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Abstract
Summary

The highly conserved ESCRT-III complex is responsible for deformation and cleavage of membranes during endosomal trafficking

and other cellular activities. In humans, dominant mutations in the ESCRT-III subunit CHMP2B cause fronto-temporal dementia

(FTD). The decade-long process leading to this cortical degeneration is not well understood. One possibility is that, akin to other

neurodegenerative diseases, the pathogenic protein affects the integrity of dendritic spines and synapses before any neuronal death.

Using confocal microscopy and 3D reconstruction, we examined whether expressing the FTD-linked mutants CHMP2B andintron5 

CHMP2B in cultured hippocampal neurones modified the number or structure of spines. Both mutants induced a significant10 Δ

decrease in the proportion of large spines with mushroom morphology, without overt degeneration. Furthermore, CHMP2B 10 Δ

induced a drop in frequency and amplitude of spontaneous excitatory post-synaptic currents, suggesting that the more potent

synapses were lost. These effects seemed unrelated to changes in autophagy. Depletion of endogenous CHMP2B by RNAi resulted in

morphological changes similar to those induced by mutant CHMP2B, consistent with dominant negative activity of pathogenic

mutants. Thus, CHMP2B is required for spine growth. Taken together, these results demonstrate that a mutant ESCRT-III subunit

linked to a human neurodegenerative disease can disrupt the normal pattern of spine development.

Author Keywords ESCRT ; FTLD ; neurodegeneration ; synapse ; spine head ; NeuronStudio

Introduction

The Endosomal Sorting Complexes Required for Transport are a set of four cytoplasmic protein complexes (ESCRT -0 to III),

conserved from yeast to human. ESCRTs are central to a growing range of cellular activities, including the delivery of down-regulated

surface proteins to the lumen of late endosomes ( ; ), the release of viruses at the plasmaHurley and Emr, 2006 Slagsvold et al., 2006 

membrane ( ), cytokinesis of dividing cells ( ), and autophagy of proteinvon Schwedler et al., 2003 Carlton and Martin-Serrano, 2007 

aggregates ( ). All of these diverse processes involve the budding and fission of cellular membranes, which appearFilimonenko et al., 2007 

to be directly catalysed by ESCRTs. Recent results show that ESCRTs are sequentially recruited to the cytosolic side of endosomal or

plasma membrane microdomains, until ESCRT-III subunits locally polymerise into filaments. Transient assembly of ESCRT-III filaments

on the membrane is a physical agent of membrane deformation and vesiculation ( ; ; Fabrikant et al., 2009 Hanson et al., 2008 Lata et al.,

; ; ; ; ). Hence, ESCRT-III polymers are pivotal2008 Muziol et al., 2006 Saksena et al., 2009 Wollert et al., 2009 Wollert and Hurley, 2010 

effectors of cellular membrane restructuring.

In keeping with its potent effects, the polymerisation of ESCRT-III is normally under tight regulation. The core subunits of ESCRT-III

form a family of highly related proteins, the Charged Multivesicular body Proteins (CHMP) 1 7, all of which contain a conserved–
oligomerisation and lipid binding interface (the ESCRT-III or SNF-7 domain), linked to a C-terminal regulatory region (see ). ThisFig. 1 

latter mediates both intramolecular inhibition of the ESCRT-III domain and intermolecular interaction with subunit-specific factors that

regulate filament dynamics ( ; ; ; ). DeletionBajorek et al., 2009 Muziol et al., 2006 Stuchell-Brereton et al., 2007 Zamborlini et al., 2006 

of the regulatory region converts ESCRT-III subunits into dominant negative mutants, able to block ESCRT-dependent processes such as

the release of HIV-1 virions from infected cells ( ).Zamborlini et al., 2006 

Among ESCRT-III subunits, CHMP2B has received particular attention following the discovery that mutations in the geneCHMP2B 

underlie a dominantly heritable form of frontotemporal dementia (called FTD-3), a presenile brain disease due to selective degeneration of

cortical neurones ( ). In a thoroughly studied Danish kindred, the FTD phenotype was tightly linked to a single pointSkibinski et al., 2005 

mutation at the splice acceptor site of exon 6. The mutation generates two distinct aberrant transcripts, and CHMP2B CHMP2Bintron5 

, both of which encode proteins with a defective C terminus ( ) (see ). Neurodegeneration hasCHMP2B  Δ 10 Skibinski et al., 2005 Fig. 1 

been hypothesized to result from perturbation of neuronal autophagy by these mutants subunits ( ). ConsistentRusten and Simonsen, 2008 

with the loss of the regulatory domain, in heterologous cells, both CHMP2B and CHMP2B form insoluble polymers, often coatingintron5 10 Δ
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endosomes, and cause dominant-negative inhibition of ESCRT-dependent processes including autophagosome maturation (Filimonenko et

; ; ). In cultured cortical neurones, overexpression of CHMP2B was shown to induceal., 2007 Lee et al., 2007 Skibinski et al., 2005 intron5 

retraction of dendritic arbors and subsequent cell death, partly through toxic build-up of autophagosomes ( ; Lee et al., 2007 Lee and Gao,

). Surprisingly, however, CHMP2B failed to increase neuronal death, even though in heterologous cells, its effects on autophagy2009 10 Δ

are similar to those of CHMP2B ( ). Furthermore, knock-down of CHMP2B by RNAi did not modifyintron5 Filimonenko et al., 2007 

neuronal viability. These observations suggest that disease-linked CHMP2B mutations may affect neuronal physiology by ways other than

lethal malfunction of autophagic mechanisms.

Accumulating evidence indicates that in various neurodegenerative diseases neuronal death is a late event, preceded by early

disruption of dendritic spines and synapses, which itself is a pivotal pathogenic step ( ; ; Morfini et al., 2009 Wei et al., 2009 Wishart et al.,

). In FTD, extensive synaptic loss and reduction of spines have been documented in diseased cortex ( ; 2006 Ferrer, 1999 Lipton et al.,

). Given its role in endosomal traffic and plasma membrane deformation, ESCRT-III may plausibly control aspects of synaptic2001 

biology. Here, we examine the possible impact of CHMP2B mutants and CHMP2B depletion on the development of dendritic spines.

CHMP2B and CHMP2B could be expressed in hippocampal neurones without causing apparent anomalies in endosomalintron5 10 Δ

morphology, autophagosome amount, or cell viability. The mutants potently suppressed the growth of spine heads, strongly lowering the

proportion of mushroom spines. Very similar effects were obtained with an siRNA targeting endogenous CHMP2B, consistent with

dominant-negative action of the mutants. Physiologically, CHMP2B caused a drop in the frequency and amplitude of spontaneous10 Δ

excitatory synaptic currents, with selective disappearance of large currents. We propose that CHMP2B and potentially ESCRT-III are

required for the maturation of dendritic spines, and that pathogenic CHMP2B mutants perturb this process. To the extent that maturation

correlates with functional potentiation, these results implicate ESCRT-III in synaptic plasticity. In the protracted course of FTD, CHMP2B

mutations may affect synaptic homeostasis and plasticity long before inducing massive neuronal death.

