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Abstract: The purpose of this work is simulation of magnetised plasmas in the
ITER project framework. In this context, Vlasov-Poisson like models are used
to simulate core turbulence in the tokamak in a toroidal geometry. This leads
to heavy simulation because a 6D dimensional problem has to be solved, 3D
in space and 3D in velocity. The model is reduced to a 5D gyrokinetic model,
taking advantage of the particular motion of particles due to the presence of a
strong magnetic field. However, accurate schemes, parallel algorithms need to be
designed to bear these simulations. This paper describes a Hermite formulation
of the conservative PSM scheme which is very generic and allows to implement
different semi-Lagrangian schemes. We also test and propose numerical limiters
which should improve the robustness of the simulations by diminishing spurious
oscillations. We only consider here the 4D drift-kinetic model which is the back-
bone of the 5D gyrokinetic models and relevant to build a robust and accurate
numerical method.
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Test of some numerical limiters for the
conservative PSM scheme for 4D Drift-Kinetic

simulations.

Résumé : Ce travail concerne la simulation de plasmas magnétisés dans le
cadre du projet ITER. Pour cette application, des modèles de type Vlasov-
Poisson sont utilisés pour simuler la turbulence à coeur dans un tokamak,
en géométrie toroidale. Ces études mènent à résoudre des problèmes dans
un espace à 6 dimensions, 3D en espace 3D en vitesse, qui sont très lourds
à simuler en terme de ressources informatiques. Le modèle est réduit à un
modèle gyrocinétique 5D en exploitant les caractéristiques de ce plasma, dont
le mouvement des particules est fortement influencé par la présence d’un champ
magnétique intense. Cependant, il est nécessaire de mettre au point des schémas
précis et des algorithmes parallèles pour mener ces simulations. Ce rapport
décrit une formulation de type Hermite du schéma conservatif PSM qui est
très générique et qui permet d’implémenter différent schémas semi-Lagrangiens.
Nous testons et proposons également des limiteurs numériques de pente qui
doivent accrôıtre la robustesse des simulations en réduisant les oscillations d’origine
numérique. Dans ce travail, nous l’utilisons pour résoudre le modèle drift-kinetic
4D, qui est le squelette du modèle gyrocinétique 5D. Ce modèle 4D est suffisam-
ment pertinent pour la conception d’une méthode numérique robuste et précise
pour le modèle 5D

Mots-clés : simulation numérique, schéma conservatif, ITER, turbulence
plasma
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4 Guterl et al

1 Introduction

The ITER device is a tokamak designed to study controlled thermonuclear fu-
sion. Roughly speaking, it is a toroidal vessel containing a magnetized plasma
where fusion reactions occur. The plasma is kept out of the vessel walls by a
magnetic field which lines have a specific helicoidal geometry. However, turbu-
lence develops in the plasma and leads to thermal transport which decreases the
confinement efficiency and thus needs a careful study. Plasma is constituted of
ions and electrons, which motion is induced by the magnetic field. The charac-
teristic mean free path is high, even compared with the vessel size, therefore a
kinetic description of particles is required, see Dimits [6]. Then a full 6D Vlasov-
Poisson model should be used for both ions and electrons to properly describe
the plasma evolution. However, the plasma flow in presence of a strong mag-
netic field has characteristics that allow some physical assumptions to reduce
the model. First, the Larmor radius, i.e. the radius of the cyclotronic motion of
particles around magnetic field lines, can be considered as small compared with
the tokamak size and the gyration frequency very fast compared to the plasma
frequency. Thus this motion can be averaged (gyro-average) becoming the so-
called guiding center motion. As a consequence, 6D Vlasov-Poisson model is
reduced to a 5D gyrokinetic model by averaging equations in such a way the 6D
toroidal coordinate system (r, θ, φ, vr , vθ, vφ) becomes a 5D coordinate system
(r, θ, φ, v‖, µ), with v‖ the parallel to the field lines component of the velocity
and µ = m v2⊥/2B the adiabatic invariant which depends on the norm of the
perpendicular to the field lines components of the velocity v2⊥, on the magnetic
field magnitude B and on the particles mass m. Moreover, the magnetic field is
assumed to be steady and the mass of electrons me is very small compared to
the mass of ions mi. Thus the cyclotron frequency ωi,e = qi,e B/mi,e is assumed
to be much higher for electrons than for ions ωe >> ωi. Therefore the electrons
are assumed to be at Boltzmann equilibrium, i.e. the effect of the electrons
cyclotronic motion is neglected. The 5D gyrokinetic model then reduces to a
Vlasov like equation for ions guiding center motion:

∂f̄µ
∂t

+
dX

dt
· ∇X f̄µ +

dv‖

dt
∂v‖ f̄µ = 0 (1)

where f̄µ(X, v‖) is the ion distribution function with X = (r, θ, φ), velocities
dX/dt and dv‖/dt define the guiding center trajectories.
If ∇(X,v‖) · (dX/dt, dv‖/dt)

t = 0, then the model is termed as conservative.
This equation for ions is coupled with a quasi-neutrality equation for the electric
potential Φ(R) on real particles position, with R = X−ρL (with ρL the Larmor
radius) :

−
1

Bωi
∇⊥ · (n0∇⊥Φ) +

e

κTe
(Φ− < Φ >φ) =

∫
f̄µdµdv‖ − n0 (2)

where n0 is the equilibrium electronic density, Te the electronic temperature,
e the electronic charge, κ the Boltzmann constant for electrons and ωi the cy-
clotronic frequency for ions.

These equations are of a simple form, but they have to be solved very ef-
ficiently because of the 5D space and the large characteristic time scales con-
sidered. However, the adiabatic invariant µ acts as a parameter, thus it could

INRIA
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easily be parallelized. Moreover, we can see that for each µ, we have to solve
a 4D advection equation, as accurately as possible but also taking special care
on mass and energy conservation, especially in this context of large character-
istic time scales. The maximum principle that exists at the continuous level
for the Vlasov equation should also be carefully studied at discrete level be-
cause there is no physical dissipation process in this model that might dissipate
over/undershoots of the scheme. These studies will be achieved first on a rele-
vant reduced model, the 4D drift-kinetic model which corresponds to (1) with
µ = 0 instead a range of µ values (theoretically R

+).This work follows those
of Grandgirard et al in the GYSELA code, see [8] and [9]. The geometrical
assumptions of this model for ion plasma turbulence are a cylindrical geometry
with coordinates (r, θ, z, v‖) and a constant magnetic field B = Bz ez, where ez
is the unit vector in z direction. In this collisionless plasma, the trajectories are
governed by the guiding center (GC) trajectories:

dr

dt
= vGCr ; r

dθ

dt
= vGCθ

;
dz

dt
= v‖;

dv‖

dt
=

qi
mi

Ez (3)

with vGC = (E ×B)/B2 and E = −∇Φ with Φ the electric potential.
The Vlasov equation governing this system, with the ion distribution function
f(r, θ, z, v‖, t), is the following:

∂tf + vGCr∂rf + vGCθ
∂θf + v‖∂zf +

qi
mi

Ez∂v‖f = 0. (4)

This equation is coupled with a quasi-neutrality equation for the electric po-
tential Φ(r, θ, z) that reads the same as for the 5D gyrokinetic model (2) with
µ = 0.

Let us notice that the 4D velocity field a = (vGCr , vGCθ
, v‖, q/mi Ez)

t is
divergence free:

∇ · a =
1

r
∂r(r vGCr) +

1

r
∂θ(vGCθ

) + ∂zv‖ + ∂v‖(qi/mi Ez) = 0 (5)

because of variable independence ∂v‖Ez = ∂v‖(∂zΦ(r, θ, z)) = 0 and ∂zv‖ = 0.

Moreover we have vGC = (E ×B)/B2, with E = −∇Φ and B = Bz ez, thus:

vGCr =
1

Bz

(

−
1

r
∂θΦ

)

and vGCθ
=

1

Bz
(∂rΦ) (6)

and

∇rθ · a =
1

r
∂r(r vGCr) +

1

r
∂θ(vGCθ

) =
1

r Bz
(∂r (r (−1/r)∂θΦ) + ∂θ (∂rΦ)) = 0.

(7)
Therefore, one can write an equivalent conservative equation to the preceding
Vlasov equation (4):

∂tf + ∂r(vGCr f) + ∂θ(vGCθ
f) + ∂z(v‖ f) + ∂v‖

(
qi
mi

Ez f

)

= 0. (8)

This conservative system will be discretized using a conservative semi - La-
grangian scheme. Following [1] and [16], we consider two conservative schemes,
which are fourth order in space:
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6 Guterl et al

• LAG: LAGrange polynom method, which uses Lagrangian polynoms to
reconstruct the distribution function.

• PSM: Parabolic Splines Method, which uses cubic splines to reconstruct
the distribution function.

These schemes are designed to solve conservative models and they allow a di-
rectional splitting of the Vlasov equation (8). This equation will be solved by
using D (dimensions of space) 1D conservative steps, discretized by using the
1D schemes (LAG or PSM). At the continuous level, each 1D step has no max-
imum principle, it is only the solution after all D directional steps, the solution
of the Vlasov equation, that should satisfy a maximum principle [1]. However,
high order schemes may create spurious oscillations leading to break this max-
imum principle. A flux limiting procedure may improve the discrete solution,
which may be closer to the maximum principle in the sense of showing less
spurious oscillations. The limiter does not ensure a maximum principle in 1D,
but should decrease the oscillations amplitude created by the scheme by locally
adding numerical diffusion. That leads us to investigate and compare in details
the properties of many limiters, which depend mainly on two issues:

• How to make the high order schemes degenerate into a more diffusive
scheme?

• How to detect in the function profile the location where the scheme will
produce oscillations?

We first describe a Hermite formalism proposed by [4] applied to the PSM and
LAG schemes leading to a finite volume form equivalent to the original semi-
Lagrangian schemes. This formalism is very efficient to introduce limiters in the
PSM or LAG schemes. Consequently, we will compare some limiters, focusing in
particular on the OScillations limiter (OSL) proposed by [4]. We also propose
and investigate a new limiter (Slope Limited Spline, SLS), based on classical
slope limiting methods. We evaluate the performances of each limiter using a
benchmark developed in the Gysela code, which runs a 4D drift-kinetic model
[9].
The outline of this paper is the following : in section 2 will be recalled some
important properties concerning the conservative form of the Vlasov equations.
Then the Hermite formalism applied to LAG and PSM schemes will be explored.
In section 4, some limiters are described and they are further investigated in
section 5 in the context of a 4D drift-kinetic model. At last we will comment
on numerical results.

2 Numerical schemes for the Vlasov equation

2.1 Directional splitting of the advection problem

In a phase space of dimension D, we consider a distribution f which is advected
by a velocity field a. The model taken into account satisfies ∇ · a = 0.

t ∈ R
+,x ∈ R

D, a(x, t) ∈ R
D







∂tf +∇x · (af) = 0

∇ · a = 0

f(x, t) ≥ 0

(9)

INRIA



Test of some numerical limiters for the PSM scheme 7

For instance in cylindrical geometry, x =
(
r, θ, z, v‖

)
considering the 4D

problem dealt by the Gysela code. In the next sections, we use a directional
splitting following [1] by solving the conservative system (9) by D separate 1D
problems for each phase space direction which are still under a conservative form.
So formally, we will consider the problem (10) for each of the D directions. The
generic direction is named x.

t ∈ R
+, x ∈ R, a(x, t) ∈ R







∂tf +
∂ (a(x, t)f(x, t))

∂x
= 0

f(x, t) ≥ 0
(10)

In this context, we don’t have in general ∀k ∈ [[1, D]], ∂a(x,t)
∂xk

= 0, but only
∇ · a = 0.

