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Pascal Szacherski1,2, Jean-François Giovannelli2, Pierre Grangeat1

1 CEA-LETI, Minatec Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
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ABSTRACT

In this paper, we combine inverse problem and classification for LC-
MS data in a joint Bayesian context, given a set of biomarkers and
the statistical characteristics of the biological classes. The data ac-
quisition is modelled in a hierarchical way, including random de-
composition of proteins into peptides and peptides into ions asso-
ciated to peaks on the LC-MS measurement. A Bayesian global
inversion, based on the hierarchical model for the direct problem,
enables to take into account the biological and technological vari-
abilities from those random processes and to estimate the parameters
efficiently.

We describe the statistical theoretical framework including the
hierarchical direct model, the prior and posterior distributions and
the estimators for the involved parameters. We resort to the MCMC
algorithm and give preliminary results on a simulated data set.

Index Terms— classification, optimal estimation, quantifica-
tion, Bayesian inversion, inverse problems, hierarchical model,
proteomics, LC-MS

1. INTRODUCTION

Proteins of an organism are differently expressed according to bio-
logical states (healthy, pathological). Those specific proteomic pro-
files can be used for diagnosis, early detection, therapy planning and
follow-up, drug development, etc [1]. Nevertheless, the reconstruc-
tion of proteomic profiles remains a challenge due to small and vari-
able concentration of the biomarkers. Furthermore, biomarkers are
present within a large protein content including an abundance ratio
of up to 108, hence the need to recognise efficiently the biomarkers
on molecular profiles.

The reconstruction task has been tackled by several methods:
non parametric methods such as area under peak, PLS, N-PLS,
PARAFAC [2], parametric methods based either on deterministic
least square fitting or on other statistical estimation using for exam-
ple Bayesian inference [3, 4]. Diagnosis based on proteomic profiles
has been shown specific and sensitive [3].

In this communication, our aim is to evaluate the biological state
of a sample from a LC-MS (Liquid Chromatography, Mass Spec-
trometer) measurement. In order to do so, we will develop a clas-
sification method in order to optimise diagnoses and their degree of
belief.

MS approaches are very attractive to detect protein panels in a
sensitive and high speed way. MS can be coupled to many separa-
tion techniques. In our development, an LC is used. The physical
model of the instrument has been realised by [2]. According to the
analytical chain, proteins have to be digested into peptides before in-
troduction into the LC. They will be ionised afterwards to be injected

Fig. 1 – Hierarchical direct model used in our framework for the
classification.
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in the MS. Both steps are subject to fluctuating behaviour which in-
troduces a technological variability [5].

The biomarker distributions are needed for the classification pro-
cessing. They can be determined by different procedures: given by
an expert, or learnt either on estimations of the biomarker concen-
trations or on the spectrograms themselves.

In this paper, a hierarchical Bayesian approach to solving the un-
derlying inverse problem is presented. By adopting an inverse prob-
lem framework, information about the variables, the instrument, the
hierarchical structure, and the molecular interactions are included.
The joint posterior distribution for the parameters is expressed,
including the hierarchical structure [6, 7]. The global processing
makes use of the technological and the biological variabilities which
leads to more robust results compared to a succession of step by step
processing [8, 9]. This task is not trivial since the proposed approach
deals with both continuous and discrete variables.

Classification can be done after estimation of the protein con-
centration, or directly on the data without estimating other variables.
In the proposed method, the originality is to combine inversion and
classification by approximating the posterior for all parameters. Fi-
nally, estimating the biological state is equivalent to a classification
processing.

This document is structured in the following manner. In section
2, the main theory for the development is exposed. Its application
within an algorithm is described in section 3. Results are discussed
in section 4 before concluding in section 5.

2. STATISTICAL THEORETICAL FRAMEWORK

2.1. Hierarchical direct model of an analytical chain

We are in presence of a biological sample with an unknown biolog-
ical state. The state is described by the discrete variable B allowing
for two values, healthy H and pathological P . Depending on the
biological state, proteins are expressed by their concentration c. In



order to introduce the sample into the LC-MS, the selected proteins
are digested into peptides. The digestion gain is described by a de-
terministic matrix D ∈ NP×I translating the number of copies of
peptide i = 1, . . . , I produced by protein p = 1, . . . , P [2, ch. 2].
The peptide concentration is denoted κ. None the less, this process
is fluctuating, leading to an incomplete digestion. Within the instru-
ments, the peptides are separated by their retention time T in the LC
and are subjected to a system gain ξ, characterising in particular the
ionisation and the injection within the MS. These steps, in addition
to a white Gaussian noise of precision γn, lead to the output data y
(see Fig. 1).