Materials and Methods
Plasmids and antibodies

The mCherry plasmid was a kind gift from P. Dournaud (INSERM, Paris). The LC3-GFP plasmid was a kind gift from T. Yoshimori

(National Institute of Genetics, Mishima, Japan). The GFP plasmid was pEGFP-C1 (Clontech). The wild-type human CHMP2B cDNA

was cloned from HeLa cells by RT-PCR, in frame with an N-terminal dimeric HA tag, using the following primer pair: 5 ′
CTCTCGAGGCCACCATGTACCCATACGACGTCCCAGACTACGCTTACCCATACGA

C G T C C C A G A C T A C G C T G C G T C C C T C T T C A A G A A G A A  3 ;  a n d  5 ;

TACTCGAGCTGCAGTCACTAATCTACTCCTAAAGCCTTGAGT 3;. The CHMP2B mutant cDNA was amplified from the sameintron5 

cDNA preparation, using an alternate rearward primer (5; TACTCGAGTCACACCTTTCCAGAAATTTCAAT 3;). The two cDNAs were

subcloned in pcDNA3.1 between the XhoI sites. To obtain the CHMP2B cDNA, the C-terminal part was first synthesized in vitro using10 Δ

m e g a p r i m e r s  ( 5 ;

ATGCCCAGGATATTGTGAATCAAGTTCTTGATGAAATTGGAATTGAAATTTCTGGAAAGGTGTTGCACCAACTTCTAGAAGCTTACC

3 ;  a n d  5 ;

TAATCTTGAATTGCCATTTAGACGCTTCATCTGTGATGTAGACGTTGTAGTAAAGGTAAATGGTAAGCTTCTAGAAGTTGGTGCAAC

3;) and then fused with the CHMP2B cDNA. The cDNAs was subcloned in pcDNA3.1 between the EcoRV and NotI sites. Theintron5 

pSuper-mCherry plasmid was constructed by removing GFP from pSuper-Neo-GFP (Oligoengine) and replacing it with mCherry. The

shRNA targeted the rat CHMP2B sequence at positions 578 596 (5; GACACTACAAACAATGCAG 3;) according to ( ),– Lee et al., 2007 

and the encoding oligonucleotide was cloned between the Hind III and Bgl II sites of pSuper-mCherry. The RNAi resistant CHMP2B

cDNA was generated by introducing four silent mutations in the target sequence (yielding 5; GACGTTACAGACGATGCAA 3;) by

means of the Quick-Change mutagenesis kit (Stratagene). All plasmids were verified by sequencing (Cogenics, Meylan, France) and

initially tested in transfected BHK cells by immunoblotting and immunofluorescence with anti-tag antibody. The following polyclonal

antibodies were purchased from Abcam (Cambridge, UK): anti-CHMP2B, anti-EEA1, anti-LAMP1. Anti-HA tag antibody was from Cell

Signaling Technology (Beverly, Massachussets); anti-myc tag antibody from Santa Cruz (California); and anti-actin antibody from

Chemicon.

Neuronal culture and transfection

Primary cultures of hippocampal neurones were prepared according to a modification of the procedure described in (Banker and

). Handling and sacrifice of animals were in conformity with European law (EEC Directive n  86/609) and the internalGoslin, 1998 °
regulations of INSERM. Hippocampi were dissected out from E19 rat embryos, digested with trypsin, and hippocampal cells were seeded

at a density of 12,000 per cm onto acid-washed glass coverslips (13 mm diameter, Marienfeld, Germany) that had been precoated with 50 2 

g/ml poly-D-lysine (Sigma). Cultures were maintained in serum-free Neurobasal medium containing 2 mM glutamine, 1 mM sodiumμ
pyruvate, 10 g/ml penicillin and streptomycin, and 2  B27 supplement (Invitrogen). For transfection, all plasmids were purified usingμ %
the Endotoxin-free purification kit (Quiagen, Hilden, Germany). Preliminary experiments established that CHMP2B toxicity wasintron5 
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minimal when transfected at the dose used here. The conditioned culture medium was removed and saved and coverslips were placed in 2

ml Minimal Essential Medium (Invitrogen) containing 2 mM glutamine, 1 mM sodium pyruvate, 15 mM Hepes: NaOH (pH 7.35). 0.5 gμ
CHMP2B plasmid (or control vector) was mixed with 2.5 g mCherry, GFP, or LC3-GFP plasmid, diluted into 250 l transfectionμ μ
medium, and combined with 1.5 l of Plus  Reagent and then 4 l Lipofectamine LTX (Invitrogen). The mixture was incubated for 25 minμ “ ” μ
at room temperature, then added to the dishes, which were left to incubate at 37 C for 1h. The transfection solution was removed and the°
conditioned medium was returned to the dishes. 20 60 neurones per coverslip were usually transfected.–

Fixation and immunostaining

The coverslips were rinsed in PBS and incubated for 8 min in PBS containing freshly prepared 4  p-formaldehyde and 4  sucrose at% %
room temperature (RT). After 3 4 washes in PBS, the cells were permeabilised by incubating in PBS containing 0.3  Triton X-100 for 10– %
min at RT. After washing, coverslips were pre-incubated in blocking solution (PBS containing 2  goat preimmune serum and 1  bovine% %
serum albumin (Sigma-Aldrich)) for 1 h, then in blocking solution containing 0.5 1 g/ml primary antibody (or antibody mixture) at RT.– μ
After washing, incubation with secondary antibody conjugated to Alexa488 or Alexa594 (Molecular Probes, 0.2 g/ml) and final washes,μ
coverslips were gently dried, and mounted on slides in Mowiol medium. The specificity of immunofluorescence was routinely verified by

staining control cultures that had been transfected with empty pcDNA vector (for anti-tag antibodies) or by omitting the primary antibody

in control incubations. The specificity of CHMP2B antibody was further confirmed by RNAi-mediated extinction of immunofluorescence.

