14.

1.15. 1,3-[Dj-(oxamethyl-phosphonic acid)], 2-(4-oxabutyric acid), 4-(methoxyethoxy)-calix[4]arene (5). Bromotrimethylsilane (5,64 g, 36.83 mmol) was added to a solution of compound **4** (1.10,g, 1.23 mmol) in 20 mL acetonitrile. The reaction mixture was stirred for 24 h at room temperature under nitrogen atmosphere. It was then evaporated under reduced pressure and a mixture of 10 mL of methanol/water (50/50, v/v) was added to the residue. The resulting solution was stirred at room temperature overnight. After removal of methanol and water, the residue was evaporated twice with 10 mL of dry toluene and filtered to obtain compound **5** as a pink solid.

Yield: 0.91, g (98 %), mp 158-159 °C. ¹H-NMR (300MHz, CD₃OD) δ (ppm): 7.17 (d, 4H, J = 7.5 Hz, Ar H_{meta}), 7.05-7.02 (m, 2H, Ar H_{meta}), 6.95-6.92 (m, 2H, Ar H_{meta}), 6.62-6.53 (m, 4H, Ar H_{para}), 3.76-3.50 (m, 18H, ArOC H_2 CH₂ + ArC H_2 Ar + ArOC H_2 P + C H_2 OCH₃), 3.22 (s, 3H, CH₂OC H_3), 2.47-2.39 (m, 2H, C H_2 COOH), 2.03-1.92 (m, 2H, C H_2 CH₂COOH). ³¹P NMR (400 MHz, CD₃OD) δ (ppm): 19.9. Anal. Calcd. for C₃₇H₄₂O₁₃P₂ (%): C, 58.73; H, 5.59. Found C, 58.47; H, 5.44. Mass spectrum (MALDI-TOF): m/z = 755.2 [M-H]^{*}.

1.16. 1,3-[Di-(oxamethyl-phosphonic acid)], 2-(N-succinimide-4-oxabutyrate), 4-(methoxyethoxy)-calix[4]arene (6). Compound 5 (1.14, g, 1.5 mmol), EDC [1-Ethyl-3-(3dimethyl-aminopropyl)-carbodiimide (0.58, g, 3.0 mmol) and NHS (N-hydroxysuccinimide) (0.35, 3.0 mmol) were dissolved in DMF (90 mL) and the mixture was stirred overnight at room

Deleted: d Deleted: 638 Deleted: 1

Deleted: 2

Deleted: 687

Deleted: d	
Deleted: 35	
Deleted: 75	
Deleted: 48	

Supramolecular Chemistry

temperature and then for 3 h at 55 $^{\circ}$ C. After removal of the solvent, the residue was treated with acetonitrile to obtain compound **6** as white solid.

Yield: 0.82 g (64 %), mp 109-111 °C. ¹H-NMR (300MHz, DMSO-d₆) δ (ppm): 7.24 (d, 4H, J = 7.4 Hz, Ar H_{meta}), 7.02-6.99 (m, 2H, Ar H_{meta}), 6.93-6.90 (m, 2H, Ar H_{meta}), 6.57-6.52 (m, 4H, Ar H_{para}), 3.75-3.55 (m, 12H, ArOC H_2 CH₂ + ArC H_2 Ar), 3.37 (s, 3H, CH₂OC H_3), 3.03-2.89 (m, 6H, ArOC H_2 P + C H_2 OCH₃), 2.71 (s, 4H, NHS), 1.99-1.95 (m, 2H, C H_2 COONHS), 1.76-1.71 (m, 2H, C H_2 CH₂COONHS). ³¹P NMR (400 MHz, DMSO-d₆) δ (ppm): 16.4. Anal. Calcd. for C₄₁H₄₅NO₁₅P₂ (%): C, 57.68; H, 5.31; N, 1.64. Found C, 57.39; H, 5.45; N, 1.81. Mass spectrum (MALDI-TOF): m/z = 855.1 [MH⁺].

1.2. Synthesis of 1,3-[di-(oxapropyl-phosphonic acid)], 2-(N-succinimide-4-oxabutyrate), 4-(methoxyethoxy)-calix[4]arene (9).