2.2 Distribution function and phase space

We divide one direction of the phase space, generically x with a constant step
∆x to get a regular mesh. The cells are numbered by an integer i from 0 to N
and the cell faces by an one-half integer i±1/2 (see fig. 1). Hence we have N+1
cells and N+2 faces.

xi+1/2xi−1/2

i i+1i-1

xi−3/2 xi+3/2

x

i=1i=0

-1/2 1/2 3/2

i=Ni=N-1

N-1/2 N+1/2

Figure 1: Mesh grid on the x phase space direction (top) and beginning (left
bottom) and end (right bottom) of the mesh grid.

We note the distribution function at the time t and at the position x in the
phase space: g(t,x). We discretize the time space with a constant time step ∆t.
Writing tn = n∆t, we then note gn(x) = g(tn, x) the value of the distribution
function at tn. Using the previous discretization, we define the distribution
function at the cells faces as gni+1/2 = gn(xi+1/2) (fig. 2.2). At last, we define
the average of the distribution function on one cell i at tn by:

ḡni =
1

∆x

∫ xi+1/2

xi−1/2

gn(x)dx, i = 0 . . .N

gi+1/2gi−1/2

gni+1

gi−3/2 gi+3/2

xḡniḡni−1

Figure 2: Normative example for the distribution g in the cells and at the nodes

RR n° 7467



8 Guterl et al

2.3 Conservative semi-Lagrangian scheme principle

The mass conservation in a lagrangian volume of the phase space between tn

and tn+1 reads as follows:
∫

V oln+1

g(x, tn+1)dx =

∫

V oln
g(x, tn)dx (11)

with V oln =
{
X(xn+1, tn)|X(xn+1, tn+1) ∈ V oln+1

}

where X(x, tn+1) describes the characteristic curve which passes by xn+1 =
X(xn+1, tn+1) at tn+1. Thus X(xn+1, tn) is the point by which the trajectory
passes at tn such as this trajectory also passes by xn+1 at tn+1. The character-
istic curves are obtained by solving the following equation:

dX(x, t)

dt
= a(x, t)

with a given initial condition. We consider hereafter the trajectories which pass
by the cells faces xi+1/2 at tn+1 which are noted: xi+1/2 = X(xn+1

i+1/2, t
n+1) and

we introduce x∗
i+1/2 which is the point on each characteristic curve at the time

tn:
x∗
i+1/2 = X(xn+1

i+1/2, t
n).

The conservation equation (11) can thus be written using a 1D discretized
form:

∆x ḡn+1
i =

∫ xi+1/2

xi−1/2

gn+1(y)dy =

∫ x∗
i+1/2

x∗
i−1/2

gn(y)dy (12)

where {

x∗
i+1/2 − x∗

i−1/2 = V oln

xi+1/2 − xi−1/2 = V oln+1 = ∆x

In the conservative semi-Lagrangian formalism, the right hand side of equation
(12) is numerically computed as follows:

∆x ḡn+1
i =

∫ x∗
i+1/2

x∗
i−1/2

gn(y)dy = G(x∗
i+1/2)−G(x∗

i+1/2) (13)

where G(x) is the cumulative or primitive function of g defined as:

G(x) =

∫ x

x−1/2

g(y)dy.

This primitive function can be computed exactly at each cell face of the mesh:

G(xi+1/2) = G(x−1/2) +

i∑

k=0

∆x ḡnk .

These values at faces are then interpolated by basis functions to obtain an ap-
proximate reconstruction Gh(x) of G(x) for any x.
For instance, the PSM scheme uses cubic splines and the LAG scheme uses
third order lagrangian polynoma as interpolation functions to obtain the recon-
structed function Gh(x).

INRIA



Test of some numerical limiters for the PSM scheme 9

2.4 Finite volume form equivalence

The equation (12) can be split in three terms:

∆x ḡn+1
i =

∫ xi−1/2

x∗
i−1/2

gn(y)dy

︸ ︷︷ ︸

φi−1/2

+

∫ xi+1/2

xi−1/2

gn(y)dy

︸ ︷︷ ︸

ḡn
i ∆x

+

∫ x∗
i−1/2

xi+1/2

gn(y)dy

︸ ︷︷ ︸

−φi+1/2

(14)

We name φi+1/2 the following quantity:

φi+1/2 =

∫ xi+1/2

x∗
i+1/2

gn(y)dy.

We call it ’flux’ since it represents the algebraic quantity which is carried through
the node xi+1/2, by identification with the finite volume formalism.

The equation (14) is a finite volume equation (see fig. 3) meaning that the
new value of the distribution function ḡn+1

i in the cell i is the sum of its value
at time tn and the incoming or outgoing flux φi±1/2.

ḡn+1
i = ḡni −

(
φi+1/2 − φi−1/2

∆x

)

. (15)

x

x

tn+1

tn

xi−1/2

x∗
i−1/2

xi+1/2

x∗
i+1/2

ḡni

ḡn+1
i

φi+1/2,j+=i

φi−1/2,j−=i−1

Figure 3: Conservative evolution of a finite volume scheme

As for the semi-Lagrangian formalism (13), the integrals to be computed to
obtain the fluxes can be approximated by a reconstruction of the primitive of
the distribution function Gh:

φi+1/2 =

∫ xi+1/2

x∗
i+1/2

gn(y)dy ≈ Gh(xi+1/2)−Gh(x
∗
i+1/2). (16)

2.5 Time scheme used in the Gysela code

The time scheme has been modified, because the classical second order leap-
frog algorithm used in the Gysela code is not robust enough to deal with the
conservative semi-Lagrangian schemes considered here:

ḡn+1
i = ḡn−1

i −

(
φn
i+1/2 − φn

i−1/2

∆x

)

RR n° 7467



10 Guterl et al

Moreover, this time scheme enforces a constant time step because it involves
three different time steps, which is quite restrictive for high iteration numbers
simulations. We thus turn the time scheme to a Predictor-Corrector (or Runge
Kutta order 2) method, which allows to use a variable time step ∆tn computed
at time tn. It is computed according to a CFL like condition necessary for the
finite volume scheme stability which assesses that the maximum displacement
in the domain is less than a fraction of the cells size (using a regular mesh):

∆tn = CFL min
d=1,D

(

∆xd

max
x

(and (x))

)

(17)

with ∆xd the space step in direction d and and the velocity at time tn in the
space direction d ∈ [1, D]. CFL is a coefficient which 0 < CFL < 1.

Remark 1. The finite volumes scheme form (15) and the semi-Lagrangian

scheme (13) are strictly equivalent, since the displacement is restricted to CFL ≤
1. The finite volumes scheme (15) is not defined for displacements bigger than

one cell, with CFL > 1, although the semi-Lagrangian scheme (13) could be

written for any time step. However, the stability of both schemes with CFL > 1
in a general situation is not demonstrated.

Predictor-Corrector Algorithm:

• At beginning of the iteration at tn, we compute ∆tn according to (17).

• Prediction step : we compute a order 1 in time approximation of the
solution at time tn+1/2 with half a time step according to values ḡni and
cell faces fluxes φn

d,i+1/2 in all direction d ∈ [1, D] at time tn:

ḡ
n+1/2
i = ḡni −

D∑

d=1

(
φn
d,i+1/2 − φn

d,i−1/2

∆xd

)

We compute the electric potential at same time tn+1/2:

−
1

Bωi
∇⊥ · (n0∇⊥Φ

n+1/2) +
e

κTe
(Φn+1/2− < Φn+1/2 >φ) =

∫
ḡn+1/2dµdv‖ − n0

• Correction step : we compute an order 2 in time approximation of the
solution at time tn+1 according to values ḡni at time tn and cell faces

fluxes φ
n+1/2
d,i+1/2 in all direction d ∈ [1, D] at time tn+1/2:

ḡn+1
i = ḡni −

D∑

d=1




φ
n+1/2
d,i+1/2 − φ

n+1/2
d,i−1/2

∆xd





We compute the electric potential at same time tn+1:

−
1

Bωi
∇⊥ · (n0∇⊥Φ

n+1) +
e

κTe
(Φn+1− < Φn+1 >φ) =

∫
ḡn+1dµdv‖ − n0

INRIA
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3 The Hermite formalism applied to PSM and
LAG

Two schemes can be used to compute the new distribution function (recon-
structing the flux or the primitive function):

• The Parabolic Splines Method called PSM, which uses cubic splines func-
tions for the interpolations.

• The Lagrangian method (LAG), which uses third order Lagrange poly-
noms for the interpolations.

The PSM scheme [1] or the LAG scheme [4] are conservative semi-Lagrangian
schemes that only differs by the interpolation functions used for the reconstruc-
tion step. We aim to study some limiters for both schemes and using the Hermite
formalism. The Hermite formalism is a generic formulation for the interpolation
polynoms. Indeed, the scheme LAG or PSM in this formalism are set only by
the way of computing the distribution function at the faces gi+1/2. Thus we can
easily use them simultaneously in a code.

We rewrite hereafter this generic formulation, based on the Hermite formal-
ism for the conservative schemes PSM and LAG, proposed in [4]. First, we give
the expression of the flux φi+1/2, then we propose an application to the PSM
and LAG schemes.

3.1 Computation of the flux φi+1/2 with the Hermite for-
malism

Following [16] and [4], we reconstruct the distribution function g with a second
order polynom Pk, which interpolates the distribution function in the cell k.
We first assume that the reconstructed function is continuous at the cell faces.
We name the value of g at the cell faces gk+1/2. At the end of the section,
we will give the general formula for a discontinuous function at the cell faces.
The distribution function is approximated by a second order polynom in cell k,
which corresponds to interpolate the primitive of the distribution function with
a third order polynom:

∀k, Pk(z) = c(k) + b(k)z + a(k)z2 with z ∈ [0,∆x]

The distribution function g is continuous at the faces. That implies:

{

Pk(0) = gk−1/2

Pk(∆x) = gk+1/2

A third condition on the polynom comes from the mass conservation in the
cell k, that reads:

1

∆x

∫ xk+1/2

xk−1/2

Pk(y)dy = ḡk

Therefore, the polynomial coefficients can be written:

a(k) =
(
3gk−1/2 + 3gk+1/2 − 6ḡk

)
/∆x2

b(k) =
(
−4gk−1/2 − 2gk+1/2 + 6ḡk

)
/∆x

c(k) = gk−1/2

(18)
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Finally, ∀x ∈ [xk−1/2, xk+1/2], Pk(x) is an approximation of the distribution
function g in the cell k. This approximation depends on gk−1/2, gk+1/2, and ḡk.
Using this interpolation, we are able to evaluate the flux φk+1/2:

φk+1/2 =

∫ xk+1/2

x∗
k+1/2

gn(y)dy. (19)

We take the additional assumption that the displacement at the cell face
k + 1/2, i.e. αk+1/2 = xk+1/2 − x∗

k+1/2 satisfies:

|αk+1/2| ≤ ∆x

It is necessary to know in which cell j (j = k or j = k+1 since the displacement
|αk+1/2| ≤ ∆x) is located the foot x∗

k+1/2 of the characteristic that passes by

xk+1/2 at time tn+1. We can thus give an approximation of the fluxes (19)
towards the face j + 1/2 based on the set of polynoms Pk:

∃j | x∗
k+1/2 ∈ [xj−1/2, xj+1/2]

φk+1/2 =

∫ xk+1/2−xj−1/2

x∗
k+1/2

−xj−1/2

gn(Y )dY ≈

∫ xk+1/2−xj−1/2

x∗
k+1/2

−xj−1/2

Pj(Y )dY

with the change of variable Y = y − xj−1/2 ∈ [0,∆x].
We exhibit hereafter the flux φk+1/2 function of the gk−1/2, gk+1/2, and ḡk.

