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Abstract—This paper deals with the issue of features
construction and selection for signals acquired during non-
invasive Brain-Computer Interface (BCI) experiments. The
Echo State Network (ESN) architecture, a reservoir comput-
ing approach proposed by H. Jaeger in 2001, is first adapted
to the specific issue of EEG signals classification. In order to
predict the performed task at a relatively low computational
cost, a basic ESN architecture is combined with regularized
logistic regression trained following aggressive subsampling
principles. The resulting method is shown to significantly
outperform classification rates obtained using raw EEG sig-
nals. Basic single ESNs are then integrated to take advantage
of the fruitful combination between ensemble learning tech-
niques and aggressive subsampling principles. The resulting
novel architecture, constituting an Uncooperative Democratic
Echo State Community (UDESC), yields one of the first
attempt to provide an efficient subject-independent features
construction algorithm. Based on the generative power of
individual ESNs as well as the discriminative abilities of
ensemble learning combined with aggressive subsampling,
UDESC is shown to advantageously integrate the knowledge
acquired by each single ESN. The results shown along this
paper make an extensive use of a real dataset made available
to the BCI community during BCI Competition 2008. This
dataset consists of four subjects involved in a two-class motor-
imagery BCI experiment.

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) aim at establishing
a direct communication pathway between users will and
electronic devices. Initially designed to provide people
suffering from severe motor diseases with a tool to re-
store communication and movement [1], their applica-
tions nowadays range from medical and rehabilitation
purposes to video games industry. Systems usually rely
on the identification of predefined mental tasks within
the ongoing brain activity. A typical example is Mo-
tor Imagery (MI) and its resulting somatotopical and
frequency-specific signals, which allows, e.g., the control
of two-dimensional cursors [2]. Such signals are typically
measured using electroencephalography (EEG). Over the
past twenty years, signal processing methods have been
extensively developed and used for the on-line extraction
of relevant information from electrical EEG measure-
ments. Usual methodologies entail the training of subject-
dependent linear spatial filters, which form a task-specific
projection basis [3], [4]. Features such as spectral power
or autoregressive coefficients are then calculated in this
basis to train a subject-specific classifier able to elucidate
the performed task from unseen data.

Recent advances in the machine learning community
showed that good generalization of complex dynamical
signals can be achieved with non-linear architectures
called Echo State Network (ESN) [5]. The idea of ESN
is to use a fixed, randomly and sparsely connected Recur-
rent Neural Network (RNN) of simple units. These units
receive a time-invariant mixture of input signals, obey sim-
ple update equations responsible for a fading memory ef-
fect and constitute a dictionary of complex signals, which
can generate any kind of output through learned readout
functions. ESNs are a special case of Reservoir Computing
(RC) architectures, which subsume the idea of combining
dynamical systems with memoryless readout functions as
computational devices [6], [7]. Although ESNs might be
a perfect alternative when subject-independent features
construction techniques are needed, they have been seldom
used in the BCI context [8]. The present paper addresses
issues raised by the use of ESNs in BCI contexts. Follow-
ing ideas firstly proposed in [9], proposed solutions will
make an extensive use of ensemble learning techniques
to increase robustness [10] and aggressive subsampling to
maintain a low computational cost. A critical factor of
difficulty is indeed the labeling noise [11], [12]. During
BCI experiments, subjects are instructed to perform MI
tasks during 3 to 4 seconds. Two issues arise from this
methodology, first experimenters cannot assess whether
the task is actually performed, second subjects are unlikely
to perform the task during 3 seconds. The contribution
of this work is to provide a subject-independent features
construction architecture called UDESC (Uncooperative
Democratic Echo State Community), which shows good
generalization performances. Results are demonstrated on
dataset 1 of BCI Competition IV.

This paper is organized as follows. The first section
is devoted to the description of the basic Echo State Net-
work architecture, the learning algorithm and the proposed
extension called Uncooperative Democratic Echo State
Community (UDESC). The real dataset is then described
in the next section. Results are shown in a third section.
They are lastly discussed in a final section.

II. OVERVIEW OF THE METHOD

A. Echo State Network Architecture

Echo State Networks (ESNs) have been introduced in
2001 by H. Jaeger [5]. We first fix the notations and
present the basic principles of ESNs. The global structure



of ESNs is depicted in figure 1. ESNs consist of K
input units, typically the EEG signals or frequency-filtered
measurements. K thus corresponds to the number of
EEG sensors. Activations of input units are real-valued,
u(t) = [u1(t), · · · , uK(t)]

T
∈ R

K . The internal units
form the reservoir of the ESN, it consists of N single
neurons. The activations of internal units are also real-
valued numbers x(t) = [x1(t), · · · , xN (t)]

T
∈ R

N .
p(t) = [p1(t), · · · , pL(t)]