1.21. Diethylphosphonoylpropoxy-p-toluenesulfonate (b). Diethyl 3bromopropylphosphonate (5.18, g, 20.0 mmol) and silver *p*-toluenesulfonate (11.16, g, 40.0 mmol) were dissolved in 200 mL acetonitrile and stirred at room temperature for 3 days. The solution was then filtered and the solvent was evaporated to dryness under reduced pressure. The residue was then taken up in CH_2CI_2 (400 mL) and water (400 mL). The organic layer was recovered and dried over anhydrous Na_2SO_4 . After removal of the solvent, the residue was purified by column (SiO₂, eluent: CH_2CI_2 /acetone 80/20 v/v). Coumpound **b** was recovered as a viscous liquid.

Yield: 1.75 g (25 %). ¹H-NMR (300MHz, CDCl₃) δ (ppm): 7.78 (d, 2H, J = 8.2 Hz, ArH), 7.34 (d, 2H, J = 8.2 Hz, ArH), 4.12-3.99 (m, 6H, CH₃ArSO₃CH₂ + POOCH₂CH₃), 2.44 (s, 3H, CH₃Ar), 2.01-1.87 (m, 2H, SO₃CH₂CH₂CH₂P), 1.81-1.69 (m, 2H, SO₃CH₂CH₂P), 1.29 (t, 6H, J = 7.1 Hz, POOCH₂CH₃).

1.22.1,3-[Dj-(oxapropyl-diethylphosphonate)],2-(ethyl-4-oxabutyrate),4-(methoxyethoxy)-calix[4]arene (7 and 7'). The synthesis was performed as for compound 4.Calix[4]arene derivative 3: 1.43g, 2.4 mmol; K₂CO₃: 3.32g, 24.0 mmol; acetonitrile: 100 mL;diethylphosphonoylpropoxy-p-toluenesulfonate b: 1,27 g, 5.0 mmol; CH₂Cl₂: 200 mL; H₂O: 200

Deleted: 2

Deleted: 2

D

eleted:	d		

Deleted: 2	
Deleted: 17	
Deleted: 766	

Supramolecular Chemistry

mL. Column chromatography (SiO₂, eluent: CH₂Cl₂/acetone 80/20 v/v). Compounds 7 and 7' were obtained as yellow viscous liquids.

Compound **7** (1,3-alternate), yield: 0,<u>53 g</u> (23 %). ¹H-NMR (300MHz, CDCl₃) δ (ppm): 7.09-7.06 (m, 2H, Ar*H*_{meta}), 7.02-7.00 (m, 6H, Ar*H*_{meta}), 6.75-6.70 (m, 4H, Ar*H*_{para}), 4.21-4.09 (m, 10H, ArOC*H*₂ + COOC*H*₂CH₃), 3.75-3.55 (m, 16H, POOC*H*₂CH₃ + ArC*H*₂Ar), 3.37-3.35 (m, 2H, CH₂C*H*₂OCH₃), 3.34 (s, 3H, CH₂CH₂OC*H*₃), 2.26 (t, 2H, *J* = 7.5 Hz, CH₂CH₂CH₂COOEt), 1.92-1.66 (m, 10H, CH₂C*H*₂C*H*₂POOEt + CH₂C*H*₂CH₂COOEt), 1.37 (t, 12H, *J* = 7.1 Hz, POOCH₂C*H*₃), 1.30 (t, 3H, *J* = 7.1 Hz, COOCH₂C*H*₃). ³¹P NMR (400 MHz, CDCl₃) δ (ppm): 33.5 ppm. Anal. Calcd. for C₅₁H₇₀O₁₃P₂ (%): C, 64.27; H, 7.40. Found: C, 64.17; H, 7.29. Mass spectrum (MALDI-TOF): *m/z* = 975.4 [MNa⁺].