We note jk+1/2 the cell where is located the foot of the characteristic passing
by the face k + 1/2:

x∗
k+1/2 ∈ [xjk+1/2−1/2, xjk+1/2+1/2]

The index jk+1/2 indicates from which cell the flow is coming. For instance, a
negative displacement αi+1/2 < 0 on the face k+1/2 means that the flow comes
from the cell k + 1, so that jk+1/2 = k + 1.

So we have:

• If x∗
k+1/2 < xk+1/2 then

– jk+1/2 = k

– φk+1/2 =
∫ xk+1/2−xk−1/2=∆x

x∗
k+1/2

−xk+1/2
Pk(Y )dY

• If x∗
k+1/2 > xk+1/2 then

– jk+1/2 = k + 1

– φk+1/2 =
∫ xk+1/2−xk+1/2=0

x∗
k+1/2

−xk+1/2
Pk+1(Y )dY

We introduce

δ =
xk+1/2 − xjk+1/2−1/2

∆x
,

thus δ = 0 or δ = 1 indicates the upwinding direction.
By introducing a normalized displacement

β =
x∗
k+1/2 − xk+1/2

∆x
,
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we can write the flux:

φk+1/2(β) =

∫ δ∆x

(δ−β)∆x

Pjk+1/2
(Y )dY

That leads to:

φk+1/2

∆x
= ajk+1/2

β + bjk+1/2

(
−β2 + 2βδ

)
+ cjk+1/2

(
β3 + 3δ2β − 3β2δ

)
(20)

with 





ajk+1/2
= gjk+1/2−1/2

bjk+1/2
=

−4gjk+1/2−1/2+2gjk+1/2+1/2+6ḡjk+1/2

2

cjk+1/2
=

3gjk+1/2−1/2+3gjk+1/2+1/2−6ḡjk+1/2

3 .

By ordering differently the polynomial expression (20) and replacing the
coefficients by their values, we try to get an equivalent formulation to the flux
expressions proposed by [4].

φk+1/2,jk+1/2
(β) = ∆x[gjk+1/2−1/2

(
β(1 − δ) + β2(2− 3δ) + β3

)

+ gjk+1/2+1/2

(
βδ + β2(1− 3δ) + β3

)

+ ḡjk+1/2

(
β2(−3 + 6δ) + β3(−2)

)
]

with

β =
xk+1/2 − x∗

k+1/2

∆x
∈ [−1, 1]

δ =

{

0 if xk+1/2 < x∗
k+1/2

1 if xk+1/2 > x∗
k+1/2.

It’s obvious that β depends on k hence formally β = βk+1/2

Positive displacement α > 0 i.e. δ = 1

We have jk+1/2 = k, hence

φk+1/2(β)

∆x
= gk−1/2

(
β2(β − 1)

)

+ gk+1/2

(
β(1− β)2

)

+ ḡk
(
β2(3− 2β)

)

Negative displacement α < 0 i.e. δ = 0

We have jk+1/2 = k + 1, hence

φk+1/2(β)

∆x
= gk+1/2

(
β(β + 1)2

)

+ gk+3/2

(
β2(1 + β)

)

+ ḡk+3/2

(
β2(−3− 2β)

)

Thus, we have established a generic formulation for the flux considering
displacements smaller than one cell. We have assumed that the distribution
function is continuous at the cell face. This generic expression is equivalent to
the formulation proposed by [4].
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Hermite formalism for a discontinuous reconstruction

Performing the same calculations, we can extend the previous formalism to a
distribution function which is not continuous at the faces. We name g+k+1/2 and

g−k+1/2 respectively the left and right values of the distribution function at the

cell face k + 1/2 (see fig. 4). In general that means:

g+k+1/2 6= g−k+1/2

The conditions on the polynoms at the cell faces are thus changed to:

gnj

g+j−1/2
g−j−1/2 g+j+1/2

g−j+1/2

Figure 4: Asymmetric node

{

Pk(0) = g−k−1/2

Pk(∆x) = g+k+1/2

That leads to the final formulation:

φk+1/2,jk+1/2
(β) = ∆x[g−jk+1/2−1/2

(
β(1 − δ) + β2(2 − 3δ) + β3

)

+ g+jk+1/2+1/2

(
βδ + β2(1 − 3δ) + β3

)

+ ḡjk+1/2

(
β2(−3 + 6δ) + β3(−2)

)
] (21)

where

β =
αi+1/2

∆x
=

xk+1/2 − x∗
k+1/2

∆x
∈ [−1, 1]

δ =

{

0 if xk+1/2 < x∗
k+1/2

1 if xk+1/2 > x∗
k+1/2

Positive displacement α > 0 i.e. δ = 1

We have jk+1/2 = k, hence

φk+1/2(β)

∆x
= g−k−1/2

(
β2(β − 1)

)

+ g+k+1/2

(
β(1 − β)2

)

+ ḡk
(
β2(3 − 2β)

)

Negative displacement α < 0 i.e. δ = 0

We have jk+1/2 = k + 1, hence

φk+1/2(β)

∆x
= g−k+1/2

(
β(β + 1)2

)

+ g+k+3/2

(
β2(1 + β)

)

+ ḡk+1

(
β2(−3− 2β)

)
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3.2 PSM scheme with the Hermite formalism

3.2.1 Hermite formalism using splines interpolation

The type of scheme expressed in the hermite formalism (PSM or LAG) only
depends on the manner the face values g+k+1/2 and g−k+1/2 are computed. Here

the PSM scheme has the property that the reconstructed function has continuous
derivatives of the distribution function g(x, t) at cell faces [16]. Remembering
that the distribution function g is reconstructed by a second order polynom
g(x) ≈ Pi(x) in the cell i, the continuity of the derivative at face i+1/2 can be
written:

dPi(Y )

dY
|Y =∆x=

dPi+1(Y )

dY
|Y=0

Using the polynom coefficients expression (18) we obtain:

dPi(Y )

dY
|Y =∆x =

dPi+1(Y )

dY
|Y =0

⇔ 2ai∆x+ bi = bi+1

⇔ gi−1/2 + 4gi+1/2 + gi+3/2 = 3(ḡi + ḡi+1)

This PSM formulation regardless of the boundary conditions is equivalent to
the semi-Lagrangian PSM formalism, used in [1] for instance. A rigorous proof
of the equivalence between the two formulations is furnished by [4], except for
the boundary conditions.

3.2.2 Periodic boundary conditions

In this section, we present the way of imposing the boundary conditions.
Extending boundary conditions for the PSM scheme to the Hermite formalism
is not simple, especially to get a complete equivalence between the Hermite
formalism and the semi-Lagrangian formalism (13) [1].
We named G the primitive function which is defined as:

G(x) =

∫ x

x−1/2

g(x)dx (22)

We also define the mesh fitted to a periodic domain(fig. 5):

0 1 N+1=0N

−1/2 = N + 1/21/2 3/2 N-1/2N + 1/2 = −1/2

0 2π

Figure 5: Mesh for a periodic domain

The periodic boundary conditions for the semi-Lagrangian scheme are ap-
proximated by conditions on the primitive function derivatives:

{

G′(x−1/2) = G′(xN+1/2)

G′′(x−1/2) = G′′(xN+1/2)
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which is equivalent to set continuity of the distribution function and its first
derivative: {

g(x−1/2) = g(xN+1/2)

g′(x−1/2) = g′(xN+1/2)

The periodic boundary conditions for the Hermite formalism are then obtained
by setting the same constraint on the polynomial reconstruction:

{

P0(0) = PN (∆x)
dP0(Y )

dY |Y =0 = dPN (Y )
dY |Y=∆x

⇔

{

g−1/2 = gN+1/2

−4g−1/2 − 2g1/2 + 6ḡ0 = 2gN−1/2 + 4gN+1/2 − 6ḡN

The complete linear system to solve to obtain values at nodes is then the fol-
lowing







gi−1/2 + 4gi+1/2 + gi+3/2 = 3(ḡi + ḡi+1), i = 0 · · ·N − 1

g−1/2 = gN+1/2

−4g−1/2 − 2g1/2 + 6ḡ0 = 2gN−1/2 + 4gN+1/2 − 6ḡN

⇒







gi−1/2 + 4gi+1/2 + gi+3/2 = 3(ḡi + ḡi+1), i = 0 · · ·N − 2

gN−3/2 + 4gN−1/2 + g−1/2 = 3(ḡN−1 + ḡN)

gN−1/2 + 4g−1/2 + g1/2 = 3(ḡ0 + ḡ1)

The matricial system [A]X = B of dimension N + 1 is finally:












4 1 0 0 · · · 1

1 4 1 0 · · ·
...

...
. . .

. . .
. . .

. . .
...

... · · · 0 1 4 1
1 · · · 0 0 1 4












︸ ︷︷ ︸

[A]













g−1/2

g1/2
...
...

gN−3/2

gN−1/2













︸ ︷︷ ︸

X

=













3(ḡN + ḡ0)
3(ḡ0 + ḡ1)

...

...
3(ḡN−2 + ḡN−1)
3(ḡN−1 + ḡN )













︸ ︷︷ ︸

B

3.2.3 Non-Periodic boundary conditions: natural conditions

The natural boundary condition for the PSM scheme is approximated by vanish-
ing the second derivative of the primitive function, what corresponds to annulate
the first derivative of the distribution function g, at the boundaries:

{

G′′(x−1/2) = 0

G′′(xN+1/2) = 0

The corresponding natural boundary conditions for the Hermite formalism are:

{
dP0(Y )

dY |Y =0 = 0
dPN (Y )

dY |Y =∆x = 0
⇔

{

−4g−1/2 − 2g1/2 + 6ḡ0 = 0

2gN−1/2 + 4gN+1/2 − 6ḡN = 0
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The system to solve to obtain the values of the function at the nodes is then:







gi−1/2 + 4gi+1/2 + gi+3/2 = 3(ḡi + ḡi+1), i = 0 · · ·N − 1

4g−1/2 + 2g1/2 = 6ḡ0

2gN−1/2 + 4gN+1/2 = 6ḡN

Considering g−1/2 = ḡ0 and gN+1/2 = ḡN , we solve from the following linear
system of dimension N + 2:












4 2 0 0 · · · 0

1 4 1 0 · · ·
...

...
. . .

. . .
. . .

. . .
...

... · · · 0 1 4 1
0 · · · 0 0 2 4












︸ ︷︷ ︸

[A]













g−1/2

g1/2
...
...

gN−1/2

gN+1/2













︸ ︷︷ ︸

[X]

=













6(ḡ0)
3(ḡ0 + ḡ1)

...

...
3(ḡN−1 + ḡN)

6(ḡN )













︸ ︷︷ ︸

[B]

3.3 LAG scheme with the Hermite formalism

3.3.1 Hermite formalism using Lagrange interpolation

We outline hereafter the Hermite formulation for the LAG scheme. In order to
set the distribution function values at the faces g+k+1/2 and g−k+1/2, we start from

the Lagrange interpolation of the flux and then, we make some calculations to
show the equivalence with the Hermite formulation.
We build the primitive or cumulative function G at the characteristic feet:

gn+1
i = G(x∗

i+1/2)−G(x∗
i−1/2)

G(x∗
i+1/2) =

∫ x∗
i+1/2

x−1/2

gn(x)dx.