Microscopy

Images of fluorescent neurones were acquired with a Leica SP-E laser scanning confocal microscope equipped with a 100  Leica×
Neofluar objective with NA 1.3. Laser power was adjusted to maximize the dynamic range of each sample. For dual-colour samples, the=
adjustable spectral window of fluorescence collection was set for each channel with a singly coloured control sample, so that

cross-contamination between channels was avoided. Stacks of 0.2 m-spaced optical sections were acquired (averaging over 4 scans perμ
pixel, 512  512 pixels) with the required electronic magnification. For spine analysis, any neuron showing signs of neuritic swellings or×
retraction was excluded. Dendritic segments located at approximately equivalent distances from the soma were selected, and each of those

was scanned at 1.5  electronic zoom.×

Image analysis

Image files were processed with Metamorph (Molecular Imaging). All figures show maximal intensity projections. For analysis of

spines, serial image files corresponding to z-stacks of 20 30 optical sections per dendritic segment were directly processed with–
Neuron-Studio, a software package specifically designed for spine detection and analysis ( ; )(Rodriguez et al., 2008 Rodriguez et al., 2006 

). Voxel size was 0.143  0.143  0.200 m. The fluorescence threshold for inclusion in objects washttp://www.mssm.edu/cnic/tools.html × × μ
dynamically set for each local sampling of the dendrite surface by the Isodata segmentation algorithm implemented in NeuronStudio. The

seed location for automatic dendrite tracing was typically set near the base of a major proximal dendrite. At bifurcation points, the attach

ratio was 1.5 and neurites shorter than 5 m were not retained. After modelling of the dendrite surface, protrusions with a minimumμ
volume of 5 voxels (0.020 m ), length comprised between 0.2 m and 3 m, and a maximal width of 3 m were retained as spines.μ 3 μ μ μ
Following defaults settings of the program and the empirical classification rule defined by ( ), spines with minimumRodriguez et al., 2008 

head diameter of 0.35 m and minimum head vs. neck ratio of 1.1 were classified as mushroom spines. Non-mushroom spines withμ
minimum volume of 10 voxels (0.040 m ) were classified as stubby spines. All other spines were considered thin. The typicalμ 3 

percentages of the three spine types which we obtained were close to those found by ( ). Measurements obtained byRodriguez et al., 2008 

NeuronStudio were transferred to a spreadsheet (Excel or Gnumeric) for analysis. Sholl analysis was also performed with NeuronStudio,

using single-plane, lower magnification views centred on the cell soma. For each neurone, a series of 2 m-spaced concentric circlesμ
centred on the soma were drawn as reference marks, starting with a circle just large enough to enclose the cell body. The total length of

neurites comprised within two consecutive circles was measured, and the measurement was repeated for increasingly large circle radii.

Stepwise increases in neuritic length were plotted as a function of radial distance from the soma.

Cell degeneration assay

Neurones were transfected with 0.5 g CHMP2B plasmid and 2.5 g mCherry as above. After fixation and mounting onto slides,μ μ
neurones were observed under an epifluorescence microscope (Zeiss Axiovert 200M) with a 63  objective (1.3 NA) and a rhodamine×
filter, and scored as dead or alive according to morphological criteria (see text). The actual presence of co-expressed CHMP2B was

verified by immunofluorescent staining with anti-tag antibody, using the GFP filter.

Electrophysiology

Spontaneous tetrodotoxin-resistant miniature excitatory postsynaptic currents (mEPSCs) were recorded by means of the whole-cell

configuration of the patch clamp method (Hamill et al 1981). The recording medium contained (in mM): 136 NaCl, 5 KCl, 2 CaCl , 12 

MgCl , 10 HEPES, 10 glucose, 0.0005 TTX, 0.025 D-APV, pH 7.4 (NaOH). Patch pipettes were made with the DMZ Universal Pipette2 
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puller (Zeitz Instruments, Germany) from thick wall borosilicate glass capillaries (1.5 mm o.d.  0.86 mm i.d) (Clark Electromedical×
Instruments, Phymep, France). Filled with a medium consisting of (in mM): 130 Cs-gluconate, 5 EGTA, 1 MgCl , HEPES, 4 Na -ATP,2 2 

pH 7.2 (CsOH), they had a resistance of 3 to 4 M . Glass coverslips were put on the stage of an upright Olympus microscope (BX51WI,Ω
Olympus, France) equipped with a water immersion objective lens ( 20, N.A. 0.95, Olympus, France). GFP-expressing cells were voltage×
clamped at a holding potential of 70 mV and the mEPSCs were recorded and then analyzed off-line by means of the pClamp software−
(Molecular Devices, Dipsi, France). Synaptic currents, filtered at 1 kHz, were sampled at 10 kHz on an Axoclamp 200B amplifier

(Molecular Devices, Dipsi, France). The experiments were conducted at room temperature (20 22 C).– °

Western immunoblotting

Neurones were plated in plating medium at a density of 24, 000 cells per cm onto 35 mm plastic dishes (Nunc) that had been2 

pre-coated with 50 g/ml poly-D-lysine, and grown as described for coverslips. Sister dishes were withdrawn at the indicated time pointsμ
and cells were lysed in lysis buffer containing 1  Triton-X100, 0.2  SDS, 10 mM NaF, 10 mM -glycerophosphate (pH 7.5) and% % β =
protease inhibitor mixture (Complete, Roche Molecular), and frozen. All lysates from a given culture were loaded on the same 10%
SDS-polyacrylamide gel (10 g total protein per lane) and analysed by electrophoresis and immunoblotting with anti-CHMP2B antibodyμ
and anti-actin antibody. Bands were revealed by chemiluminescence (Pierce Femto reagent). Luminographs were scanned (300 dpi, 8-bit

scale) and the resulting image files were analysed with Metamorph. Grey levels measured for CHMP2B bands were normalized to the

corresponding actin bands.

Statistical analysis

The statistical significance of overall variations within sets of conditions was determined by one-way ANOVA. The significance of

pair-wise differences between conditions was then assessed by post-hoc one-tailed t tests using the Bonferroni method. Unless indicated

otherwise, all the reported p values refer to the difference with the control condition. We verified that criteria for robust ANOVA were

satisfied; moreover Kruskal-Wallis analysis of mean rank variance yielded the same qualitative results as ANOVA. For analysis of

mEPSC frequency, the significance of the transfection effect was confirmed by two-way ANOVA on a balanced subset of mEPSCs,

separating the effect of plasmid identity from intrinsic neurone-to-neurone variation due to the variability of innervation in the culture. The

significance of differences between multiple frequency distributions was assessed with the test. A post-hoc test of pairwise differencesχ2 

used the Marascuilo procedure (NIST Handbook of statistics, ). For Sholl analysis, curves werehttp://www.itl.nist.gov/div898/handbook// 

compared by two-way ANOVA, separating the effect of plasmid identity from that of radial distance. Post-hoc comparisons between

curves were performed by the Bonferroni method. All calculations were performed with the statistics-oriented spreadsheet Gnumeric (

) or with OpenStat ( ). All error bars show S.E.M.http://projects.gnome.org/gnumeric/ http://statpages.org/miller/openstat/ 