Compound **7**' (partial cone), yield: 0.43 g (19 %). ¹H-NMR (300MHz, CDCl₃) δ (ppm): 7.35-7.33 (m, 1H, Ar*H*_{meta}), 7.25-7.22 (m, 1H, Ar*H*_{meta}), 7.10-7.07 (m, 2H, Ar*H*_{meta}), 7.01-6.88 (m, 4H, Ar*H*_{meta}), 6.49-6.42 (m, 2H, Ar*H*_{para}), 6.32-6.26 (m, 2H, Ar*H*_{para}), 4.21-4.10 (m, 10H, ArOC*H*₂ + COOC*H*₂CH₃), 4.05 (d, 2H, *J* = 13.0 Hz, ArC*H*₂Ar), 3.92-3.57 (m, 12H, POOC*H*₂CH₃ + ArC*H*₂Ar), 3.45 (s, 3H, CH₂CH₂OC*H*₃), 3.09 (d, 2H, *J* = 13.0 Hz, ArC*H*₂Ar), 2.61-2.43 (m, 2H, CH₂COCH₃), 2.23-2.14 (m, 4H, C*H*₂POOEt + C*H*₂COOEt), 1.96-1.84 (m, 2H, C*H*₂POOEt), 1.76-1.53 (m, 6H, CH₂C*H*₂CH₂CPOEt + CH₂CH₂COEt), 1.43-1.34 (m, 12H, POOCH₂C*H*₃), 1.26 (t, 3H, *J* = 7.1 Hz, COOCH₂CH₃). ³¹P NMR (400 MHz, CDCl₃) δ (ppm): 34.1 and 33.1 ppm. Anal. Calcd. for C₅₁H₇₀O₁₃P₂ (%): C, 64.27; H, 7.40. Found C, 64.17; H, 7.29

1.23. 1,3-[Dj-(oxapropyl-phosphonic acid)], 2-(4-oxabutyric acid), 4-(methoxyethoxy)-

calix[4]arene (8). The synthesis was performed as for compound 5.

Calix[4]arene_derivative 7: 0.29_g, 0.3_mmol; bromotrimethylsilane: 1.38_g, 9.0_mmol; acetonitrile: 10 mL; methanol/water (50/50, v/v): 5 mL. Pink solid, yield: 0.24 g (98%); mp > 290 °C. ¹H-NMR (300MHz, CD₃OD) δ (ppm): 7.15-7.03 (m, 8H, ArH_{meta}), 6.92-6.77 (m, 4H, ArH_{para}), 3.84-3.49 (m, 18H, ArOCH₂ + ArCH₂Ar + CH₂CH₂OCH₃), 3.31 (s, 3H, CH₂OCH₃), 2.12-1.98 (m, 2H, CH₂COOH), 1.72-1.45 (m, 10H, CH₂CH₂CH₂POOH + CH₂CH₂CH₂COOH). ³¹P NMR (400 MHz, CD₃OD) δ (ppm): 33.5 ppm. Anal. Calcd. for C₄₁H₅₀O₁₃P₂ (%): C, 60.59; H, 6.20. Found C, 60.46; H, 6.13.

Deleted: 4

Deleted: 526

Deleted: d

Formatted: Italian Italy
Deleted: 286
Deleted: 378
Deleted: 239

1.24. 1,3-[Dj-(oxapropyl-phosphonic acid)], 2-(N-succinimide-4-oxabutyrate), 4 (methoxyethoxy)-calix[4]arene (9). The synthesis was performed as for compound 6.

Calix[4]arene derivative **8**: 0.22, g, 0.27 mmol; EDC: 0.10, g, 0.54 mmol; NHS: 0.06, g, 0.54 mmol; DMF: 16 mL. Brown solid, yield: 0.11, g (45%) ; mp > 290 °C. ¹H-NMR (300MHz, DMSO-d₆) δ (ppm): 7.13-6.94 (m, 8H, ArH_{meta}), 6.79-6.69 (m, 4H, ArH_{para}), 3.66-3.46 (m, 18H, ArOCH₂ + ArCH₂Ar + ArOCH₂CH₂OCH₃), 3.36 (s, 3H, CH₂OCH₃), 2.71 (s, 4H, NHS), 1.99-1.88 (m, 2H, CH₂COONHS), 1.57-1.21 (m, 10H, CH₂CH₂CH₂POOH + CH₂CH₂CH₂COONHS). ³¹P NMR (400 MHz, DMSO-d₆) δ (ppm): 32.1. Anal. Calcd. for C₄₅H₅₃NO₁₅P₂ (%): C, 59.40; H, 5.87; N, 1.54. Found C, 59.18; H, 5.60; N, 1.60. Mass spectrum not available due to the poor solubility in solvents compatible with mass spectrometry.

2. Coupling on the solid support

A column was packed with 1 g Ultralink hydrazide gel according to the protocol described by the manufacturer and conditionned with a 50 mM sodium borate buffer at pH 9. 40 mg/mL solutions of compound **6** and compound **9** were prepared in DMSO. Five successive additions of these solutions were performed in order to obtain a final concentration of 3 µmol/g calixarene and the coupling was performed during 2.5 h under agitation.