T
∈ [0, 1]L denotes the output

layer. Although general formulation of ESNs considered
real-valued output units, BCI contexts involve discrimina-
tion. Thus output units represent probabilities and for all
t,
∑L

l=1 pl(t) = 1. Input units are linearly projected onto
the reservoir units using fixed weights that are gathered
in a matrix Win ∈ R

N×K . The temporal evolution of the
reservoir activations is governed by the function fact and
interconnection weights gathered into W ∈ R

N×N . The
activation of internal units is updated according to

x(n+ 1) = fact
(

W in
u(n+ 1) +Wx(n)

)

, (1)

where fact = tanh(.). It should be noted that all previously
mentioned weights are fixed. Win is a random dense matrix
such that

[Win]i,j =

{

− 1
K

with prob 1/2
1
K

with prob 1/2
, (2)

while W is a sparse random matrix characterized by
the density of non-zero coefficients and the maximum
absolute eigenvalue. In [5], a sufficient condition such
that the ESN has the interesting “echo state” property
is that the maximum absolute eigenvalue is 1. Many
authors yet observed interesting properties for matrices
W with maximum absolute eigenvalue greater than 1. In
the following the ESNs will have a maximum eigenvalues
of 0.8 (obtained by scaling a randomly chosen matrix)
and a density of connections of 0.5%. Coefficients of W
were chosen among the vector [−1, 0, 1] with probabilities
[0.0025, 0.995, 0.0025]. The influence of these values on
the final result is negligible as far as the density of
connection remains small [7].

Figure 1. A simple Echo State Network (ESN) architecture.

In order to learn a matching between the reservoir
activation and the task performed by the subjects, a
logistic regression is used. Yet the activation values are
not directly used to produce the probabilities, activations
are rather integrated on small temporal windows. This step

is mathematically written

[x′]n(t) = log

(

1

T

t
∑

τ=t−T+1

[x]n(τ)
2

)

. (3)

In the remaining of this paper T is set to 80, which
corresponds to 0.8 s as the frequency rate considered
further will be 100 Hz. A logistic regression is then applied
to produce the outputs. Recall that the logistic regression
model is written in the case of two-class outputs

ln
P(y(t) = c1|x

′(t))

P(y(t) = c−1|x′(t))
= Wout0 +

N
∑

n=1

Woutx
′(t) , (4)

where Wout ∈ R
N and c±1 represent the available classes.

Output probabilities can thus be deduced from this model
by writing

P(y(t) = c1|x
′(t)) =

exp(Wout0 +
∑N

n=1 Woutx
′(t))

1 + exp(Wout0 +
∑N

n=1 Woutx
′(t))

and using the fact that P(y(t) = c1|x
′(t)) + P(y(t) =

c−1|x
′(t)) = 1. Wout gathers the only coefficients that are

learned in the architecture.
Note that, strictly speaking, ESNs comprise the defini-

tion of an architecture and a supervised learning principle
based on linear regression. The formulation proposed thus
slightly differs from the initial one in the sense that the
reservoir-to-output function has been adapted for BCI
purposes by introducing the logistic regression output
function. General ESN formulations mention potential
output-to-reservoir back-propagations as well as input-to-
output direct projections. These possibilities have been
discarded in this work for the sake of simplicity and
computational cost.

B. Aggressive Subsampling Learning

Training the architecture depicted in figure 1 is done in a
supervised fashion. As the number of reservoir units can
be huge, the choice of Wout (equivalent to the selection
of dynamics within the reservoir dictionary) is crucial.
Obviously most of the reservoir units will be useless
and regularizations techniques based on ℓ1/ℓ2 norms have
to be employed to select the most useful ones. The
elasticnet algorithm is used [13], [14] to obtain sparse Wout

solutions. Regularizations in elasticnet can be weighted
through the coefficients α and λ. In the remaining of this
paper, α will take the commonly used value of 0.9 and
the influence of λ will be studied. Note that increasing
the parameter λ results in selecting fewer dimensions.

Given a training set consisting of trials lasting a few
seconds, different learning strategies can then be adopted.
Note that at each time t, a feature is computed by the
ESN, thus the amount of data is huge. Two substantial
drawbacks would thus result from learning features com-
puted at each time point t:

• the computational learning cost, namely the elasticnet

algorithm that finds Wout coefficients along the λ
regularization path, would be huge;



• as training features are likely to contain a high
proportion of noisy labels due to tasks performance
uncertainty, resulting logistic regression coefficients
are not reliable.

Following principles explained in [9], an aggressive sub-
sampling technique is therefore used to train the regu-
larized logistic regression. This drastically decreases the
computational load of the learning step because approxi-
mately only 2 % of the features are used to train a single
classifier. Although robustness is of course not achieved
in the case of one single ESN compared to using all
time points, the aggressive subsampling has been shown to
greatly improve robustness when ensembles of classifiers
are used. This idea leads to the Uncooperative Democratic
Echo State Community (UDESC).