The value of G(x∗
i+1/2) is obtained by an interpolation with third-order La-

grange polynoms of values at cell faces G(xj+1/2):

G(x) =

i+2∑

j=i−1

Gj−1/2Lj(x), x ∈ [xi−1/2, xi+1/2]

where Lj are the Lagrange polynoms defined as:

Lj(x) =

i+2∏

k=i−1,k 6=j

x− xk−1/2

xj−1/2 − xk−1/2

and Gj−1/2 is the value of G at the cell face j − 1/2.
Some calculations (given in annex sec. 7.1) lead to the expressions (23) and
(24) for G(x∗

i+1/2):
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• if βi+1/2 > 0,

G(x∗
i+1/2) = β3(1/6Gi−3/2 − 1/2Gi−1/2 + 1/2Gi+1/2 − 1/6Gi+3/2)

+ β2(1/2Gi−1/2 −Gi+1/2 + 1/2Gi+3/2)

+ β(−1/6Gi−3/2 +Gi−1/2 − 1/2Gi+1/2 − 1/3Gi+3/2)

+ Gi+1/2 (23)

• if βi+1/2 < 0,

G(x∗
i+1/2) = β3(1/6Gi−1/2 − 1/2Gi+1/2 + 1/2Gi+3/2 − 1/6Gi+5/2)

+ β2(1/2Gi−1/2 −Gi+1/2 + 1/2Gi+3/2)

+ β(1/3Gi−1/2 + 1/2Gi+1/2 −Gi+3/2 + 1/6Gi+5/2) (24)

with Gk+1/2 = G(xk+1/2) and the function βi+1/2:

∆x βi+1/2 = xi+1/2 − x

We omit the subscript for β when the context makes the index obvious.
The values of the primitive function at nodes Gk+1/2 are related to the cell
centred values of the distribution function gnk by:

gnk∆x = Gk+1/2 −Gk−1/2.

Thus, by replacing the values Gk+1/2 function of gnk in such a way only the
primitive function value Gi+1/2 at cell face i + 1/2 remains at the right hand
side of relations (23) and (24), we obtain:

• if βi+1/2 > 0,

G(x∗
i+1/2)/∆x = β3(−1/6gni−1 + 1/3gni − 1/6gni+1)

+ β2(−1/2gni + 1/2gni+1)

+ β(1/6gni−1 − 5/6gni − 1/3gni+1)

+ Gi+1/2/∆x

• if βi+1/2 < 0

G(x∗
i+1/2)/∆x = β3(−1/6gni + 2/6gni+1 − 1/6gni+2)

+ β2(−1/2gni + 1/2gni+1)

+ β(−1/3gni − 5/6gni+1 + 1/6gni+2)

+ Gi+1/2/∆x

Let us recall the relation (16) between the flux at cell face i + 1/2 and the
primitive function:

φi+1/2 = G(xi+1/2)−G(x∗
i+1/2).

Therefore, we have an expression of the flux φi+1/2(β) function of cell centred
values (ḡk)k:
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• if βi+1/2 > 0,

φi+1/2(β)

∆x
= β3(1/6gni−1 − 1/3gni + 1/6gni+1)

+ β2(1/2gni − 1/2gni+1)

+ β(−1/6gni−1 + 5/6gni + 1/3gni+1)

• if βi+1/2 < 0

φi+1/2(β)

∆x
= β3(1/6gni − 2/6gni+1 + 1/6gni+2)

+ β2(1/2gni − 1/2gni+1)

+ β(1/3gni + 5/6gni+1 − 1/6gni+2)

Let us remember the generic Hermite formulation for the flux (21) function of
values at cell faces g±k+1/2:

• if βi+1/2 > 0 then

φi+1/2(β)

∆x
= β3(g+i−1/2 + g−i+1/2 − 2gni )

+ β2(−g+i−1/2 − 2g−i+1/2 + 3gni )

+ β(g−i+1/2)

• if βi+1/2 < 0 then

φi+1/2(β)

∆x
= β3(g−i+3/2 + g+i+1/2 − 2gni+1)

+ β2(2g+i+1/2 + g−i+3/2 − 3gni+1)

+ β(g+i+1/2)

By identifying in the two last expressions of the flux φi+1/2(β) the coeficients
of each degree of the polynom in variable β, we obtain a necessary expression
for values g±k−1/2 at cell faces:

{

g+k−1/2 = 1/3gnk−1 + 5/6gnk − 1/6gnk+1

g−k+1/2 = −1/6gnk−1 + 5/6gnk + 1/3gnk+1.
(25)

As a conclusion, we have explicit values of g+k−1/2 and g−k+1/2 function of

cell centred values of the distribution function at time tn with (25), so we can
directly compute the generic Hermite formulation for the flux (21) for the LAG
scheme.

3.3.2 Boundary conditions

The boundary conditions for the LAG scheme are more simple than the PSM
ones. Indeed, the coefficient are explicitly depending on the value of the distri-
bution function gnk . So we can explicitly set values at boundaries.
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Non-periodic boundary conditions: natural conditions







g+N+3/2 = 1/3gnN+1 + 5/6gnN+1 − 1/6gnN+1

g−N+3/2 = −1/6gnN + 5/6gnN+1 + 1/3gnN+1

g+−1/2 = 1/3gn0 + 5/6gn0 − 1/6gn1

g−−1/2 = −1/6gn0 + 5/6gn0 + 1/3gn0

Periodic boundary conditions







g+−1/2 = 1/3gnN−1 + 5/6gn0 − 1/6gn1

g−−1/2 = −1/6gnN−2 + 5/6gnN−1 + 1/3gn0

g+N−1/2 = 1/3gnN−1 + 5/6gn0 − 1/6gn1

g−N−1/2 = −1/6gnN−2 + 5/6gnN−1 + 1/3gn0
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4 Limiters

High-order numerical schemes may create spurious oscillations when stiff profiles
occur in the distribution function. As usual in the numerical framework of
finite volume schemes, we employ a flux limiter to lower these oscillations. The
principle of the limiter is to introduce numerical diffusion when stiff profiles are
detected, by modifying the flux at the cell faces. We will test limiters found in
the literature, the so called Oscillation Limiter (OSL) described in [4], and a
the one proposed in this report that we call Slope Limited Splines (SLS). These
limiters are mainly provided with the PSM scheme, but some might be used for
any finite volume scheme.

4.1 ENTropic flux limiter (ENT)

The principle of this limiter proposed in [1] is to make degenerate the fourth
order PSM scheme to a second order centred flux to reduce the anti-diffusive
behaviour of the scheme when it occurs. The position where anti-diffusion occurs
is detected looking at the second order equivalent equation solved by the scheme,
obtained by a Taylor expansion. This equivalent equation shows a diffusion term
at second order, which the sign should be positive, leading to numerical diffusion
and thus stability. When this sign is negative, the scheme is anti-diffusive and it
is replaced by a centred scheme. The corresponding algorithm is the following:

Algorithm

• Computation of the PSM flux φPSM
i+1/2 and the centred flux φCEN

i+1/2 = αi+1/2
ḡn
i +ḡn

i+1

2 .

• if
(

φCEN
i+1/2 − φPSM

i+1/2

) (
ḡni+1 − ḡni

)
> 0 then the flux φPSM

i+1/2 is supposed to

be diffusive.

• if
(

φCEN
i+1/2 − φPSM

i+1/2

) (
ḡni+1 − ḡni

)
< 0 then the flux φPSM

i+1/2 is supposed to

be anti-diffusive, thus it is switched with the centred flux:

φPSM
i+1/2 = φCEN

i+1/2

4.2 UMEDA’s limiter (UMEDA)

The 4D advection equation is split in four 1D advection equations. Although
the maximum principle is satisfied by the 4D equation, this principle is not
fulfilled for each 1D equation. Therefore the extrema of the distribution function
(minimum and maximum) are unknown in 1D. The PFC limiter [7] employ
these extrema, which are not known in the context of a directional splitting.
Therefore, following Umeda [15], we modify the extrema definition to get a
limiter working in 4D. The Umeda’s limiter have been written with Lagrange
polynoms.

Algorithm
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• We evaluate gmin1, gmin2, gmax1, gmax2







gmin1 = max
[
max

(
ḡni−1, ḡ

n
i

)
,min

(
2ḡni−1 − ḡni−2, 2ḡ

n
i − ḡni+1

)]

gmin2 = max
[
max

(
ḡni+1, ḡ

n
i

)
,min

(
2ḡni+1 − ḡni+2, 2ḡ

n
i − ḡni−1

)]

gmax1 = min
[
min

(
ḡni−1, ḡ

n
i

)
,max

(
2ḡni−1 − ḡni−2, 2ḡ

n
i − ḡni+1

)]

gmax2 = min
[
min

(
ḡni+1, ḡ

n
i

)
,max

(
2ḡni+1 − ḡni+2, 2ḡ

n
i − ḡni−1

)]

• We set gmin, gmax

{

ḡmin = max [0,min (gmin1, gmin2)]

ḡmax = max [gmax1, gmax2]

• We define L+
i and L−

i

L+
i =

{

if ḡi+1 − ḡi ≥ 0,min(2(ḡi − ḡmin), ḡi+1 − ḡi)

if ḡi+1 − ḡi < 0,max(2(ḡi − ḡmax), ḡi+1 − ḡi)

L−
i =

{

if ḡi − ḡi−1 ≥ 0,min(2(ḡmax − ḡi), ḡi − ḡi−1)

if ḡi − ḡi−1 < 0,max(2(ḡmin − ḡi), ḡi − ḡi−1)

• We finally redefine the flux:

Gi+1/2(x) = ḡi + x(1 − x)(2 − x)(L+
i /6) + x(1 − x)(1 + x)(L−

i /6)

We obtain the LAG reconstruction without limiter by setting:

{

L+
k = ḡk+1 − ḡk

L−
k = ḡk − ḡk−1

4.3 OScillation Limiter (OSL)

The OScillation Limiter (OSL) proposed in [4] is really using the Hermite for-
malism. It compares the values at call faces g±k−1/2 obtained with the LAG and

the PSM schemes to the value computed with a linear reconstruction. This later
consists in computing an average at the face of the left and right cells centred
values. If the values computed with PSM and LAG are not simultaneously up-
per or lower than the average value, then we take the average value. If not, a
mixed scheme between PSM, LAG and the average reconstruction is performed.
The OSL limiter includes a parameter C¿1 determining the proportion in the
average of PSM and LAG fluxes in the limited flux.

Algorithm

• Computation of g±k−1/2 values for both PSM et LAG schemes.