The column was then washed with 2 x 2 mL coupling buffer and 2 mL coupling buffer containing 1M NaCl and the eluates were analyzed using a fluorimeter CARY-Eclipse (Varian) at $\lambda_{exc} = 268$ nm and $\lambda_{em} = 310$ nm. λ_{exc} and λ_{em} were previously determined from a calixarene solution and the calixarene amount in the eluates was quantified from a calibration curve (0; 1.86; 3.70; and 7.36 x 10⁻⁴ M).

The calixarene content was determined from the mass-balance, by difference between the initial number of moles of calixarene and that found in the eluate fractions.

3. Uranyl <u>cation</u> binding

Deleted: d

Deleted: 0	
Deleted: 4	
Deleted: 3	
Deleted: 0	

Deleted: mL

Deleted: Gels

Deleted:

Aliquots of gels (1 g) coupled with 2 μ mol calixarene **6** / g were washed with 4 x 2 mL 50 mM sodium acetate buffer pH 4.0. 5 x 20 μ L of a 0.1 M uranyl acetate solution (i.e 10 μ M) were then added to the column and contacted overnight under agitation at room temperature. The supernatant was recovered and the column was then rinsed using 3 x 2 mL 50 mM acetate buffer pH 4 and 3 x 2 mL 50 mM HEPES buffer pH 7.4

UV spectra of uranyl solutions, recorded on a CARY 50 (Varian), showed a maximum peak between 222 and 234 nm, correlated to the uranyl concentrations in the solutions. A calibration curve (0; 1.5; 3; and 6×10^{-4} M) was used to quantify the uranyl amount in both supernatant and eluates. The amount of gel sorbed uranyl cation was determined by difference between its initial quantity and that measured in the liquid fractions.

Acknowledgment

The authors would like to thank the TOXNUC-E French program for financial support.

References

[1] Thuéry, P.; Masci, B., Dalton Trans. 2003, 12, 2411-2417.

[2] Masci, B.; Gabrielli, M.; Mortera, S. L.; Nierlich, M.; Thuéry, P. Polyhedron 2002, 21, 1125-1131.

[3] Asfari, Z.; Bilyk, A.; Dunlop, J. W. C.; Hall, A. K.; Harrowfield, J. M.; Hosseini, M. W.;

Skelton, B. W.; White, A. W. Angew. Chem. Int. Ed. 2001, 40, 721-723.

[4] Montavon, G.; Duplatre, G.; Asfari, Z.; Vicens, J. Solvent Extr. Ion Exch. 1997, 15, 169-188.

[5] Du, Z.; Zhang A.-Y.; Yang Z.-X.; Zhou Z.-M. J. Radioanal. Nucl. Chem. 1999, 241, 241-243.

[6] Montavon, G.; Duplatre, G.; Asfari, Z.; Vicens, J. Radioanal. Nucl. Chem. 1996, 210, 87-103.

[7] Hall, C.W.; Cockayne J.S.; Kan, M.J.; Nicholson G.P. Green Chem. 2001, 3, 114-122.

[8] Evans, C.J.; Nicholson G.P., Sensors and Actuators B 2005, 105, 204-207.

Supramolecular Chemistry

1
5
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
20
21
28
29
30
31
32
33
24
34
35
36
37
38
39
40
40
42
43
44
45
46
47
<u>7</u> 8
40
49
50
51
52
53
54
55
55
00
5/
58
59

60

[9] Beer, P. D.; Brindley, G. D.; Danny Fox, O.; Grieve, A.; Ogden, M. I.; Szemes, F.; Drew, M.
G. B. *J. Chem. Soc., Dalton Trans.* 2002, *16*, 3101-3111.