C. Echo State Community

This section describes the core of the article. The ESN
architecture and the aggressive learning principle have
been described in previous sections. We will now explain
how ESNs can be combined to take advantage of ensemble
learning principles [10]. The basic idea is depicted in
figure 2. Let M denote the number of ESNs in the
community. EEG signals acquired using K electrodes are
band-passed filtered around the frequency {fc}[1,M ]. This
constitutes a multi-dimensional filter bank from which
the output is provided to the corresponding ESN. The
single ESN components are used to predict the set of
probabilities {Pm(c1)}m∈[1..M ] and {Pm(c−1)}m∈[1..M ],
which are combined to yield the probabilities

P(c±1) =

M
∑

m=1

Pm(c±1) (5)

Figure 2. Uncooperative Democratic Echo State Community (UDESC)

The resulting architecture is called Uncooperative
Democratic Echo State Community (UDESC). It is com-
posed of independent single ESNs (hence Uncooperative),
from which outputs are combined in a fashion resembling

to a voting procedure (hence Democratic). Note that each
ESN has a fixed random structure.

This architecture is trained using the aggressive subsam-
pling technique. It means that each single ESN indepen-
dently choose its own small training dataset among the set
of available training examples (about 2 % of the training
set).

III. PARADIGM AND DATASET

BCI Competition 2008 provided a dataset untitled “mo-
tor imagery, uncued classifier application”, in which par-
ticipants had to continuously identify the mental state of
the subject [15]. The data were recorded from four healthy
subjects. The experiment consisted in two motor-imagery-
based sessions without feedback. Only the training session
is used in this paper. The four subjects had to choose
two classes of MI among left hand, right hand and foot.
Instructions about the mental task to be realized were
presented as visual cues on a computer screen. Cues were
displayed for a period of 4 s during which the subject
had to perform the cued MI. Two hundred trials were
performed (one hundred of each task). The datasets were
recorded at 1000 Hz, using 59 EEG sensors. Data were
downsampled at 100 Hz for analysis purposes.

IV. RESULTS

A. Single Echo State Network

Single Echo State Networks (ESN) are first compared
to using raw EEG signals (RAW). A common band-pass
filtering is first used in both cases. As motor imagery
tasks are known to mainly involve frequency bands around
10 Hz, cut-off frequencies are set to 8 and 12 Hz. The
number of units in the reservoir is set to various values
ranging from 100 to 700. Various regularizations values
λ are used, ranging from 10−3.5 to 10−0.8. Note that
an efficient coordinate descent is used to compute the
weights Wout along the whole regularization path, hence
drastically reducing the computational load. While the
task was performed during about 4 seconds, 3 seconds
were actually used and the remaining data were discarded
from the analysis. The generalization performances are
evaluated using a 1 × 5 cross-validation procedure. The
global dataset is equally split between the training and
the test sets. Whereas only 2 % of the training set is used
to train the classifier, prediction is done using the whole
test set. This yield a classification rate corresponding to
the proportion of correctly classified time points. This
procedure is applied five times and the average is depicted
on figure 3.

Results corresponding to subjects a, b, g and f are pre-
sented. The use of the ESN architecture clearly improves
the classification rate for subjects a, g and f for values of
N greater than 300. An important point is that the same
regularization parameter can be chosen for each subject
(λ = 10−2). It has to be noticed that subject b completely
differs from the other subjects. The performances obtained
by ESN and RAW methods perform similarly bad for this
subject. While the improvement achieved with N = 500
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Figure 3. Generalization performances of the ESN as well as the RAW approaches versus the value of the regularization parameter λ.

compared to N = 300 is still sensible, results obtained for
values of N greater than 500 are not sensibly different.
These observations support the parameters chosen for
performing simulations with UDESC. In the remaining of
this paper, the number of units in the reservoirs is set
to N = 500 and the regularization parameter is set to
λ = 10−2.

B. Uncooperative Democratic Echo State Community

A similar evaluation procedure is employed for UDESC.
But contrary to the previous section, regularization param-
eter is fixed. The influence of the number of ESN in the
community is studied. Note also that the cut-off frequen-
cies of the filters are also tightly randomized in order to
increase the heterogeneity of each single ESN. Five cross-
validations are performed on equally sized train and test
sets using a UDESC community of 50 ESNs. The training
is done by each ESN using an independent subsample
of the training set, while the test phase is performed on
each time point of the test set. For computational reasons,
we do not perform the simulation for each separate value
of M but rather radomly choose among the 50 ESN a
subset to be combined to obtained the predicted class.
After applying this procedure 100 times for each value

of M and each cross-validation, a classification rate is
obtained for each value of M . The results are shown in
figure 4.