• Average value at the k − 1/2 and k + 1/2 nodes: gavek−1/2 = (ḡnk + ḡnk−1)/2

and gavek+1/2 = (ḡnk + ḡnk+1)/2.
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• The following formula perform the choice for the limited flux according to
the regularity of the cell faces values:

– if (g+k−1/2,LAG − gavek−1/2)(gk−1/2,PSM − gavek−1/2) > 0 then

g+k−1/2 = gavek−1/2 else

g+k−1/2 = gavek−1/2

+sign(gk−1/2,PSM − gavek−1/2)

min(C|g+k−1/2,LAG − gavek−1/2|, |gk−1/2,PSM − gavek−1/2|)

(26)

– if (g−k+1/2,LAG − gavek+1/2)(gk+1/2,PSM − gavek+1/2) > 0 then

g−k+1/2 = gavek+1/2 else

g−k+1/2 = gavek+1/2

+sign(gk+1/2,PSM − gavek+1/2)

min(C|g−k+1/2,LAG − gavek+1/2|, |gk+1/2,PSM − gavek+1/2|)

(27)

4.4 Slope Limited Splines (SLS)

The limiting procedure basically aims to cut the oscillations generated by strong
gradients in the distribution function profile, where high order schemes will
produce overshoots and spurious oscillations. We propose here to measure these
gradients and to add diffusion where strong gradients are detected. The diffusion
is added by mixing the high order scheme with a first order upwind flux. The
more the gradient is steep, the more we raise the proportion of upwind flux in
the average with the high order scheme. The evaluation of the gradient is given
by a function θ and we estimate the diffusion needed with a function γ(θ) ∈ [0, 1]
based on the minmod like limiter function (fig. 7):

φnew
i+1/2 = γ(θi+1/2) φ

PSM
i+1/2 + (1− γ(θi+1/2)) φ

upwind
i+1/2

where {

φupwind
i+1/2 = αi+1/2

ḡn
i +ḡn

i+1

2 − sign(αi+1/2)
ḡn
i+1−ḡn

i

2

αi+1/2 = ∆tai+1/2

We define θi+1/2 as the classical slope ratio of the distribution which depends
on the direction of the displacement (fig. 6):

θi+1/2 =







ḡn
i −ḡn

i−1

ḡn
i+1

−ḡn
i

if αi+1/2 > 0
ḡn
i+2−ḡn

i+1

ḡn
i+1

−ḡn
i

if αi+1/2 < 0

However, the classical limiters as minmod γi+1/2 = max(0,min(θi+1/2, 1)), set γ
to 0 when θ < 0. That means that the scheme turns to order 1 when an extrema
exists, i.e. the slope ratio θ < 0. These extrema are thus quickly diffused and
that leads to loose the benefits of a high order method. For SLS, the choice is
to let the high-order scheme deal with the extrema and only add diffusion when
high gradients occurs, i.e. the slope ratio θ ≈ 0. We also introduce a constant
K in relation to control the maximum slope allowed without adding diffusion.
The SLS limiter function is thus to set γ = 1 for any values of θ, except close
to |θ| = 0 where strong gradients occurs, see figure 7:

γi+1/2 = max(0,min(K|θi+1/2|, 1)) (28)
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ḡni
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Figure 6: Computation of θi+1/2

Figure 7: γ function for the SLS limiter
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5 Numerical results

We consider both 1D and 4D test cases. The 1D advection test case is performed
with a constant velocity to give a qualitative view on the effects of each limiter.
We are particularly interested in advection of profiles with strong gradients, as
discontinuous initial distribution functions as a step. However, we have to keep
in mind that this situation of a discontinuous shape advected with a constant
velocity field does not occur in Vlasov 4D drift-kinetic simulations for many
reasons: the advections are not constant, the long time constant advection con-
figuration does not appear, and discontinuous functions (steps) do not exist in
the Vlasov model. However, it is relevant to investigate advection of discontinu-
ous functions since Vlasov models leads to stretched structures in the flow that
makes appear strong gradients, which could be assimilated to discontinuities.

The 4D drift-kinetic test case is performed with the 5D Gysela code follow-
ing the benchmark presented in [9]. This benchmark is to simulate instabilities
growing in the plasma leading to shapes like filaments and vortex. We com-
pare the results to evaluate the limiters effects on the development of turbulent
structures. We will focus on two directions, (r, θ), among the four (r, θ, φ, v‖)
since strong gradients of the distribution function appear mainly in (r, θ) planes
(further details in [1]). We give algorithms used in Gysela to solve the advection
equation in sec. 7.4.

5.1 Tools

We propose hereafter some quantitative tools to compare the efficiency of each
limiter. The L2 norm and the entropy may be used to investigate the diffusivity
of each limiter, since each should theoretically be kept constant. The total
energy conservation is related to the treatment of small structures provided by
the instabilities. In addition, we also introduce the total variation (TV) norm
to estimate the numerical oscillations created by the scheme.

Total Variation

The total variational norm (TV) is used to estimate the rate of oscillations
produced by a scheme, compare to another.

• In 1D:

TV (g(t)) =

∫ xmax

xmin

|
dg(t, x)

dx
|dx

TV (gn) =
1

∆x

Nx∑

i=0

|ḡni+1 − ḡni |

• In 4D, we restrict the diagnostic to an (r, θ) plane:

TV (g(t)) =

∫ rmax

rmin

∫ 2π

0

|∇r,θ g(t, r, θ)|L2drdθ

TV (gn) =

Nr∑

i=0

Nθ∑

j=0

√
(
ḡn(i+ 1, j)− ḡn(i, j)

∆r

)2

+

(
ḡn(i, j + 1)− ḡn(i, j)

∆θ

)2
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L2 norm and entropy

The L2 norm is defined as:

L2(f(t)) =

∫

(f(t,X, v‖))
2dXdv‖, dX = rdrdθdφ.

The entropy measures the information created or destroyed by a phenomena.
We can thus expect that a raising entropy estimates the information lost by
numerical diffusion.

S(f(t)) = −

∫

f(t,X, v‖)log(f(t,X, v‖))dXdv‖, dX = rdrdθdφ

Total Energy

The conservation of the total energy ǫtot writes as the sum of the kinetic
energy ǫkin and the potential energy ǫpot defined as follow:

ǫtot = ǫkin + ǫpot =

∫
1

2
miv

2
‖(f − feq)dV dv‖ +

1

2

∫

eφ(ni − n0)dX.

For further details, see [9].

Quality factor

We propose here to define a quality factor to establish a quantitative evalu-
ation of the limiters efficiency. Since the L2 norm should be conserved by the
Vlasov equation, it furnishes a good estimation of the diffusive behaviour of
a scheme, because it decreases this norm. On the other hand, the TV norm
estimates the numerical oscillations, or also the diffusion in a way, but more
’locally’. The quality of a scheme may be defined as its ability to limit the oscil-
lations (small TV) with the less numerical diffusion (high L2 norm). Therefore
we introduce the quality criterion Q defined as:

Q(f(t)) =
L2(f(t))

TV (f(t))
(29)

5.2 Test of the limiters on constant 1D advections

We test the limiters in 1D on a step function 1. The step exhibits the problems
for which the limiters are required. This 1D benchmark gives a first overview
on the limiters capabilities.
The benchmark consists in solving a constant advection on a periodic domain
divided in 80 cells. The displacement is set to 0.2 cell per iteration. The
indicated times are the number of iterations.

1the distribution function f is set to 1 on a part of the domain else to 0
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Figure 8: Constant advection on a step with the PSM scheme and the PSM
scheme with entropic limiter ENT. The domain is meshed on 80 cells with
periodic boundary conditions and the displacement is set to 0.2 cell per iteration.

PSM-ENT We observe on figure 8 that the ENT limiter cuts off the spurious
oscillations of the PSM scheme at the left side of the discontinuity. However, at
the right side, oscillations are weakly damped.
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Figure 9: Constant advection on a step with the LAG scheme and the LAG
scheme with the Umeda limiter. The domain is meshed on 80 cells with periodic
boundary conditions and the displacement is set to 0.2 cell per iteration.

LAG-UMEDA We observe on figure 9 that the LAG scheme is much more
diffusive than the PSM scheme without really better satisfying a maximum
principle. The under/overshoots of the LAG scheme are cut off by the Umeda
limiter. Although the LAG scheme with Umeda limiter respects a maximum
principle, the step signal is quickly diffused and it seems not appropriate for
long time simulations.
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Figure 10: Constant advection on a step with the PSM scheme and the PSM
scheme with the OSL limiter with different values of parameter C. The domain
is meshed on 80 cells with periodic boundary conditions and the displacement
is set to 0.2 cell per iteration.

PSM-OSL We observe on figure 10 that the OSL limiter reduces the oscilla-
tions without introducing much diffusion. However, there is still under/overshoots
at both sides of the discontinuity and a slight offset of the solution occurs com-
pare to the exact solution, but it seems not increase with time. The constant
C of the OSL limiter has almost no influence on the results.
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Figure 11: Constant advection on a step with the PSM scheme and the PSM
scheme with the SLS limiter with different values of parameter K. The domain
is meshed on 80 cells with periodic boundary conditions and the displacement
is set to 0.2 cell per iteration.

PSM-SLS We observe on figure 11 that the SLS limiter cuts off oscillations
at the right side of the discontinuity and keeps the overshoot at left side. The
results of SLS limiter with K = 1 is too much diffusive (equivalent to a minmod
limiter). With K = 5, the result is almost the same as with K = 10 and the
accuracy at discontinuities (slope of the solution at discontinuities) is almost
the same as with the PSM scheme.
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Figure 12: Constant advection on a step with the PSM scheme, the PSM scheme
with the ENT limiter, the SLS limiter with parameter K = 5 and the OSL
limiter with parameter C = 2. The domain is meshed on 80 cells with periodic
boundary conditions and the displacement is set to 0.2 cell per iteration.

Comparison of all limiters for PSM It is interesting to observe the action
of each different limiter for PSM on the oscillations. The ENT limiter cuts off
the oscillations at left side of the discontinuities, the SLS K = 5 limiter cuts off
the oscillations at right side of the discontinuities and the OSL limiter reduces
the oscillations at both sides.
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Figure 13: L2 norm (left) and total variation (right) as a function of the time
for the different methods applied to a step with 1D constant advection on a
periodic domain.
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Figure 14: Quality factor for all the methods as a function of the time for the
different methods applied to a step with 1D constant advection on a periodic
domain.

Quality factor The quality factor(fig. 14), as defined previously in (29) as
the ratio of L2 norm over TV norm, shows three groups of curves:

• On the lower part, the PSM scheme curve shows that even conserving well
the L2 norm, the TV norm is much higher than the other schemes because
of spurious oscillations. The quality factor is then poor for PSM.

• The group of four curves at the middle (LAG, PSM-ENT, PSM OSM
with C=2 and C=5) are conserving the L2 norm with the same order (best
PSM-OSL C=2, worst LAG) and with almost the same level of oscillations
according to the TV norm. The quality factor is thus equivalent for this
group of schemes.

• On the upper part, LAG-UMEDA and PSM-SLS K=1 (minmod limiter)
are very diffusive according to the L2 norm, so they kill all the oscillations
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and the TV norm is very weak. The quality factor is high because these
diffusive schemes have too low TV norms and cannot properly be com-
pared with the others. However, the PSM-SLS K=5 scheme conserves the
L2 norm in a comparable way with the other schemes, but with a very
low TV norm. The quality factor is thus good for this scheme and can be
compared with to the other schemes.

As a conclusion for this comparison of all schemes on a linear advection of
a step function test case, we could say that the LAG-UMEDA and PSM-SLS
K=1 (minmod limiter) schemes are too diffusive to be compared with the other
schemes considering the quantitative quality factor (29). However, this way of
quantitative comparison seems to fit well for this test case with the qualitative
comparison or the ”feeling” we might have by observing the plotted results in
Figure 12.
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5.3 4D Drift-kinetic model

In this section, we evaluate the limiter capacities on a 4D drift-kinetic model
simulation of instabilities with the Gysela code [9]. The benchmark providing
instabilities is described in [1]. We simulate this test case with two mesh res-
olutions: a low resolution to provide results about all the limiters and a high
resolution to get refined results with the best schemes to test also robustness.
However, let us first do a quick review of the 4D drift-kinetic model and the
time scheme used for high resolution simulations.