The system is calibrated by using the PSAQ standardisation
method which adds isotopic standards of the biomarkers in known
quantity to the initial sample [10]. Theses standards are then sub-
jected to the same gains and variabilities than the target proteins,
hence they bring information to estimate gains.

2.2. Prior distributions

As shown in Fig. 1, variables are grouped together and referred to
as biological and technological parameters, according to the descrip-
tion above. The biological parameter vector θbio of this framework
only contains the concentration c. The technological parameters are
those involved in the instrument, so θtech = (κ, ξ,T , γn).

With respect to the hierarchical structure and to the prior
knowledges, we choose a normal distribution for the data y given
the parameters which is also the total likelihood p(y|θtech) =
N(y; Hκ,Γn). The system matrix H = H(ξ,T ) expresses the
linearity between the data and the peptide concentration. The diag-
onal matrix Γn = γn I is the noise precision (inverse covariance)
with I the identity matrix. By doing so, the noise is modelled with
the same level on the whole data.

The conditional prior distribution for θtech is given by the prod-
uct of the conditional priors for each component. We choose follow-
ing distributions:

• normal for the gain, p(ξ) = N(ξ; ξ0,Γξ) with mean ξ0 and
precision Γξ;

• uniform for the retention time, p(T ) = U(T min,T max)
where T min is the lower and T max the upper bound of the
allowed interval for T ;

• Gamma for the inverse variance of the noise, p(γn) =
G(γn;αn, βn) where αn and βn are the steering parameters
of the distribution;

• normal for the peptide concentration given the protein con-
centration c, p(κ|c) = N(κ; Dc,Γκ) with mean Dc and
precision Γκ, D being the digestion matrix (see [2]).

As regards the distribution for θbio, only the distribution for the
protein concentration has to be considered. This distribution is cru-
cial for the classification since it describes the different laws between
the healthy (B = H) and the pathological case (B = P ). A normal
distribution is attributed to protein concentration prior conditionally
on the biological state, p(c|B) = N(c;mB,ΓB) with mean mB
and precision ΓB depending on the biological state B. That is, by
marginalising B, the distribution for c is characterised as a Gaussian
mixture model.

Finally, to complete the prior, we choose a Bernoulli distribution
for the biological state B, Pr(B) = pB ≥ 0 with pH + pP = 1.

All distributions have been chosen for their good approximation
of the real process and for their ability for simple calculations. The

total joint distribution is

p(B,θbio,θtech,y) =

p(y|θtech) p(θtech|θbio) p(θbio|B) Pr(B). (1)

In this work, non informative priors are chosen for all variables
exceptT since the retention time for a peptide is known in a temporal
interval. The non-informativity for the variables with normal prior
is reached by tending the precisions to zero. For the noise level γn,
this is done by choosing a Jeffreys prior [6, Appendix A].

2.3. Statistical joint posterior for inversion/classification

We use the joint posterior distribution, p(B,θbio,θtech|y), given by
Bayes’ rule as ratio of the joint distribution and the marginalised
distribution for y. In order to classify, the posterior probability of
the biological states has to be calculated, i.e. Pr(B = H|y) and
Pr(B = P |y). For this, all parameters except B are marginalised in
the joint posterior:

Pr(B|y) =

∫
p(B,θbio,θtech|y) d(θbio,θtech). (2)

By integrating them out, all their jointly possible values (biolog-
ical and technological variability) are considered. Classification is
then done by the posterior maximiser of B, i.e.

B̂ = arg max
B∈{H,P}

Pr(B|y). (3)

For other decision methods, see [7, sect 5.2].
The posterior mean (PM) given the state B̂ of the other parame-

ters is calculated:[
θ̄bio
B̂ , θ̄

tech
B̂

]
=

∫
Θbio×Θtech

[
θbio,θtech

]
p(θbio,θtech|y, B̂) d(θbio,θtech).

(4)
This integrates again the variabilities that we have already mentioned
and uses the same posterior distribution as in (2). The PM is chosen
for the minimisation of the mean quadratic error [7, sect. 2.5].

Solving equations (2) and (4) is analytically impossible. We
thus approximate the joint posterior distribution using the MCMC
method [6, ch. 11]. This will allow both to marginalise the parame-
ters in equation (2) and to compute the estimator in (4).