Results
Expression of CHMP2B variants in hippocampal neurones

To study the neuronal effects of CHMP2B proteins, hippocampal neurones were transfected at 10 DIV with plasmids encoding

N-terminally tagged CHMP2B , CHMP2B , or CHMP2B ( ). Using immunofluorescent staining with anti-tag antibody,wt intron5 10 Δ Fig. 1 

expression of these plasmids could be reliably detected up to 5 days after transfection. The subcellular distribution of the mutant proteins

clearly differed from that of wild-type ( ; , left; , left). Wild-type CHMP2B was homogeneously distributed throughoutFig. 1B Fig. 2 Fig. 3 

the entire neuronal cytoplasm, including axons, dendrites and dendritic spines ( , arrows). By contrast, both CHMP2B andFig. 1B intron5 

CHMP2B formed varying numbers of small bright puncta, found in the soma and proximal dendrites. Larger aggregates were10 Δ

occasionally observed in the soma. To determine whether expression of CHMP2B mutants perturbed autophagy in our system, we

performed co-transfection experiments with LC3-GFP as an autophagosome marker. In a vast majority of neurones, expression of either

CHMP2B or CHMP2B failed to induce clustering of LC3-GFP ( ). In support of this, despite evaluation by two10 Δ intron5 Fig. 2, b2, c2 

independent investigators, we could not detect any autophagy-associated drop in the diffuse pool of LC3-GFP. Thus in the present setting,

pathogenic CHMP2B mutants did not significantly enhance autophagosome accumulation. Furthermore, to determine whether the mutant

CHMP2B puncta observed in transfected neurones were related to endosomes, transfected neurones were doubly stained with anti-tag

antibody, and antibodies raised against the early endosomal marker EEA-1 ( ) or the late endosomal/lysosomal proteinFig. 3, a2 c2 –
LAMP-1 ( ), respectively. No colocalisation was observed with these markers. These data suggest that the CHMP2BFig. 3, d2 f2 –
aggregates which form under our transfection conditions are not associated with endosomes.

To visualize the morphology of neurones that had been expressing mutant CHMP2B for several days, the cells were co-transfected

with CHMP2B constructs and a plasmid encoding fluorescent protein mCherry, allowing staining of the whole cytosol. Five days after

transfection, 75 80  of neurones co-transfected with empty vector, CHMP2B , or CHMP2B , and 55  of neurones co-transfected– % wt 10 Δ %
with CHMP2B were healthy as judged from the overall integrity of their neurites and the absence of neuritic swellings ( ).intron5 Fig. S1 

These percentages did not change much after 10 days, and were largely sufficient to allow meaningful analysis of dendritic arbors and

spines. Only healthy neurones were retained for further analysis. The effect of CHMP2B constructs on dendritic arborisation was
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determined by Sholl analysis of neuronal morphology. For this, we measured the rate of increase in total neuritic length as a function of

radial distance from the cell body ( ). CHMP2B and CHMP2B had no significant effect on arborisation. CHMP2BFig. S2 wt 10 Δ intron5 

induced a moderate (25 ) decrease in average branching rate, but not the large-scale retraction of dendrites that accompanies lethal%
perturbations of ESCRT-III ( ).Lee et al., 2007 

CHMP2B mutants affect dendritic spine density and morphology

The dendritic morphology of neurones co-transfected with mCherry and CHMP2B plasmids was examined in detail by 3D confocal

imaging of mCherry fluorescence. shows representative views of neurones transfected with the different CHMP2BFig. 4A(a d) –
constructs. Stacks of serial optical sections were produced for each neuron and the NeuronStudio software package (Rodriguez et al., 2008 

; ) was then used to generate three-dimensional reconstructions of dendritic arbors and spines, and to count, measureRodriguez et al., 2006 

and classify spines (see Materials and Methods). shows a reconstructed dendritic segment obtained from a typical control neurone,Fig. 4B 

and the results of automated identification of spine types. The volumes of the reconstructed spines followed a statistical distribution which

closely resembled that described in a recent study of hippocampal spine dynamics ( ) ( ). Furthermore, theYasumatsu et al., 2008 Fig. S3 

peak of our distribution (between 0.050 and 0.075 m ) was in the same range as published values (0.058 / 0.034 m ) previouslyμ 3 + − μ 3 

obtained by electron microscopy for the spines of hippocampal neurones in dissociated culture at 14 DIV ( ). TheBoyer et al., 1998 

distribution of spine lengths was also similar to previously published values ( ). These data indicate that analysis by NeuronStudioFig. 4G 

correctly detected the spine population in our cultured neurones.

The density of spines (pooling all spine types) detected by this technique was determined for each neurone ( ).Fig. 5A, B 

Over-expression of tagged, wild-type CHMP2B did not change the average density compared to control (cotransfection with empty

vector). By contrast, expression of CHMP2B raised the average density of spines by 64  compared to control ( , col.3).intron5 % Fig. 5A 

However, many of these additional spines were very small (see below). Neurones expressing the CHMP2B mutant also had a tendency10 Δ

to increase the density of their protrusions (average density 24  higher), but this trend did not reach significance ( , col. 4). To% Fig. 5A 

investigate the possible effect of CHMP2B mutants on spine dimensions, we determined the mean length of spines and the mean diameter

of spine heads for each neuron. None of the CHMP2B constructs modified spine length ( ). Wild-type CHMP2B did not changeFig. 5C,D 

spine head diameter either. By contrast, mutant proteins strongly affected spine diameter. Expression of CHMP2B induced a 40intron5 %

reduction in average spine diameter while CHMP2B reduced average diameter by 32  ( ). These changes in average spine10 Δ % Fig. 5E,F 

dimensions reflect the selective loss of large-headed spines. shows the normalised distributions of spine lengths and spine headFig. 5G,H 

diameters in neurones transfected with each of the four plasmids. Both mutants had a clear, comparable effect on the distribution of spine

diameters ( ). In control neurones, thin spines (diameter <0.2 m) predominated on top of a distinct population of larger spines,Fig. 5H μ
represented as a shoulder and tail in the distribution (interquartile range (IQR), 5.98 m). This subset of larger spines was still present inμ
neurones transfected with CHMP2B (IQR, 6.00 m), but strongly reduced following transfection with either CHMP2B (IQR, 2.89 wt μ intron5 μ

m) or CHMP2B (IQR, 3.12 m). As spines with similar head width may differ in their neck, with important consequences for their10 Δ μ
physiology ( ), we determined how CHMP2B mutants affected the basic morphological categories of spines. Noguchi et al., 2005 Fig. 5I 

shows that neurones expressing either mutant had an abnormally low fraction of mushroom spines, identified by their head vs. neck width

ratio. The fraction of spines with mushroom morphology was decreased by ~50  with both CHMP2B and CHMP2B , as they% intron5 10 Δ

were replaced by an enlarged proportion of thin spines. Stubby spines were also reduced, but to a smaller extent, by expression of

CHMP2B . The average diameter of spines in the mushroom spine subset (0.56 m) did not significantly change in cells transfectedintron5 μ
with the mutants, confirming the consistency of morphotype identification. Taken together, these data indicate that expression of a mutant

ESCRT-III subunit linked to a human neurodegenerative disease can strongly affect the density and morphology of dendritic spines, and

disrupt the normal pattern of spine development.