We recall hereafter the model described in [8]. The geometrical assumptions
of this model for ion plasma turbulence are a cylindrical geometry with coordi-
nates (r, θ, z, v‖) and a constant magnetic field B = Bz ez, where ez is the unit
vector in z direction. In this collisionless plasma, the trajectories are governed
by the guiding center (GC) trajectories:

dr

dt
= vGCr ; r

dθ

dt
= vGCθ

;
dz

dt
= v‖;

dv‖

dt
=

qi
mi

Ez (30)

with vGC = (E ×B)/B2 and E = −∇Φ with Φ the electric potential.
The Vlasov equation governing this system, where the ion distribution function
is f(r, θ, z, v‖, t), is the following:

∂tf + vGCr∂rf + vGCθ
∂θf + v‖∂zf +

qi
mi

Ez∂v‖f = 0. (31)

This equation is coupled with a quasi-neutrality equation for the electric poten-
tial Φ(r, θ, z) that reads:

−∇⊥Φ ·

(
n0(r)

B Ω0
∇Φ

)

+
e n0(r)

Te(r)
(Φ− < Φ >z) = ni − n0 (32)

with ni =

∫

v‖

f(r, θ, z, v‖)dv‖ and constant in time physical parameters n0, Ω0,

Te and e.
Let us notice that the 4D velocity field a = (vGCr , vGCθ

, v‖, q/mi Ez)
t is diver-

gence free:

∇ · a =
1

r
∂r(r vGCr ) +

1

r
∂θ(vGCθ

) + ∂zv‖ + ∂v‖(q/mi Ez) = 0

because of variable independence ∂v‖Ez = ∂v‖(∂zΦ(r, θ, z)) = 0, ∂zv‖ = 0 and

vGCr =
−1

r Bz
∂θΦ and vGCθ

/r =
1

r Bz
∂rΦ,

such that
1

r
∂r(r vGCr) +

1

r
∂θ(vGCθ

) = 0.

Therefore, one can write an equivalent conservative equation to the preceding
Vlasov equation (31):

∂tf + ∂r(vGCr f) + ∂θ(vGCθ
f) + ∂z(v‖ f) + ∂v‖

(
qi
mi

Ez f

)

= 0.
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5.4 Low resolution simulations

The low-resolution simulations run on a 64x128x16x16 grid (Nr×Nθ×Nφ×Nv‖).
The resolution is too low to consider the total energy as a relevant measure.
The entropy, L2 norm and TV norm are used to gauge the limiter’s effects. We
present in Figures 15 16, 17 three states of the instabilities: the linear phase
(left), the beginning of the non-linear phase (center) and the strong non-linear
phase (right).

In figure 15, we see the difference of behaviour of the PSM scheme based
on a spline reconstruction method and the LAG scheme based on Lagrangian
polynoms. The LAG scheme diffuses much more the solution even at early
times, and this is accentuated using the LAG-UMEDA scheme which makes
disappear even the big structures. However, the PSM scheme solution shows a
lot of small structures, actually at the scale of the mesh, which are suspected
of coming from spurious oscillations already observed on the 1D step test case.
Moreover, these oscillations often violate the theoretical maximum principle of
the solution and may lead to crash the simulation.

In figure 16, we see the effect of the ENT limiter on the PSM scheme. It
reduces a lot the oscillations with a figure showing much less small structures,
but showing a more diffusive behaviour. The PSM-SLS K=1 scheme is extremely
diffusive and makes disappear even the big structures.

In figure 17, we compare the PSM scheme result with PSM-OSL and PSM-SLS
limiters results. Both limiters reduces efficiently the oscillations. The limiter
PSM-SLS seems a little more diffusive than PSM-OSL.
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Figure 15: Solution in a (r, θ) plane withNr×Nθ = 64×128 cells (low resolution)
of a 4D test case with PSM, LAG, LAG-UMEDA methods.
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Figure 16: Solution in a (r, θ) plane withNr×Nθ = 64×128 cells (low resolution)
of a 4D test case with PSM, PSM-ENTand PSM K=1 methods.
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Figure 17: Solution in a (r, θ) plane withNr×Nθ = 64×128 cells (low resolution)
of a 4D test case with PSM, PSM-OSL C=2 and PSM-SLS K=5 methods.
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Figure 18: Quality factor (left top), entropy (right top), L2 norm (left bottom),
TV norm (right bottom) for the 4D simulation low resolution 64×128×16×16
with all the methods presented.

In figure 18 we see the effect of each limiter on the quality factor, entropy, L2

norm and TV norm.

• The LAG scheme gives very poor results in the conservation of the L2

norm, but shows a medium quality factor.

• The LAG-UMEDA and PSM-SLS K=1 schemes are still diminishing the
TV norm at a very low rate as for the 1D step test case, because they are
very diffusive. Even if the quality factor is good and the L2 norm close
to the other schemes, the qualitative results of figure 15 and 16 show that
even big structures are not well captured with these schemes.

• The PSM scheme without limiter has still a very different behaviour com-
pare with the others : the L2 norm and entropy plots show that this
scheme is less diffusive and the TV norm plots confirms the qualitative
2D profiles 17 that it is much more oscillating than the other schemes.
Thus the quality factor is lower than the other schemes.
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• The PSM scheme with limiters ENT, OSL, and SLS K=5 show equivalent
medium quality factors and TV norms and conservation of entropy and
L2 norm for this coarse benchmark.

Conclusion of the 4D results with low resolution section

The results obtained for this 4D test cas low resolution confirms those ob-
tained for the 1D linear step test case. The PSM scheme shows oscillations as
the TV norm is high compare to the other schemes, but preserves the better
L2 norms and the entropy. The PSM-SLS K=1 and LAG-UMEDA schemes
are diffusive and seem experimentally of lower order of accuracy than the other
schemes. The PSM-SLS K=1 limiter, PSM-OSL limiter and ENT limiter are
showing a similar level of accuracy. The high resolution simulation results fol-
lowing will permit to go further in these investigations.
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5.5 High resolution simulation

We propose in this section to compare PSM, OSL and SLS with an high reso-
lution mesh relatively to the previous resolution. The mesh is constituted with
Nr×Nθ×Nφ×Nv‖ = 256×512×32×16. We consider that this mesh is refined
enough such that conservation of the total energy becomes relevant to estimate
the limiter quality, what was not the case for the low resolution mesh used in
the preceding section 5.4.
We have chosen standard values for PSM limiters according to the preceding
results : C=2 for the OSL limiter which depends weakly on this value and K=5
fot the SLS limiter which seems to be the minimum value to limit diffusion (see
results with K=1 in section 5.4).
The results are presented in three ways : full (r, θ) cut planes, zoom in smaller
boxes in these cut planes to better see the influence of the limiters on small
structures and 1D diagnostics with the total energy, the quality factor (29), the
entropy, the L2 and TV norms.

RR n° 7467



42 Guterl et al

Comparison of results in (r, θ) cut planes

In figure 19 and 20, we present at different times (r, θ) profiles of the distribu-
tion function in the non-linear phase. The influence of the SLS or OSL limiters
is weak at the beginning of the linear phase, i.e. time t = 2290. Afterward, a lot
of small structures as filaments develop, where steep gradients exist. Therefore
for later times, the differences between schemes results increase because of the
different actions of SLS and OSL limiters.

• The PSM scheme shows spurious oscillations very quickly in the non-
linear phase. As seen in the 1D step test-case and in the 4D test-case with
low resolution, the PSM scheme develops oscillations when transporting
discontinuities or steep gradients which occurs in this flow where filaments
and vortex develop. Unfortunately, these oscillations lead to the crash of
the PSM simulation at final time presented t = 3637.

• The PSM-SLS scheme does almost develop no oscillations even in the
latest time. The price to pay is a qualitatively more diffused profile of
distribution function.

• The PSM-OSL scheme does neither develop oscillations at early times of
the non-linear phase. The OSL limiter produces less diffusion than the
SLS limiter. However, at late times the same kind of oscillations than the
PSM scheme develops.
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Figure 19: 4D simulations on Nr × Nθ = 256 × 512 cells (high resolution)
along (r, θ) with PSM (left), (center) SLS, K=5 and OSL (C=2) (right) at three
different times: t=2290 (top), t=2885 (bottom).
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Figure 20: 4D simulations on Nr ×Nθ = 256× 512 cells (high resolution) along
(r, θ) with PSM (left), SLS, K=5(center) and OSL, C=2(right) at three different
times: t= 3115(top), t= 3637 (bottom).
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Figure 21: Zoom on the zone A of the high-resolution (r, θ) profiles (fig. 19)
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Figure 22: Zoom on a the zone B of the high-resolution (r, θ) profiles (fig. 19)
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Comparison of 1D integrated quantities We present in figure 23 the time
evolution of the total energy, the entropy, the L2 and TV norms and the quality
factor (29). The results are for the PSM scheme with no limiter, the PSM-SLS
scheme with K=5 and K=10 and the PSM-OSL scheme with C=1 and C=2.

• The PSM scheme conserves the total energy the better until the simulation
crashes down. Entropy and L2 norm show that this scheme is the less
diffusive but with the highest TV norm, which comes from the spurious
oscillations seen on (r, θ) profiles and leads to a bad quality factor.

• On the contrary of what expected looking at (r, θ) profiles, the entropy
and L2 norm show that OSL limiter leads to a little more dissipation than
the SLS limiter. The total energy is a little better conserved with the
SLS limiter than with the OSL limiter at the beginning of the simulation,
but it constantly decreases while the total energy obtained with the OSL
limiter stabilise at late times.

• The quality factor is a little better with PSM-SLS than with PSM-OSL.
However, both achieve the objective of stabilising the PSM scheme oscil-
lations.
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Figure 23: Total energy (left top), entropy (right top), norm L2 (left bottom)
and TV norm (right bottom) for the 4D simulations (high resolution), quality
factor Q on the lower part.
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6 Conclusion

In this paper, we have investigated conservative schemes for a Vlasov 4D drift-
kinetic model for plasma turbulence. These schemes should be accurate to bear
long time simulations, so we investigate fourth order schemes. However, high
order schemes usually experience difficulties when dealing with steep gradients
in the flow, which happens when turbulence develops thin structures or vortices.
In particular, spurious oscillations may appear which are not damped by Vlasov
models.
We thus have tested limiters to cut off these oscillations. It consists in adding
diffusion to the high order scheme at locations where oscillations may appear,
i.e. at steep gradients. Then two questions show up: how to introduce diffusion
in the scheme and how to detect the location where diffusion is needed. Of
course, it should be done efficiently without loosing the accuracy of the scheme
by introducing too much diffusion. We have tested the LAG and PSM schemes
and the Umeda, ENT, OSL, SLS limiters, which use quite different strategies.
We have tested all the schemes on a 1D step linear advection test-case and on
a 4D drift-kinetic model test-case.
Another question is how to quantify the action of limiters and to propose a
quantitative way of comparison among them. In a classical way, we have checked
the conservation of the Vlasov equation invariants as the L2 norm, the entropy
and the total energy for the drift-kinetic model. Even if these quantities permit
to compare the behaviour of the schemes, they do not provide a quantitative
way to tell one scheme is better than another. We propose an attempt for a
quality factor Q (29), based on the dissipation measured with the L2 norm and
spurious oscillations measured with the total variation TV norm. It gives a clear
answer the question which is the best of two schemes, but obviously it is still
subjective because of the choice of quality factor itself. However, comparison of
the schemes results with this quality factor is in good agreement with intuition
when looking at results graphs in 1D, but in 4D it helps to evaluate the balance
between diffusion and spurious oscillations. At the end of this work, we will
not conclude that one scheme is better than another, we just have given these
results and tools to help the reader to decide by himself.
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7 Annexes