3. IMPLEMENTATION

In order to compute the joint posterior by an MCMC method, a
Gibbs structure is adopted to transform a global problem into sev-
eral simpler subproblems. The conditional posteriors for each sub-
problem depend only on a reduced number of parameters due to the
hierarchy [7, sect. 10.2]. Taking into account the conditional inde-
pendences within each level of hierarchy, the conditional posterior
for a parameter is proportional to the product of only its (condi-
tional) prior and the corresponding likelihood (see Sect. 2.2). As
an example, the protein concentration is independent from all pa-
rameters given the peptide concentration and the biological state:
p(c|ξ,T ,κ, γn,B) = p(c|κ,B). This simplifies the algorithm.

The conditional posteriors for the concentrations (proteins and
peptides), the gains and the noise precision are of the same family
as their prior respectively, since their priors are conjugated by the
corresponding conditional likelihood. Recalling the last example,
the conditional posterior for the protein concentration is a Gaussian



Alg. 1 – Pseudo-code of the algorithm used for the Bayesian classi-
fication and estimation.

1. initialisation, allocation
2. Gibbs loop

for k = 1 to K0 +K do
(a) sample γ(k)

n ∼ p(γn|y,κ(k−1), ξ(k−1),T (k−1))

(b) sample ξ(k)
n ∼ p(ξ|y,κ(k−1), γ

(k)
n ,T (k−1))

(c) sample T (k) ∼ p(T |y,κ(k−1), ξ(k), γ
(k)
n )

(d) sample κ(k) ∼ p(κ|y, ξ(k), γ
(k)
n ,T (k))

(e) sample c(k) ∼ p(c|κ(k))

(f) sample B(k) ∼ p(B|c(k))
3. approximation of Pr(B|y) by histogramming on

marginalised samples of B(k), k = K0 + 1, . . . ,K0 + K,
and return B̂ = arg maxB∈{H,P} Pr(B|y).

4. approximation of PM
[
ĉ, κ̂, T̂ , ξ̂, γ̂n

]
by averaging the

samples
[
c(k),κ(k),T (k), ξ(k), γ

(k)
n

]
for all k = K0 +

1, . . . ,K0 +K such that B(k) = B̂.

distribution withmpost
c as mean and Γpost

c as precision: p(c|κ,B) =
N(c;mpost

c ,Γpost
c ). This means another simplification: it enables to

sample from their conditional posterior easily because they are com-
pletely known.

Due to the non informative priors, the conditional posterior dis-
tribution for a parameter is determined only by the parameters on its
hierarchical level and those below it in Fig. 1, i.e. the level above
does not contribute to the conditional posterior here.

For all parameters, sampling is possible. Except for the retention
time T , the prior is conjugated by the likelihood, i.e. the conditional
posterior is of the same family as the prior. Within the Gibbs algo-
rithm, this allows for an explicit sampling of these parameters. As
to T , a Metropolis-Hastings Random-Walk step is introduced into
the Gibbs loop [6, sect. 11.5]. This is notably a good compromise
between an Independent Metropolis-Hastings having fast computa-
tion, but slow convergence properties and sophisticated MH methods
such as Langevin, Hessian or Hamiltonian updates having slow com-
putation but fast convergence properties [6, ch. 13], [11]. With this
method, the sample distribution converges to the posterior distribu-
tion, with only little computational effort.

Finally, having simulated enough samples, we approximate the
PM and the posterior state probability:

• Probability of the biological state is obtained by marginalisa-
tion of all parameters, see Sect. 2.3. Since we sample under
the joint posterior, the marginalisation is done by histogram-
ming the samples for B, regardless the other variables. This
empirical probability is used to determine the posterior max-
imiser MAP, B̂, by the state with the highest empirical prob-
ability.

• The conditional posterior mean of the continuous variables is
approximated by the empirical average of the samples k such
that B(k) = B̂.

Note that in both cases, we allow for a burn-in period to adjust the
distributions since the first samples are not distributed under the pos-
terior [6, sect. 11.6]. We choose arbitrarily to consider only the
second half of the samples. The algorithm is summarised in Alg. 1.

4. RESULTS

Testing cohorts of 200 healthy and 200 pathological samples with
one biomarker were created, using the instrument model exposed
in [4], based upon real data parameters from former studies [3]. In
the healthy cohort, the true protein concentration is distributed un-
der p?(c|H) = N(c;m?

H , γ
?
H) of mean m?

H = 50 and precision
γ?H = 0.2, in the pathological cohort, proteins are distributed un-
der p?(c|P ) = N(c;m?

P , γ
?
P ) of mean m?

P = 70 and precision
γ?P = 0.2. These distributions correspond to the biological variabil-
ity. From one experiment to another, technological variability has
been simulated by using different values for θtech.