A CHMP2B mutant affects miniature excitatory synaptic currents

To determine whether the effects of mutant CHMP2B on spine morphology correlated with functional changes at synapses, we

recorded excitatory synaptic currents from cultured hippocampal neurones that had been co-transfected with GFP together with empty

vector, or with vectors encoding wild-type CHMP2B or CHMP2B . Transfected cells were identified by GFP fluorescence. We10 Δ

monitored the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) as an indicator of possible effects of

plasmids on synaptic strength. In total, 16 out of 18 transfected neurones were synaptically active; the two inactive neurones were

discarded from analysis. Sample traces representative of each transfection condition are shown in . A sequence of 128 consecutiveFig. 6A 

mEPSCs was randomly picked from each recording, and the sequences were pooled according to the transfected plasmid. Mean inter-event

intervals were calculated for each pool. Intervals were significantly longer between mEPSCs observed in neurones expressing CHMP2BΔ

than in controls ( ). Thus, the mean frequency of mEPSCs was lower in CHMP2B expressing cells than in control cells (1.4710 Fig. 6B 10 Δ –
vs. 1.94 Hz), indicating a decrease in synaptic activity ( ). The mean amplitude was slightly lower in mEPSCs of cells transfectedFig. 6B 

with CHMP2B than in those of control- or CHMP2B -transfected neurones (12.6 vs. 13.6 pA) ( ). However, cumulative10 Δ wt Fig. 6C 

amplitude histograms indicated that CHMP2B caused a significant reduction in the frequency of large amplitude events, i.e. those10 Δ
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belonging to the top quintile ( ). mEPSCs with amplitude larger than 20 pA (approximately twice the median amplitude), whichFig. 6D 

represent up to 19  of mEPSCs in control neurones, were reduced by a third in neurones expressing CHMP2B . Conversely, in these% 10 Δ

latter cells the proportion of small amplitude events (<5pA) raised from 6.8  to 10  ( ). The drop in the frequency of large% % Fig. 6E 

currents was not observed in neurones that overexpressed CHMP2B . In view of the known correlation between spine head size andwt 

amplitude of AMPA receptor-mediated synaptic currents ( ), these data are consistent with the morphologicallyMatsuzaki et al., 2001 

observed reduction in mushroom spines. Mutant CHMP2B may cause a reduction in the proportion of the more potent synapses, and an

increase in the proportion of weak synapses.

Endogenous CHMP2B is required for maturation of dendritic spines

As dysregulated CHMP2B mutants affect spine morphogenesis, the question arises whether the endogenous normal protein plays some

role in this process. Endogenous CHMP2B was clearly detectable in extracts from cultured neurones at 8 DIV, and increased in older

cultures, in which synaptogenesis and spine maturation are known to take place ( ). Immunofluorescent staining of the neurones withFig. 7 

the anti-CHMP2B antibody showed the protein to be widely distributed throughout soma, axons and dendrites, similar to data obtained

with the tagged wild-type protein ( ). To disrupt endogenous CHMP2B expression, we transfected cultured hippocampal neurones atFig. 8 

10 DIV with a pSuper-based plasmid vector encoding a previously described CHMP2B-specific shRNA ( ). The efficiencyLee et al., 2007 

of RNAi was ascertained by Western blotting of transfected BHK cells ( ). Transfected neurones could be tracked and outlined byFig. 8A 

mCherry, co-expressed from the same plasmid. Immunofluorescent staining with anti-CHMP2B antibody confirmed the efficient

down-regulation of endogenous CHMP2B expression in transfected neurones ( , middle panel). In agreement with published resultsFig. 8B 

( ), the CHMP2B shRNA did not affect neuronal viability. To verify the target specificity of RNAi, control experimentsLee et al., 2007 

were performed in which CHMP2B shRNA was co-expressed with an RNAi-resistant CHMP2B mRNA (called CHMP2B ) ( ,* Fig. 8B 

lower panel). Confocal imaging of mCherry and spine analysis were performed as in the case of mutant CHMP2B ( , ).Fig. 8C Fig. 9 

Depletion of endogenous CHMP2B increased the average density of spines, and the increase was fully reversed upon rescue by

CHMP2B  ( ). CHMP2B depletion did not significantly affect the length of spines ( ). In contrast, a highly significant* Fig. 9A,B Fig. 9C, D 

reduction in mean spine diameter per neurone was observed in shRNA-transfected cells compared to controls; this was rescued to a

near-normal value upon co-expression of CHMP2B  ( ). Similar to the case of neurones transfected with mutant CHMP2B, the* Fig. 9E,F 

size distribution of spine heads showed a loss of the large spine subset; this loss was largely reversed by rescue with RNAi-resistant

CHMP2B ( ). Spine classification revealed a two-fold drop in the average proportion of mushroom spines, from 17  in controlFig. 9G %
neurones to 9  in shRNA-transfected cells ( ). This effect is equivalent to that observed upon expression of mutant CHMP2B.% Fig. 9H 

Upon co-expression of CHMP2B , the average proportion of mushroom spines could be rescued to 13 , at which level the difference with* %
control neurones was no longer significant ( ). This demonstrates the specificity of CHMP2B shRNA effects. Taken together, theseFig. 9H 

results indicate that CHMP2B is required for spine head expansion, a basic structural aspect of synaptic plasticity. Furthermore, the data

suggest that human disease- linked CHMP2B mutants act as dominant negatives with respect to CHMP2B function in spine

morphogenesis.

To determine whether mutant CHMP2B could perturb the subcellular distribution of the normal endogenous protein, neurones

transfected with tagged CHMP2B or CHMP2B were immunostained with both anti-CHMP2B and anti-tag antibodies ( ).intron5 10 Δ Fig. 10 

For this, we took advantage of the fact that the anti-CHMP2B antibody was raised against the wild-type C-terminal region, and therefore

does not recognise the mutant proteins. The larger CHMP2B aggregates recruited conspicuous amounts of the endogenous protein,intron5 

inducing it to form abnormal clusters (upper panel, arrow). Faint clusters of CHMP2B also occasionally overlapped with CHMP2B 10 Δ

puncta (lower panel). However, the major, diffuse pool of endogenous CHMP2B remained unaffected. These results suggest that a fraction

of native CHMP2B molecules may be perturbed in their biochemical function by interaction with mutant protein.