7.1 Annexe A: Detailed LAG reconstruction

We give hereafter detailed calculations for the LAG reconstruction.
First, we build the primitive function G at the characteristic feet:

gn+1
i = G(x∗

i+1/2)−G(x∗
i−1/2)

G(x∗
i+1/2) =

∫ x∗
i+1/2

x−1/2

gnj(i)(x)dx

G(x∗
i+1/2) is given by the interpolation with Lagrange polynoms:

G(x) =

i+2∑

j=i−1

Gj−1/2Lj(x), x ∈ [xi−1/2, xi+1/2]

where Lj are the Lagrange polynoms defines as:

Lj(x) =

i+2∏

k=i−1,k 6=j

x− xk−1/2

xj−1/2 − xk−1/2

Hence,

Li−1(x) =

i+2∏

k=i−1,k 6=i−1

x− xk−1/2

xi−3/2 − xk−1/2

Li(x) =
i+2∏

k=i−1,k 6=i

x− xk−1/2

xi−1/2 − xk−1/2

Li−1(x) =

i+2∏

k=i−1,k 6=i+1

x− xk−1/2

xi+1/2 − xk−1/2

Li−1(x) =

i+2∏

k=i−1,k 6=i+2

x− xk−1/2

xi+3/2 − xk−1/2

We note x = xi+1/2 − α, α > 0 then

Li−1(x) =

i+2∏

k=i−1,k 6=i−1

−α+ xi+1/2 − xk−1/2

xi−3/2 − xk−1/2

Li(x) =

i+2∏

k=i−1,k 6=i

−α+ xi+1/2 − xk−1/2

xi−1/2 − xk−1/2

Li−1(x) =

i+2∏

k=i−1,k 6=i+1

−α+ xi+1/2 − xk−1/2

xi+1/2 − xk−1/2

Li−1(x) =
i+2∏

k=i−1,k 6=i+2

−α+ xi+1/2 − xk−1/2

xi+3/2 − xk−1/2
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Assuming ∆x = xi+1/2 − xi−1/2, ∀i,

Li−1(x) =

i+2∏

k=i−1,k 6=i−1

−α+∆x(i − k + 1)

∆x(i − 1− k)

Li(x) =

i+2∏

k=i−1,k 6=i

−α+∆x(i − k + 1)

∆x(i − k)

Li−1(x) =
i+2∏

k=i−1,k 6=i+1

−α+∆x(i − k + 1)

∆x(i + 1− k)

dLi−1(x) =

i+2∏

k=i−1,k 6=i+2

−α+∆x(i − k + 1)

∆x(i + 2− k)

Writing β = α/∆x, we deduce:

Li−1(x) =

i+2∏

k=i−1,k 6=i−1

−β + (i− k + 1)

(i − 1− k)

Li(x) =
i+2∏

k=i−1,k 6=i

−β + (i− k + 1)

(i− k)

Li+1(x) =

i+2∏

k=i−1,k 6=i+1

−β + (i− k + 1)

(i + 1− k)

Li+2(x) =

i+2∏

k=i−1,k 6=i+2

−β + (i− k + 1)

(i + 2− k)

and then,

Li−1(x) =
−β + (i − (i) + 1)

(i− 1− (i))

−β + (i − (i+ 1) + 1)

i− 1− (i+ 1)

−β + (i − (i+ 2) + 1)

(i− 1− (i+ 2))

Li(x) =
−β + (i − (i− 1) + 1)

(i− (i − 1))

−β + (i − (i+ 1) + 1)

(i− (i + 1))

−β + (i − (i+ 2) + 1)

(i − (i+ 2))

Li+1(x) =
−β + (i − (i− 1) + 1)

(i+ 1− (i− 1))

−β + (i − (i+ 2) + 1)

(i+ 1− (i+ 2))

−β + (i − (i) + 1)

(i+ 1− (i))

Li+2(x) =
−β + (i − (i− 1) + 1)

(i+ 2− (i− 1))

−β + (i − (i) + 1)

(i+ 2− (i))

−β + (i − (i+ 1) + 1)

(i+ 2− (i+ 1))

Li−1(x) =
−β + 1

−1

−β

−2

−β − 1

−3

Li(x) =
−β + 2

1

−β

−1

−β − 1

−2

Li+1(x) =
−β + 2

2

−β − 1)

−1

−β + 1

1

Li+2(x) =
−β + 2

3

−β + 1

2

−β

1
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Li−1(x) = 1/6(β − 1)(β)(β + 1)

Li(x) = 1/2(β − 2)(β)(β + 1)

Li+1(x) = 1/2(β − 2)(β + 1)(β − 1)

Li+2(x) = −1/6(β − 2)(β − 1)(β)

Li−1(x) = 1/6(β3 − β)

Li(x) = −1/2(β3 − β2 − 2β)

Li+1(x) = 1/2(β3 − 2β2 − β + 2)

Li+2(x) = −1/6(β3 − 3β2 + 2β)

Hence

G(x) = 1/6Gi−3/2(β
3 − β)

− 1/2Gi−1/2(β
3 − β2 − 2β)

+ 1/2Gi+1/2(β
3 − 2β2 − β + 2)

− 1/6Gi+3/2(β
3 − 3β2 + 2β)

Finally, the interpolation can be written:

G(x) = β3(1/6Gi−3/2 − 1/2Gi−1/2 + 1/2Gi+1/2 − 1/6Gi+3/2)

+ β2(1/2Gi−1/2 −Gi+1/2 + 1/2Gi+3/2)

+ β(−1/6Gi−3/2 +Gi−1/2 − 1/2Gi+1/2 − 1/3Gi+3/2)

+ Gi+1/2

We note x = xi+1/2 −∆xβ = xi−1/2 −∆x(β − 1)
and by defining θ = 1− β > 0, x = xi−1/2 +∆xθ, then

G(x) = 1/6Gi−3/2((1 − θ)3 − (1− θ))

− 1/2Gi−1/2((1 − θ)3 − (1− θ)2 − 2(1− θ))

+ 1/2Gi+1/2((1 − θ)3 − 2(1− θ)2 − (1− θ) + 2)

− 1/6Gi+3/2((1 − θ)3 − 3(1− θ)2 + 2(1− θ)))

G(x) = 1/6Gi−3/2(−θ3 + 3θ2 − 2θ)

− 1/2Gi−1/2(−θ3 + 2θ2 + θ − 2)

+ 1/2Gi+1/2(−θ3 + θ2 + 2θ)

− 1/6Gi+3/2(−θ3 + θ)

G(x) = θ3(−1/6Gi−3/2 + 1/2Gi−1/2 − 1/2Gi+1/2 + 1/6Gi+3/2)

+ θ2(1/2Gi−3/2 −Gi−1/2 + 1/2Gi+1/2)

+ θ(−1/3Gi−3/2 − 1/2Gi−1/2 +Gi+1/2 − 1/6Gi+3/2)

+ Gi−1/2
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Using the previous formula with x = xi+1/2−∆xβ, β < 0, i → i+1, θ → −β,
we obtain for negative displacement

G(x) = β3(1/6Gi−1/2 − 1/2Gi+1/2 + 1/2Gi+3/2 − 1/6Gi+5/2)

+ β2(1/2Gi−1/2 −Gi+1/2 + 1/2Gi+3/2)

+ β(1/3Gi−1/2 + 1/2Gi+1/2 −Gi+3/2 + 1/6Gi+5/2)

+ Gi+1/2

We obtain the following results with x = xi+1/2 −∆xβ:
if β > 0,

G(x) = β3(1/6Gi−3/2 − 1/2Gi−1/2 + 1/2Gi+1/2 − 1/6Gi+3/2)

+ β2(1/2Gi−1/2 −Gi+1/2 + 1/2Gi+3/2)

+ β(−1/6Gi−3/2 +Gi−1/2 − 1/2Gi+1/2 − 1/3Gi+3/2)

+ Gi+1/2

if β < 0,

G(x) = β3(1/6Gi−1/2 − 1/2Gi+1/2 + 1/2Gi+3/2 − 1/6Gi+5/2)

+ β2(1/2Gi−1/2 −Gi+1/2

+ 1/2Gi+3/2)

+ β(1/3Gi−1/2 + 1/2Gi+1/2 −Gi+3/2 + 1/6Gi+5/2)

+ Gi+1/2

We define gni ∆x = Gi+1/2 −Gi−1/2. The previous expressions become:
if β > 0,

G(x) = β3(1/6Gi−3/2 − 1/6Gi−1/2 − 2/6Gi−1/2

+ 2/6Gi+1/2 + 1/6Gi+1/2 − 1/6Gi+3/2)

+ β2(1/2Gi−1/2 − 1/2Gi+1/2 − 1/2Gi+1/2 + 1/2Gi+3/2)

+ β(−1/6Gi−3/2 + 1/6Gi−1/2 + 5/6Gi−1/2

− 5/6Gi+1/2 + 1/3Gi+1/2 − 1/3Gi+3/2)

+ Gi+1/2

= β3(−1/6gni−1 + 1/3gni − 1/6gni+1)

+ β2(−1/2gni + 1/2gni+1)

+ β(1/6gni−1 − 5/6gni − 1/3gni+1)

+ Gi+1/2
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if β < 0,

G(x) = β3(1/6Gi−1/2 − 1/6Gi+1/2 − 2/6Gi+1/2

+ 2/6Gi+3/2 + 1/6Gi+3/2 − 1/6Gi+5/2)

+ β2(1/2Gi−1/2 − 1/2Gi+1/2 − 1/2Gi+1/2 + 1/2Gi+3/2)

+ β(1/3Gi−1/2 − 1/3Gi+1/2 + 5/6Gi+1/2

− 5/6Gi+3/2 − 1/6Gi+3/2 + 1/6Gi+5/2)

+ Gi+1/2

= β3(−1/6gni + 2/6gni+1 − 1/6gni+2)

+ β2(−1/2gni + 1/2gni+1)

+ β(−1/3gni − 5/6gni+1 + 1/6gni+2)

+ Gi+1/2

Let now compare theses fluxe expressions with the regular expression we
found for the Hermite formulation noticed φk+1/2,jk+1/2=k(β).

