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émanant des établissements d’enseignement et de
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A fundamental relation exists between the statistical properties of the fluctuations of the
energy level spectrum of a Hamiltonian and the chaotic properties of the physical system it
describes. This relationship has been addressed previously as a signature of chaos in quantum
dynamical systems. In order to properly analyze these fluctuations, however, it is necessary to
separate them from the general tendency, namely, its secular part. Unfortunately this process,
called unfolding, is not trivial and can lead to erroneous conclusions about the chaoticity of
a system. In this paper we propose a technique to improve the unfolding procedure for the
purpose of minimizing the dependence on the particular procedure. This technique is based on de-
trending the fluctuations of the unfolded spectra through the empirical mode decomposition method.

PACS numbers: 05.40.-a, 05.45.-a, 05.45.Tp

I. INTRODUCTION

The relation between classical dynamical systems and
their quantum counterparts is an important aspect of
contemporary research. Of particular relevance is the
study of the so called quantum chaos, the relation be-
tween classical chaos and quantum mechanical systems.
One of the fundamental signatures of quantum chaos is
the conjectured link between the statistical fluctuations
of the energy spectrum and the integrability or chaotic
properties of the Hamiltonian [1–3]. This relation has
been studied in a large diversity of systems, including mi-
crowave cavities, atoms, molecules and nuclei. This kind
of spectral analysis has become one of the main tools for
the study of quantum chaos, whose fundamental objec-
tive is to characterize the properties of these fluctuations
[4] To tackle this problem it is assumed that the den-
sity of states ρ(E) can be separated into a secular and a
fluctuating part

ρ(E) = ρ(E) + ρ̃(E). (1)

While the secular part ρ(E) usually indicates particu-
lar characteristics of the system under consideration, the
fluctuating part reflects universal properties of physical
systems. However, to separate these two components of
the spectral density is a major problem. The procedure
used to extract the information of the fluctuating part
in the spectra is called unfolding. In essence, this pro-
cedure consists in mapping the spectrum of the excited
states Ei into a dimensionless spectrum ǫi, whose main
characteristic is a mean level density normalized to 1.
It has been widely appreciated that this process is not
trivial [4], but the unfolding details are usually omitted
in the literature. Of special importance to the present

work is the analysis reported on [5], which demonstrates
that the statistics that measures long-range correlations
strongly depends on the unfolding procedure and in
the end, this dependence can give rise to misleading
results in regard to the chaoticity of quantum systems.
The main goal of the present paper is to propose an
unfolding technique which leads to reliable signatures of
chaos. This is achieved subtracting the residual trend
which remains after the initial unfolding process. This is
achieved by means of the empirical mode decomposition
technique.

II. UNFOLDING PROCEDURE

Given a spectral density ρ it is possible to define an ac-
cumulated level density N(E), which measures the num-
ber of levels up to a certain energy E in the system

N(E) =

∫ E

−∞

dE′ρ(E′). (2)

In this way we can distinguish between a smooth and
a fluctuating part

N(E) = N(E) + Ñ(E). (3)

The unfolding procedures usually involves an estima-
tion of a functional shape for the smooth part of the
spectral density ρ(E) or for the smooth part of the accu-

mulated level density N(E). Once the estimated accu-
mulated density is known a new dimensionless spectrum
ǫi is obtained, where the levels are given by
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ǫi = N(Ei). (4)

The problem is how to find an appropriate smooth
estimation for the secular part of the level density.
When possible, the spectral density is obtained theo-
retically using the knowledge of the low order energy
moments, which are related to the trace of powers
of the hamiltonian matrix [6]. If this is not possible,
then it is necessary to obtain it from the spectrum
itself. Several procedures have been proposed in order
to unfold this kind of spectra. The easiest unfolding
approach is to assume a polynomial dependence for
the accumulated level density [7]. In this approach a
high order polynomial interpolation for N(E) is taken,
the only parameter being the order of the polynomial
approximation. However, this estimation can be quite
inaccurate, since the polynomial function may have
no relation with the physical properties of the system.
It is also possible to consider a linear fit of N(E) on
an interval containing ν levels around the level Ei,
and a moving average then taken through the whole
spectrum. The ν value is used as a free parameter [8].
More sophisticated approaches for the unfolding involve
Fourier broadening of the step functions, which reflect
the accumulated density or a Gaussian broadening of the
level density. While usually this density is conformed
by a summation of delta functions for every level, under
this approach the delta functions are substituted by
an average gaussian level density. It is also possible to
include local effects in this procedure [9].

Regardless of which method is used to unfold the
fluctuating part of the spectra and even if a good
estimation for the accumulated level density is obtained,
this approximation may not be good enough. If this is
the case the unfolding does not capture the full behavior
of the smooth part of the spectrum. The net effect is
that spurious long-range correlations are introduced.
These spurious correlations are responsible for the
misleading signatures of quantum chaos that may occur
[5]. The technique that we propose here does not depend
on apriori selection of unfolding functions and, as we
shall show, significantly improves the estimation for the
smooth part. Throughout this work we carry out an
initial unfolding with polynomial approximations as an
example, but the results do not depend on this choice
and it is possible to improve the estimation starting with
any of the previously mentioned procedures.