Discussion

Here we found that in cultured hippocampal neurones, two FTD-linked CHMP2B mutants strongly perturbed the normal pattern of

dendritic spine development. Both mutants caused a striking decrease in the proportion of large spines with mushroom morphology, i.e.

those associated with potentiated synapses. This outcome was not associated with cell death. In keeping with these results, CHMP2B 10 Δ

induced a loss of large mEPSCs, namely those reflecting the activity of the strongest synapses. Consistent with the view that CHMP2B

mutants act as dominant negatives, depletion of endogenous CHMP2B by RNAi resulted in changes which were very similar to those

induced by mutant CHMP2B, and which could be largely suppressed by co-expression of rescuing protein. Together, these data show that

normal spine morphogenesis requires CHMP2B, and that abnormal stoichiometry or pathological dysregulation of the protein can deeply

affect the structure and function of spines.

Overexpression of CHMP2B in neurones has previously been shown to trigger a specific toxic process, leading to dramaticintron5 

retraction of dendritic trees, followed by cell death after 2 3 days; this lethality has been linked to excessive accumulation of–
autophagosomes ( ; ). However, several lines of evidence indicate that the impairment in spineLee et al., 2007 Lee and Gao, 2009 



CHMP2B and dendritic spines

J Cell Sci . Author manuscript

Page /7 18

maturation described here occurs through a mechanism distinct from this toxic process. First, the changes in spine morphology were

observed in healthy neurones. In particular, expression of CHMP2B or knock-down of endogenous CHMP2B potently affected spines,10 Δ

even though these perturbations of CHMP2B activity did not diminish neuronal viability, as expected from published data. Second,

alterations of spines did not correlate with changes in dendritic complexity. CHMP2B elicited no detectable loss of dendritic branching,10 Δ

and in our conditions CHMP2B only induced a 25  decrease in branching rate. This reduction remained modest compared with theintron5 %
80  shortening of total dendritic length shown to occur in the early phase of CHMP2B -induced cell death ( ). The% intron5 Lee et al., 2007 

CHMP2B shRNA caused a reduction in dendritic branching, but this may have been an off-target effect, as unlike the reduction in

mushroom spines it was not suppressed by co-expression of an RNAi-insensitive CHMP2B cDNA (A. Belly et al, data not shown). Third,

when expressed in hippocampal neurones, neither of the CHMP2B mutants caused a clear-cut increase in LC3-GFP condensation onto

autophagosomes. By contrast, a lethal degree of CHMP2B overexpression has been shown to induce strong clustering of LC3-GFP;intron5 

furthermore, preventing autophagosome formation retarded the neuronal death due to CHMP2B ( ; intron5 Lee et al., 2007 Lee and Gao, 2009 

). Beyond some threshold level of expression, the ability of CHMP2B mutants to block the ESCRT-dependent fusion of autophagosomes

to lysosomes ( ; ) may favour the proliferation of toxic autophagosomes. The difference withFilimonenko et al., 2007 Urwin et al., 2010 

our results may arise in part from the relatively low level of mutant CHMP2B expression we used in hippocampal neurones. Indeed, with

four-fold higher amounts of CHMP2B plasmid, leading to higher expression, we observed toxicity similar to that described by intron5 Lee et

(although comparison is difficult, as ) did not mention the amounts of plasmid in their transfection assays). Theal. (2007) Lee et al. (2007 

non-endosomal location of mutant CHMP2B proteins in our experiments also seem at first sight to be at variance with previously

published results from other cell types. However, HA-tagged CHMP2B did accumulate around endosomes when overexpressed inintron5 

BHK cells (A. Belly, unpublished data). It should also be noted that even in heterologous cells, a fraction of CHMP2B and CHMP2Bintron5 

aggregates consistently fail to co-localise with endosomal markers ( ; A.B., unpublished). In transfected10 Δ Skibinski et al., 2005 

hippocampal neurones, presumably similar non-endosomal aggregates largely predominated. The occurrence of non-endosomal CHMP2B

clusters is also consistent with the fact that in vitro, activated ESCRT-III subunits can form large polymers in the absence of lipids (Lata et

). Our attempts to identify further components of the mutant CHMP2B clusters have so far been unsuccessful, except for theal., 2008 

finding that endogenous CHMP2B is sometimes concentrated in CHMP2B granules. This suggests that native CHMP2B can beintron5 

trapped in polymeric structures together with the mutant. Since much of the endogenous CHMP2B appeared to remain outside of the

mutant CHMP2B puncta, sequestering of the native protein in the aggregates is unlikely to explain the apparent dominant negative effect

of the mutants, especially in the case of CHMP2B . Mutant molecules may instead perturb or displace their native counterparts in10 Δ

supramolecular structures that cannot be detected by simple light microscopy.

The mechanism(s) through which mutant CHMP2B proteins and CHMP2B depletion affect the morphology of spines will require

elucidation. Given the endosomal trafficking function of ESCRT-III, one possibility is that disabling CHMP2B may interfere with the

endocytic recycling of some membrane protein critical for spine growth. Examples of such proteins include the EphB and TrkB receptor

tyrosine kinases and the GluR2 subunit of AMPA receptors ( ; ). Of note, perturbation of aHenkemeyer et al., 2003 Passafaro et al., 2003 

neurotrophin receptor such as TrkB would have implications for both spine morphogenesis and long-term survival of specific neurones.

Alternatively, spine growth may require direct deformation of the dendritic plasma membrane by CHMP2B-containing ESCRT-III

filaments ( ; ), or coupling of the actin cytoskeleton to ESCRT-III ( ; Hanson et al., 2008 Sweeney et al., 2006 Sevrioukov et al., 2005 

). Identification of CHMP2B-binding dendritic proteins and observation of ESCRT-III dynamics in live neurones mayVaccari et al., 2009 

shed light on these possibilities.

Looking for a functional correlate of the CHMP2B effect, we found that this mutant significantly decreased the frequency of10 Δ

mEPSCs. This result indicates that CHMP2B elicits a decrease in synaptic activity. Moreover, the mutant induced a significant drop (3210 Δ

) in the proportion of large mEPSCs. The two observations are in keeping with the loss of mature post-synaptic spines. In view of the%
general correlation between spine size and synaptic potency ( ), the change in synaptic properties is consonant withMatsuzaki et al., 2001 

the reduction in the proportion of mushroom spines induced by CHMP2B . This result raises the intriguing possibility that pathogenic10 Δ

CHMP2B mutants might directly prevent synaptic potentiation and/or weaken previously strong synapses and thereby perturb the

functional connectivity of neurones. Further experiments are required to determine the role of CHMP2B and the impact of CHMP2B

mutants on activity-dependent changes of spine structure, such as the enlargement associated with long-term potentiation.