- [10] Kan M.J.; Nicholson G.; Horn I., Williams G.; Beer P.D.; Schmitt P.; Hesek D.; Drew M.G.B.; Sheen P. *Nucl. Energy* 1998, *37*, 295-345.
- [11] Felinto, M. C. F. C.; Almeida, V. F. J. Alloys and Compounds 2000, 303-304, 524-528.
- [12] Agrawal Y.K.; Sanyal M. J. Radioanal. Nucl. Chem. 1995, 198, 349-358.
- [13] Jain V.K.; Pandya R.A.; Pillai S.G.; Shrivastav P.S. Talanta 2006, 70, 257-266.
- [14] Ghiasvand, A. R.; Mohagheghzadeh, E., Anal. Sci. 2004, 20, 917-919.
- [15] Dogmane, S. D.; Singh, R. K.; Bajpai, D. D.; Mathur, J. N., *J. Radioanal. Nucl. Chem.* **2002**, *253*, 477-482.
- [16] Sarkar, S. G.; Bandekar, S. V.; Dhadke, P. M. *J.Radioanal. Nucl. Chem.* **2000**, *243*, 803-807.
- [17] Singh, D. K.; Singh, H.; Gupta, C. K. J. Radioanal. Nucl. Chem. 2000, 245, 575-580.
- [18] Sun, G. X.; Yu, C.; Han, J. T.; Hua, S.; Bao, B. R. *J. Radioanal. Nucl. Chem.***2000**, *246*, 431-432.
- [19] Someda, H. H.; El Zahhar, A. A.; Shehata, M. K.; El Naggar, H. A. *J. of Radioanal. Nucl. Chem.***1998**, *228*, 37-41.
- [20] Elias, A.; Rodehuser, L.; Azzouz, A.; Attou, M. Hydrometallurgy 1996, 40, 189-194.
- [21] Gatrone, R.C.; Horwitz, E. P.; Rickert P.G., Diamond, H. Solvent Extr. Ion Exch. **1989**, *7*, 793-811.
- [22] Sawicki M., Siaugue J.-M., Jacopin C., Moulin C., Bailly T., Burgada R., Meunier S., Baret
- P., Pierre J.-L., Taran F., *Chem. Eur.*, **2005**, *11*, 3689.
- [23] Jurecka, P.; Vojtisek, P.; Novotny, K.; Rohovec, J.; Lukes, I. J. Chem. Soc., Perkin Trans. 2
 2002, 7, 1370-1377.
- [24] Bochenska, M.; Hoffmann, M.; Lesinska, U. J. Incl. Phenom. 2004, 49, 57-60.
- [25] Matulkova, I.; Rohovec, J. Polyhedron 2005, 24(2), 311-317.
- [26] Ozegowski, S.; Coostisella, B.; Gloede, J. *Phosphorus, Sulfur and Silicon and Their Related Elements* **1996**, *119*, 209-223.

[27] Gloede, J.; Ozegowski, S.; Kockritz, A.; Keitel, I. *Phosphorus, Sulfur and Silicon and Their Related Elements* **1997**, *131*, 141-145.

[28] Cherenok, S.; Vovk, A.; Muravyova, I.; Shivanyuk, A.; Kukhar, V.; Lipkowski, J.; Kalchenko,

V. Organic Letters 2006, 8, 549-552.

[29] Kyoda, M.; Maekawa, H.; Sadai, Y.; Nishiguchi, I. Adv. Technol. Mat. Mat. Process. J.2004, 6, 29-36.

[30] Wiit, D.; Dziemidowicz, J.; Rachon, J. Heteroat. Chem. 2004, 15, 155-161.

[31] Hoffmann, M.; Konitz, A.; Lesinska, U.; Bochenska, M.; J. Incl. Phenom. 2003, 47, 137-142.

[32] Casnati, A.; Pochini, A.; Ungaro, R.; Bocchi, C.; Ugozzoli, F.; Egberink, R. J. M.; Struijk, H.;

Lugtenberg, R.; de Jong, F.; Reinhoudt, D. N. Chem. Eur. J. 1996, 2, 436–445.

[33] Casnati, A.; Pochini, A.; Ungaro, R.; Ugozzoli, F.; Arnaud, F.; Fanni, S.; Schwing, M. J.;

Egberink, R. J. M.; de Jong, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 2767–2777.

[34] Ungaro, R.; Casnati, A.; Ugozzoli, F.; Pochini, A.; Dozol, J. F.; Hill, C.; Rouquette, H. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 1506–1509.

[35] Gutsche, C. D.; Levine, J. A.; Sujeeth, P. K. J. Org. Chem. 1985, 50, 5802-5806.

Captions:

Figure 1 : Synthetic pathway for phosphonic acid)calix[4]arenes possessing an anchoring arm.

1 2 3	0.00		coupled to the g
3	2.99	1.99 1.97	33.5 34.1
	6.00	6.15	