The characteristic distributions for each cohort are learnt from
100 learning samples for each biological state using [12]. They are
given by p(c|H) = N(c;mH , γH) and p(c|P ) = N(c;mP , γP ),
where mH = 50.04, mP = 70.13, γH = 0.12, γP = 0.11. The
learnt Gaussian distributions are wider than the cohort simulation
distributions because of the incertitudes in the learning process.

The quantification part of the presented method has been tested
successfully on simulated data with one biomarker. Fig. 2(a) demon-
strates the dynamic of the sampler. A burn-in period is necessary for
the samples being drawn under the posterior distribution. For the
sake of convenience, only the marginalised draws for the concen-
tration are shown. After a short period, the concentration samples
are drawn under the posterior distribution. In Fig. 2(b), we present
the marginalised histogram of the protein concentration from a sim-
ulated data with true concentration of 50.07. In contrary to the flat,
non informative prior distribution for the concentration, one can see
a peaked Gaussian shape with a mean near to the true concentration.

Using the test set, empirical probabilities have been approxi-
mated. In Fig. 2(c), a histogram showing the degree of belief in
B̂n = H is presented. Firstly, the figure describes that all tested
data have been classified correctly since the classification is done
upon the empirical posterior probability for the biological states. The
false detection rate, i.e. Pr(B̂ = B|B = B?), with B 6= B?, is
zero. Secondly, the degree of belief expresses the method’s certitude
in its estimation, given by the empirical probability for the estimated
biological state. In the given configuration, the certitude in the clas-
sification is of 96% or higher which reflects as well the probability
of membership to the estimated biological state. In other words, for
nearly all data, the probability that biological state given the data is
the estimated one is 100%, so one can be sure to classify correctly.

The considered configuration favours good estimations since the
classes are well separated. As the meanmP of the pathological class
approaches the mean mH of the healthy class, the classification per-
formance naturally decreases. The distance of the two considered
classes can be measured by the Kullback-Leibler-divergence. We
define de Right Decision Rate (RDR) as the ratio of number of right
estimations over the total number of estimations, and the False De-
cision Rate (FDR) as the ratio of number of false estimations over
the total number of estimations, corresponding to a Type-I-error.

The results of the performances are shown in Tab. 1. For KL
greater than 6.83, no false estimation is done, that is the FDR is 0.
For common values of the FDR, i.e. 5% and 10%, the classification
with the presented method is still done satisfactorily with class distri-
butions that are near and, thus, overlapping each other (KL ≈ 4.60
and KL ≈ 2.79 respectively).

5. CONCLUSION

In this paper, we presented an original way of combining inverse
problem and classification in proteomics by using an indirect mea-



Fig. 2 – (a) Dynamic of the Gibbs sampler on the first 100 iterations. After only a few iterations, the samples gives random values from
the posterior distribution. (b) Histogram of 2500 marginalised samples for the protein concentration. One can see the shape of a Gaussian
function with mean m = 50.012 (real concentration 50.07) and precision γ = 0.48. (c) Histogram of approximated probabilities Pr(H|yn)
on 200 simulated test samples. Pr(H|yn) ≥ 0.96 for n = 1, . . . , 100.

(a) (b) (c)

Tab. 1 – Robustness test: classification performance whenmP tends
to mH = 50.04, given the the precisions γH = 0.12 and γP =
0.11. RDR stands for the right decision rate, FDR for false decision
rate; KL is the Kullback-Leibler-divergence.

mP KL RDR FDR
70.13 22.4 1.00 0.00
61.13 6.83 1.00 0.00
59.13 4.60 0.96 0.04
57.13 2.79 0.91 0.09
54.13 0.931 0.80 0.20
52.13 0.244 0.66 0.34
50.04 0 0.50 0.50

surement of the classifying variable in a LC-MS spectrum. We have
shown that this approach yields good results which are robust due
to the probabilistic direct modelling of each biological and technical
step and the corresponding statistical inversion.

This framework improves both the classification and the quan-
tification when the prior on the concentration is conditioned by the
class of the samples. This will allow to combine within the same sta-
tistical framework quantitative and differential proteomic analysis.

Later on, the multivariate approach will allow to describe possi-
ble interactions between proteins. The work is transposable to any
comparison or differential analysis, other than diagnostics.

We restricted this work to a binary classification, but a classifi-
cation with more classes, such as different pathologies or different
states of the same pathology, can also be performed.
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P. Grangeat, “évaluation statistique d’un algorithme bayésien
pour la reconstruction de profils moléculaires par spectrométrie
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