While lethal perturbation of autophagy may explain the loss of cortical neurones at the symptomatic stage of FTD-3 (Lee and Gao,

; ), the protracted course of the disease, the lack of toxicity displayed by disease-linked mutants such as CHMP2B2009 Urwin et al., 2010 

, and the low level of mutant CHMP2B mRNA in patients  brain lead one to argue that CHMP2B mutants may initially have10 Δ ’
pathogenic effects other than dysfunctional autophagy leading to cell death. Our results suggest that in FTD-3 as in Alzheimer s disease,’
the pathogenic proteins may perturb synaptic plasticity and microstructure, long before overt cell death. A synaptotoxic mechanism would

be consistent with observations of synapse loss in FTD ( ; ) and the widespread abnormalities in spineFerrer, 1999 Lipton et al., 2001 
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density and morphology seen in diverse neurodegenerative diseases ( ; ). Understanding how defectsFiala et al., 2002 Wishart et al., 2006 

in the highly conserved CHMP2B protein specifically lead to cortical degeneration may shed light on fundamental mechanisms of normal

and pathological neurobiology.
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Fig. 1
A: primary structure of CHMP2B constructs used in this study. The ESCRT-III domain is the conserved sequence domain common to all

members of the Charged Multivesicular body Proteins (CHMP 1 7) superfamily. Positively (blue) and negatively (red) charged alpha helices–
(1 to 5) are located along the sequence according to the 3D structure of the closely related CHMP3 protein ( ). MIM: MITMuziol et al., 2006 

(Microtubule Interacting and Transport domain) Interacting Module, required for binding to the SKD1/Vps4 ATPase responsible for

dissociation of CHMP polymers. V: a single valine residue replaces the normal C terminus in CHMP2B . The green line in CHMPintron5 10 ⊗

indicates the aberrant C terminus carried by this mutant. Ellipses indicate tags fused to the N terminus (2 9 and 1 10 residues respectively).× ×
Sequence lengths are those of the untagged proteins. B: subcellular distribution of tagged CHMP2B proteins. Neurones were transfected with

the indicated plasmids, processed for immunofluorescence staining with anti-tag antibody, and imaged by confocal microscopy. Two

representative cells are shown for each plasmid. Top: CHMP2B diffuses throughout the entire neuron, including the heads of dendriticwt 

spines (arrows). Middle: CHMP2B forms multiple small clusters in the soma and dendrites, and occasional larger aggregates. Bottom:intron5 

CHMP2B has a clustered distribution similar to that of CHMP2B .10 Δ intron5 
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Fig. 2
lack of LC3-GFP clustering in neurones expressing mutant CHMP2B. Neurones were co-transfected at 10 DIV with the indicated CHMP2B

plasmids (left), together with the autophagosomal marker LC3-GFP. The cells were fixed 5 days later and processed for immunofluorescence

staining with anti-tag antibody and Alexa594-coupled secondary antibody. Confocal images were acquired in both the immunofluorescence

and GFP channels. Diffuse LC3-GFP localisation predominated upon cotransfection with CHMP2B (a1,a2), CHMP2B (c1,c2) and in awt 10 Δ

large majority of cases with CHMP2B (b1,b2). Autophagosome accumulation was seen in rare cells transfected with CHMP2B (b3,intron5 intron5 

b4, arrow). Arrowhead: no autophagosomes were detected in the dendrites. Scale bars: 10 m.μ
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Fig. 3
non-endosomal localisation of exogenously expressed CHMP2B proteins in hippocampal neurones. The neurones were doubly stained with

monoclonal anti-tag antibody (a1  f1) together with polyclonal antibody against the respective marker (a2-f2), as indicated.–
Immunofluorescence was recorded by dual-channel confocal microscopy. Arrows indicate CHMP2B puncta. Note that they do not coincide

with EEA1 (a2 c2) or LAMP1 (d2 f2) puncta. Scale bar: 10 m.– – μ
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Fig. 4
detection and classification of dendritic spines in transfected hippocampal neurones. A: neurones were co-transfected with the indicated

constructs, together with mCherry, fixed 5 days later, and images of mCherry fluorescence were acquired by confocal microscopy. The figure

shows maximal intensity projections of confocal image stacks. Control: empty pcDNA3 vector. The boxed regions in a d (scale bar: 10 m)– μ
were scanned at higher magnification in a1 d1 (scale bar: 5 m). B: stacks of optical slices acquired in A served to generate 3D models of the– μ
dendrite, using the surface-defining Ray Burst algorithm implemented in NeuronStudio ( ). The dimensions of theRodriguez et al., 2006 

modelled structures were automatically measured as described by ( ), and used to identify and classify spines. Left:Rodriguez et al., 2006 

surface rendering of a segment from the dendrite shown in b1. Middle: maximal intensity projection of optical sections from the same

segment. Right: automated spine detection and classification. Appropriately coloured dots are superimposed onto the spines. Yellow (t): thin

spines; red(m): mushroom spines; blue (s): stubby spines.
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Fig. 5
effects of FTD-linked CHMP2B mutants on the density and dimensions of spines. All parameters were measured on the same sets of neurones

(pooled from 3 independent cultures). Ctrl: control plasmid (n 31 neurones); wt: tagged wild-type CHMP2B (n 33 neurones); i5: CHMP2B= =

(n 34 neurones); 10: CHMP2B (n 44 neurones). Measurements were obtained from 700 1500 m dendrite and 600 1200 spinesintron5 = Δ 10 Δ = – μ –
per neurone. A: mean spine counts per m dendrite in neurones co-transfected with mCherry and the indicated plasmids. CHMP2Bμ intron5 

increases the total density of spines ( p  0.0005). The increase caused by CHMP2B remains non-significant (ns) with p 0.09. B:* = 10 Δ =
cumulative frequency histogram of spine densities per neurone, corresponding to the dataset in A. C: mean length of spines per neurone. No

significant difference was observed between conditions. D: cumulative frequency histogram of mean spine length per neuron, corresponding

to dataset in C. E: Mean diameter of spine heads per neurone. Both mutants cause an overall shrinkage of spine heads ( p 0.0005 for both* =
mutants). F: cumulative frequency histogram of mean spine head diameters per neuron, corresponding to the dataset in E. G: normalized

distribution of spine lengths per neuron. Spine length histograms obtained for each neuron (0.1 m-wide bins) were normalized to 100 totalμ
counts. The distribution shows the mean normalized values of each bin, for the respective neurone group. Error bars: S.E.M. for each bin. H:

normalized distribution of spine head diameters per neurone. Spine diameter histograms obtained from each neuron were normalized and

averaged as in F. Note the coincidence of the control and wild-type distributions, and that of the two mutant distributions. effects ofI: 