The influence of ensemble learning is clearly seen
on this figure. The median results using a community
size of 40 outperform the performances using one single
ESN. Classification rates clearly grow for community sizes
between 2 and 20 whereas improvements are small for
community sizes greater than 20.

V. DISCUSSION AND CONCLUSION

Echo State Networks have been proved to outperform
the raw EEG classifcation scores for 3 out of 4 subjects.
These results confirm the good generalization abilities
of the structure proposed by H. Jaeger in 2001 [5].
It should be noted that the ESN architecture used in
this paper has been greatly simplified over the general
structure presented initially by H. Jaeger. Notably the
output-to-reservoir back-propagation has been removed.
This obviously reduce the memory ability of the ESN but
also substantially simplify the learning. As computational
cost becomes crucial when dealing with cross-validation
procedures, back-propagation have thus been deliberately
removed. Including such weights will be considered in
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Figure 4. Performances obtained using various community sizes are depicted. Each boxplot summarizes the classification rates obtained by the choice
of 100 sets of M ESN among 50 available in 5 cross-validations. Note that learning and testing sets differ between each cross-validation whereas the
100 scores obtained by randomizing the choice of the M voting ESNs concern the same learning and test sets. Each boxplot hence summarizes 500
classification scores by showing the median (straight line inside the box), lower and upper quartile (edges of the box).

future extensions of this work. The absolute classification
scores obtained in this work, ranging from 53 % for subject
b to 75 % for subject a, are relatively low compared to
those usually reported in classical 2-class motor-imagery
BCIs. This is explained by the fact that the problem
considered in this work is much more complicated than the
usual ones. Whereas classical approaches aim at labeling
each trials corresponding to 4 seconds of recorded EEG
data, each time point was classified in the present work.
Temporal decisions across the trials should thus be inte-
grated in order to be able to compare the two approaches.
The ESN approach should rather be interpreted in the
context of asynchronous BCIs [3]. Asynchronous BCIs
relate to contexts where systems are not aware of tasks
timing information and the EEG signals have to be con-
tinuously decoded to decide whether subjects are sending
commands. Nevertheless a substantial difference between
this work and asynchronous BCIs lies in the identification
of idle states. Future work will consider the use of the
architectures proposed in this work for asynchronous BCI
paradigms.

Computational costs are crucial in BCI. Algorithms
should be able to be applied in real-time, which mean that
the time needed to process a time sample do not exceed the
time between two acquisition (sample rate). Basically, in
case of single ESNs, the operations needed to process one
time sample consist in matrix-vector multiplications and
non-linear functions. The global cost remains reasonable
as far as the sparse structure of the ESN reservoir is used.
Indeed, the matrix-vector multiplications implying dense
W would be time-consuming. Fortunately, the sparse
structure of W results in efficient implementations that
are linear in the number of non-zero coefficients in W .
The same principle should be used in the implementa-
tion to produce the probability output from the sparse
vector Wout. The proposed extension consisting in using
a community of ESN obviously lead to an increase of
the computational cost by a factor of M . As we have
seen, the number of ESN needed to obtain excellent
performances is quite small and do not jeopardize the
real-time specifications. Real-time is not necessary during
training but computational load needed by the UDESC



architecture during training step is negligible compared
to the classifier training algorithm, the use of aggressive
subsampling is mandatory to achieve reasonable training
times.

While this paper only dealt with two-class classification
problems, the basic ESN architecture and its combina-
tion with a multi-class logistic regression is natural. The
weights vector Wout then become a matrix containing
weights to be applied to obtain the probability of each
class.

The UDESC architecture efficiently combines the gen-
eralization ability of individual Echo State Networks, the
low computational load resulting from aggressive subsam-
pling, the good performances of regularized logistic re-
gression and the robustness of ensemble learning. UDESC
was inspired by the well-known Random Forests [16] pro-
posed by L. Breiman, which efficiently combine ensemble
learning principles with discrimination based on decision
trees. UDESC provides a subject-independent features
construction method. Such methods might be of great
interest to build subject-independent BCI systems. On the
one hand it might allow a better control of the amount
of data needed to calibrate a BCI. In classical methods
the amount of data needed to train the system depends on
the one needed to train the features construction method
(e.g. linear spatial filters) and the one needed to train
the classifier. The global amount of time thus equals
the maximum of these two quantities. When subject-
independent features construction methods are used, the
amount of data needed simplifies to the amount of data
needed to train the classifier. Using such algorithms might
thus improves controlling the number of training trials. On
the other hand the proposed approach might constitutes
a first step toward the design of universal BCI systems.
Subject-independent features construction methods indeed
provide an invariant features representation. Future works
might consider using a unique UDESC representation for
each subject and combining the output linear functions as
a database to be used by new subjects. Training a BCI
system might then consist in selecting the adapted output
vectors.
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