7.2 Positive displacement: β > 0, δ = 1, jk+1/2 = k

φk+1/2,jk+1/2=k(β)

∆x
= g+k−1/2

(
β2(β − 1)

)

+ g−k+1/2

(
β(1 − β)2

)

+ ḡk
(
β2(3− 2β)

)

= β3(g+k−1/2 + g−k+1/2 − 2ḡk)

+ β2(−g+k−1/2 − 2g−k+1/2 + 3ḡk)

+ β(g−k+1/2)

We have introduced the value of the distribution at the cell’s faces that we note
g+k−1/2 = g(x ≧ xk−1/2) and g−k+1/2 = g(x ≦ xk+1/2). We set these coefficients:

{

g+k−1/2 = 1/3gnk−1 + 5/6gnk − 1/6gnk+1

g−k+1/2 = −1/6gnk−1 + 5/6gnk + 1/3gnk+1

that leads to:

φk+1/2,jk+1/2=k(β)

∆x
= gk−1/2

(
β2(β − 1)

)

+ gk+1/2

(
β(1 − β)2

)

+ ḡk
(
β2(3 − 2β)

)

= β3(1/3gnk−1 + 5/6gnk − 1/6gnk+1 − 1/6gnk−1

+ 5/6gnk + 1/3gnk+1 − 2gnk )

+ β2(−1/3gnk−1 − 5/6gnk + 1/6gnk+1

+ 1/3gnk−1 − 10/6gnk − 2/3gnk+1 + 3gnk+1)

+ β(−1/6gnk−1 + 5/6gnk + 1/3gnk+1)
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φk+1/2,jk+1/2=k(β)

∆x
= gk−1/2

(
β2(β − 1)

)

+ gk+1/2

(
β(1− β)2

)

+ ḡk
(
β2(3− 2β)

)

= β3(1/6gnk−1 − 1/3gnk + 1/6gnk+1)

+ β2(1/2gnk − 1/2gnk+1)

+ β(−1/6gnk−1 + 5/6gnk + 1/3gnk+1)

Remembering that

G(β) = β3(−1/6gni−1 + 1/3gni − 1/6gni+1)

+ β2(−1/2gni + 1/2gni+1)

+ β(1/6gni−1 − 5/6gni − 1/3gni+1)

+ Gi+1/2

we deduce:
G(x) = −φk+1/2,jk+1/2=k(β) +Gi+1/2

7.3 Negative displacement δ = 0

φk+1/2,jk+1/2=k+1(β)

∆x
= gk+1/2

(
β(β + 1)2

)

+ gk+3/2

(
β2(1 + β)

)

+ gnk+1

(
β2(−3− 2β)

)

= β3(g−k+3/2 + g+k+1/2 − 2gnk+1)

+ β2(2g+k+1/2 + g−k+3/2 − 3gnk+1)

+ β(g+k+1/2)

G(x) = β3(−1/6gni + 2/6gni+1 − 1/6gni+2)

+ β2(−1/2gni + 1/2gni+1)

+ β(−1/3gni − 5/6gni+1 + 1/6gni+2)

+ Gi+1/2

We set these coefficients:
{

g+k+1/2 = 1/3gnk + 5/6gnk+1 − 1/6gnk+2

g−k+3/2 = −1/6gnk + 5/6gnk+1 + 1/3gnk+2

φk+1/2,jk+1/2=k+1(β)

∆x
= β3(1/3gnk + 5/6gnk+1 − 1/6gnk+2 − 1/6gnk

+ 5/6gnk+1 + 1/3gnk+2 − 2gnk+1)

+ β2(2/3gnk + 10/6gnk+1 − 2/6gnk+2 − 1/6gnk

+ 5/6gnk+1 + 1/3gnk+2 − 3gnk+1)

+ β(1/3gnk + 5/6gnk+1 − 1/6gnk+2)
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φk+1/2,jk+1/2=k+1(β)

∆x
= β3(1/6gnk − 1/3gnk+1 + 1/6gnk+2)

+ β2(1/2gnk − 1/2gnk+1)

+ β(1/3gnk + 5/6gnk+1 − 1/6gnk+2)

Remembering that:

G(x) = β3(−1/6gni + 1/3gni+1 − 1/6gni+2)

+ β2(−1/2gni + 1/2gni+1)

+ β(−1/3gni − 5/6gni+1 + 1/6gni+2)

+ Gi+1/2

we deduce
G(x) = −φk+1/2,jk+1/2=k+1(β)/∆x +Gi+1/2

To conclude,

gnewi = −φk+1/2,jk+1/2
(β)/∆x +Gi+1/2 +Gk−1/2,jk−1/2

(β)/∆x−Gi−1/2

gnewi = gni − (φk+1/2,jk+1/2
(β) + φk−1/2,jk−1/2

(β))/∆x

7.4 Annexe B: Algorithms

We present some algorithms which are representative of the Gysela algorithms.
We change the notation of the flux φi+1/2 to Hi+1/2 for practical reasons. The
1D advection equation are solved with Algo. (1).
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Algorithm 1 Advection

Require: (xk)k=−1/2···N+1/2 , (ḡ
n
k )k=0···N

1: a=1,b=-1,c=0,p=1,q=4
2: L,U=MatrixCoefficient(a,b,c,p,q)

3:

(

gnk−1/2

)

k=0···N+1
=CoefficientHermite((ḡnk )k=0···N ,L,N,0,N+1,a,b,c)

4: β=FootCharacteristic(...)
5: if β = 0 then

6: H0−1/2 = 0
7: else

8: if β > 0 then

9: H0−1/2 = βḡn0
10: else

11: H0−1/2=FluxComputation(ḡn0 , g
n
0−1/2, g

n
0+1/2, β)

12: end if

13: end if

14: for i=1:N-1 do

15: β=FootCharacteristic()
16: if β = 0 then

17: Hi+1/2 = 0
18: else

19: if β > 0 then

20: j=i
21: else

22: j=i+1
23: end if

24: Hi+1/2=FluxComputation(ḡnj , g
n
j−1/2, g

n
j+1/2, β)

25: end if

26: end for

27: β=FootCharacteristic(...)
28: if β = 0 then

29: HN+1/2 = 0
30: else

31: if β < 0 then

32: HN+1/2 = βḡnN
33: else

34: HN+1/2=FluxComputation(ḡnN , gnN−1/2, g
n
N+1/2, β)

35: end if

36: end if

37: for i=1:N-1 do

38: gn+1
i = gni − (Hi+1/2 −H(i−1)+1/2)

39: end for

40: return gn+1
k=0···N
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7.4.1 FluxComputation and FootCharacteristic

Algorithm 2 FluxComputation

Require: ḡnjk , g
n
jk−1/2, g

n
jk+1/2, β

1: if β > 0 then

2: δ = 0
3: else

4: δ = 1
5: end if

6: Hk+1/2 = gjk−1/2

(
β(1− δ) + β2(2− 3δ) + β3

)

7: Hk+1/2 = Hk+1/2 + gjk+1/2

(
βδ + β2(1− 3δ) + β3

)

8: Hk+1/2 = Hk+1/2 + ḡjk
(
β2(−3 + 6δ) + β3(−2)

)

9: return Hk+1/2

Algorithm 3 FootCharacteristic

1: return x∗
i+1/2

7.4.2 Hermite coefficient computation for natural conditions

For a domain with natural boundary conditions, we compute the value of the
distribution at the cell’s faces gk−1/2 and gk+1/2. We want to solve: AX = B
and we decompose A as A = LU with Algo. (5) then we solve X = U−1L−1B
with Algo. (4).

Algorithm 4 CoefficientHermiteNatural

Require: (ḡnk )k=0···N , (Lk)k=0···N+1 , (Uk)k=0···N+1,0,N + 1,a,b,c
1: X0 = 5ḡn0
2: for k = 1 : N do

3: Xk = 3
(
ḡnk−1 + ḡnk

)
− Lk−1Xk−1

4: end for

5: XN+1 = 5ḡnN − LN+1XN−1 − LNXN

6: XN+1 = XN+1

UN+1

7: for k = N : 2,−1 do

8: Xk =
Xk−Xk+1

Uk

9: end for

10: X1 = X1−(1−c/a)X2

Uk

11: X0 = X0−bX1−cX2

U0

12: return
(
gk−1/2

)

k=0···N+1

We compute the matrix coefficients of the LU decomposition.

[
A
]
=
[
L
] [
U
]
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a b c 0 · · · · · · 0

p q p 0 · · · · · ·
...

0 p q p 0 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

...
... · · · 0 p q p 0
... · · · · · · 0 p q p
0 · · · · · · 0 d e f


















=


















1 0 · · · · · · · · · · · · 0

L1 1 0 · · · · · · · · ·
...

0 L2 1 0 · · · · · ·
...

...
. . .

. . .
. . .

. . .
. . .

...
... · · · 0 LN−2 1 0

...
... · · · · · · 0 LN−1 1 0
0 · · · · · · 0 LN+1 LN 1



































U0 b c 0 · · · · · · 0

0 U1 1− c
a 0 · · · · · ·

...
... 0 U2 1 0 · · ·

...
...

. . .
. . .

. . .
. . .

. . .
...

... · · · · · · 0 UN−1 1 0

... · · · · · · · · · 0 UN 1
0 · · · · · · · · · · · · 0 UN+1


















Algorithm 5 MatrixCoefficientNatural

Require: a,b,c,d,e,f,p,q,0,N+1
1: U0 = a
2: L0 = p

U0

3: U1 = q − L0

(
1− c

a

)

4: L1 = p
U1

5: U2 = 4− L1

(
1− c

a

)

6: for k = 2 : N − 1 do

7: Lk = p
Uk

8: Uk+1 = q − Lk

9: end for

10: LN+1 = d
UN−1

11: LN = e−LN+1

UN

12: dN+1 = f − UN

13: return L,U

7.4.3 Hermite coefficient computation for periodic conditions

We compute the value of the distribution at the cell’s faces gk−1/2 and gk+1/2.
With periodic boundary conditions, we decompose A as A = LDLT with Algo.
(7) then we solve Y = D−1L−1B with Algo. (6).
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Algorithm 6 CoefficientHermitePeriodic

Require: (ḡnk )k=0···N−1 , (Lk)k=0···N , (UDk)k=0···N ,a,b,c
1: X0 = 3(ḡnN + ḡn0 )
2: for k = 1 : N − 1 do

3: Xk = 3
(
ḡnk + ḡnk+1

)
− Lk−1Xk−1

4: end for

5: S=0
6: for m = 0 : N − 2 do

7: S = S + δmXm

8: end for

9: XN = 3(ḡnN + ḡn0 )− sum − LN−1XN−1

10: for m = 0 : N do

11: Xm = Xm

Dm

12: end for

13: XN−1 = XN−1 − L(N − 1)XN

14: for k = N − 2 : 0,−1 do

15: Xk = Xk − LkXk+1 − δkXN

16: end for

17: return
(
gk−1/2

)

k=0···N

We compute the matrix coefficients of the LDL decomposition.

[
A
]
=
[
L
] [
D
] [
LT
]


















q p 0 0 · · · · · · 1

p q p 0 · · · · · ·
...

0 p q p 0 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

...
... · · · 0 p q p 0
... · · · · · · 0 p q p
1 · · · · · · 0 0 p q


















=


















1 0 · · · · · · · · · · · · 0

L1 1 0 · · · · · · · · ·
...

0 L2 1 0 · · · · · ·
...

...
. . .

. . .
. . .

. . .
. . .

...
... · · · 0 LN−2 1 0

...
... · · · · · · 0 LN−1 1 0
δ1 δ2 · · · · · · δN−2 LN−1 1



































D1 0 0 0 · · · · · · 0

0 D1 0 0 · · · · · ·
...

... 0 D2 0 0 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

...
... · · · · · · 0 DN−2 0 0
... · · · · · · · · · 0 DN−1 0
0 · · · · · · · · · · · · 0 DN
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Algorithm 7 MatrixCoefficientPeriodic

Require: p,q,istart,iend
1: D1 = q
2: L1 = p

D1

3: δ1 = 1
D1

4: for k = 2 : N − 2 do

5: Dk = q − pLk−1

6: Lk = p
Dk

7: δk = −δk−1
p
Dk

8: end for

9: DN−1 = q − pLN−2

10: LN−1 = p−pδN−2

DN−1

11: DN = q −
∑N−2

j=1 Diδi
2 −DN−1L

2
N−1

12: return L,D
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Latu, E. Sonnendrücker, L. Villard, Global full-f gyrokinetic simula-
tions of plasma turbulence, Plasma Phys. Control. Fus., Volume 49B,
pp. 173–182 (december 2007).

[9] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P.
Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J.
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stability of the time splitting scheme for the one-dimensional and rel-
ativistic Vlasov-Maxwell system, J. Comput. Phys., Vol. 185, Issue 2,
pp. 512–531 (2003).

[11] R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser
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