FTD-linked CHMP2B mutants on the morphological type of spines. Histogram shows the mean percentages per neurone of spines with

mushroom-like, stubby and thin morphologies. Both mutants potently reduce the mushroom spine fraction ( p<0.000001 for both mutants).*

CHMP2B also reduces the fraction of stubby spines ( p 0.005) but CHMP2B does not (p 0.09). Conversely, both mutants increaseintron5 * = 10 Δ =
the thin spine fraction ( p 0.0001 for both mutants).* =
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Fig. 6
electrophysiological effects of wild-type and mutant CHMP2B. Miniature excitatory currents were recorded from transfected neurones under

voltage clamp in the whole-cell configuration, in the presence of tetrodotoxin and D-APV to isolate AMPA receptor-mediated spontaneous

synaptic currents (control: n 4 cells; CHMP2B : n 6 cells; CHMP2B : n 6 cells). A: representative sample traces from neurones= wt = 10 Δ =

co-transfected with GFP and control plasmid (top), CHMP2B (middle), and CHMP2B (bottom). B: mean duration of inter-event intervalswt 10 Δ

along sequences of mEPSCs pooled from equivalently transfected neurones (control: n 516 events; CHMP2B : n 768 events; CHMP2B := wt = 10 Δ

n 768 events). Compared to control, intervals were significantly longer in mEPSCs from CHMP2B -expressing neurones ( p 0.00001),= 10 Δ * =
but not from CHMP2B neurones (p 0.05, alpha 0.017). C: mean amplitude of mEPSCs from the different transfection groups. The overallwt = =
variation of mean amplitude as a function of transfected plasmid was significant (ANOVA: F  3.04, p 0.048); the specific difference2,2049 = =

between the means of CHMP2B and control was barely below threshold ( p 0.026 with Bonferroni-corrected alpha 0.025). D: cumulative10 Δ * = =

histogram of mEPSC amplitudes; same dataset as in C.  indicates significant reduction in the top quintile in the case of CHMP2B (see text* 10 Δ

and panel E). F: histogram of mEPSC amplitudes showing the specific reduction in the proportion of large currents (>20 pA) and the increase

in small currents. S, i < 5pA; M, 5 <  i < 20 pA; L, i>20 pA. The two dashed lines refer to the respective proportions of large and small= =

currents in the control neurones. The proportion of large currents was lower in neurones transfected with CHMP2B ( p<0.05).10 Δ *
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Fig. 7
endogenous CHMP2B increases during neuronal maturation in culture. Sister cultures of hippocampal neurones maintained in plastic dishes

were lysed at the indicated timepoints. The lysates were analysed by SDS-polyacrylamide gel electrophoresis and Western immunoblotting

with anti-CHMP2B antibody. The blots were reprobed with anti-actin antibody to normalize for loading error. A: representative blot. Leftmost

lane: rat brain lysate, showing the pattern of CHMP2B in vivo. B: films were scanned and the optical density of the CHMP2B band was

measured in grey levels for each lane. Band intensities were normalized by dividing each value by the intensity of the actin band in the same

lane. Care was taken to obtain immunodetection in the linear range. The graph shows mean normalized intensities at 3 timepoints (n 3=
cultures). Error bar: S.E.M.



CHMP2B and dendritic spines

J Cell Sci . Author manuscript

Page /16 18

Fig. 8
knock-down of endogenous CHMP2B in hippocampal neurones. A: to verify the efficacy of the shRNA-encoding plasmid, the indicated

plasmids were transfected in rodent (BHK) cells and equal protein amounts of transfected cell lysates were analysed by Western

immunoblotting with anti-CHMP2B antibody, or with anti-actin as a control. Lane 1: empty pSuper-mCherry plasmid; lane 2:

shRNA-expressing plasmid; lane 3: shRNA-expressing plasmid cotransfected with vector encoding CHMP2B  (native CHMP2B cDNA with*
silent mutations at the siRNA target site). Note that the CHMP2B protein remaining after transfection of the shRNA plasmid largely

originates from non-transfected cells in the culture. B: neurones were transfected at 10 DIV with the plasmids indicated on the left, fixed at 15

DIV, and stained with anti-CHMP2B antibody and Alexa488-labelled secondary antibody. Confocal images were acquired in both the

Alexa488 and mCherry channels. Representative images of transfected neurones are displayed. Control: empty pSuper-mCherry vector. Note

the drop in immunofluorescence in the shRNA-expressing neuron (arrow), compared to surrounding cells; and the decreased green vs. red

ratio (overlay), compared to control or rescued cells. Scale bar: 10 m. C: maximal intensity projections of image stacks, showingμ
representative dendritic segments visualized by mCherry fluorescence in neurones transfected with the indicated plasmids.
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Fig. 9
effects of CHMP2B depletion on the density and morphology of dendritic spines. All parameters were measured as in and . Ctrl: nFigs. 3 4 =
42 cells; shRNA: n 48 cells; shRNA together with rescuing CHMP2B: n 25 cells. A: the mean density of spines varied as a function of= =
CHMP2B depletion (ANOVA: F  3.80, p  0.025) although pairwise differences with control remained below significance ( p 0.021 vs.2,112 = = * =

rescued cells). B: cumulative frequency histogram of spine densities per neurone (normalized in percent), same data as in A. C: CHMP2B

depletion had no effect on the mean spine length per neuron. D: cumulative frequency histogram of spine lengths. E: mean spine head

diameter per neurone. The CHMP2B shRNA induces a highly significant decrease ( p<0.001) which is rescued by re-expression of CHMP2B*
(ns, p 0.19). F: cumulative frequency histogram of spine head diameters. G: normalized distribution of spine head diameters. Note the=
superposition of control  and rescued  curves, and the recovery of larger spines in the rescued  profile. H: proportions of basic spine types.“ ” “ ” “ ”
The CHMP2B shRNA potently decreases the mushroom spine fraction ( p<0.001) and the effect is suppressed in the rescued cells (ns, p* =
0.028, corrected alpha  0.017).=
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Fig. 10
effect of mutant CHMP2B on the subcellular distribution of the normal protein. Hippocampal neurones were transfected with the indicated

mutant, and processed for dual immunofluorescent staining with anti-tag and anti-endogenous CHMP2B antibodies. Confocal images were

acquired in both channels. Co-clustering of endogenous CHMP2B with mutant protein (arrows) was evident in some of the CHMP2Bintron5 

aggregates (upper panel), and faintly discernible in some of the CHMP2B puncta (lower panel). Scale bars: 10 m.10 Δ μ