Once a dimensionless spectrum is obtained, we can cal-
culate the nearest neighbor level spacings defined by

si = ǫi+1 − ǫi, i = 1, ..., N − 1. (5)

Recently, a proposal was made to study the fluctuat-
ing part of a quantum spectrum as a time series, which

gives rise to an alternative signature of quantum chaos
[10]. This approach characterizes the spectral fluctua-
tions with the δn statistic [11] defined by

δn =

n
∑

i=1

(si − 〈s〉). (6)

The discrete function δn measures the deviations
between the energy of the (n + 1)-th unfolded state and
the corresponding energy of an equally spaced energy
sequence. The main objective of the analysis is to pro-
pose a correspondence between the δn statistic and time
series, by equating time to the index n, which represents
the ordering number of the energy levels. It is then pos-
sible to apply the usual techniques of time series analysis.

0 500 1000 1500 2000
n

∆
n

FIG. 1: Color online. δn statistic for a GOE spectrum
unfolded with polynomials of order 5 (bottom, red
online), 9 (middle, blue online) and 13 (top, green

online). The dashed lines show the mean on each case
and the black solid line shows the trend obtained
trough the EMD. Each plot was moved along the

vertical axis to avoid overlapping.

As we mentioned above, the result of a defective
unfolding is the introduction of spurious correlations
in the spectrum fluctuations. In a properly unfolded
spectrum all traces of the secular component of the
signal should in principle be removed. In terms of time
series, this correlations are represented as global trends
on the δn statistic, i.e. a smoothly varying behavior is
present. If the energy spectrum is correctly unfolded
then the δn should consist only of fluctuations around
its constant mean value. Figure 1 shows the effect of
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unfolding with polynomials of different order on the
same energy spectrum. The spectrum was obtained
from a gaussian orthogonal ensemble (GOE) matrix, a
system which is regarded as a paradigm for the study of
quantum chaos [3]. The energy spectrum was unfolded
with three different polynomials and the resulting δn for
each case is shown in figure 1. The bottom (red online)
signal shows a δn obtained with a fifth order fit, the
middle (blue online) one shows the one obtained with a
ninth order fit and the top (green online) signal shows
the δn obtained for a fit with a polynomial of order
13. The plots were displaced along the vertical axis to
avoid overlapping. The dashed lines show the mean for
each case. If the unfolding procedure were correct, the
time series should fluctuate around this mean, but a
clear global trend is still present. This trend is shown
as a black solid line on each case. In order to solve the
problem of an incorrect unfolding we propose to detrend
the δn time series using the EMD technique.

III. TRENDS AND EMPIRICAL MODE

DECOMPOSITION

The trend is a basic concept in a large amount of
subjects in physics, economics, statistics, sociology,
etc. The concept is used specifically in the analysis of
data sets. While an intuitive idea of the trend can be
used, there is no precise definition of it. In most of
the data analysis applications, the trend dominates the
global behavior of the data. If a more precise analysis
of the phenomena involved is required, then the trend
must be substracted in order to reveal the relevant
details. Unfortunately, a general algorithm to detrend a
time series does not exist, especially in the case where
the time series is nonlinear and nonstationary. As in
the case of the unfolding procedure, an accurate and
detailed description of the detrending procedure is
usually avoided in the literature. Recently an attempt
to mathematically define the trend has been proposed
[12], where the authors put special emphasis on the
fact that the trend is part of the data, an intrinsic
property of it. Therefore, in order to extract the trend
an adaptive method is required, namely, the trend must
be derived directly from the data. The empirical mode
decomposition technique [13] is especially suited to
accomplish a detrending process fully based on the data.

The empirical mode decomposition (EMD) proposes
the expansion and decomposition of the data in terms of
intrinsic mode functions (IMF) which are derived from
the data and conforms an adaptive local and nonlinear
basis. This basis is constructed using the physical time
scales that characterize the oscillations of the phenom-
ena. The EMD assumes that the time series under anal-
ysis is composed of the superposition of several nonsta-
tionary processes that take place in different time scales.

The essence of the method is to identify the oscillation
modes of the data in a characteristic time scale and then
decompose the data into these modes of oscillation. The
local time scale of an oscillation is identified by the time
lapse between the successive alternations of local max-
ima and minima. The time series is composed of sev-
eral oscillations mounted on oscillations corresponding
to longer time scales, which in turn are also riding bigger
oscillations, and so on. The process of sifting, described
below, has been designed in order to untangle these os-
cillations and extract them from the time series. The os-
cillating functions in which the time series is decomposed
are called intrinsic mode functions. These intrinsic mode
functions are defined as functions in which a) the number
of extrema and the number of zero crossings are the same
or differ at most by one, and b) at any point the mean
value of the envelope defined by the local maxima and
the envelope defined by the local minima is zero. In gen-
eral the data oscillations involve many time scales and
it is necessary to decompose the time series in its IMFs.
The process of sifting to decompose the data into IMFs
is as follows:

1. Localize all the local maxima in the time series and
connect them with a cubic spline, which defines the
upper envelope. Repeat the procedure with the
local minima defining the lower envelope.

2. Calculate the mean value of the upper and lower
envelopes m(1), as well as the difference with the
data points

xj − m
(1)
j = h

(1)
j , (7)

Since the envelopes include all the extrema, the os-
cillation between them, h(1), is the oscillation of
the data with the finest time scale. Ideally this
oscillation should be an IMF, but in practice the
process produces new extrema and more iterations
are needed to extract an IMF. In this new itera-
tions the obtained component is used as the new
data set.

3. Repeat steps 1 and 2 using the newly obtained com-
ponent as data

h
(1)
j − m

(1,1)
j = h

(1,1)
j . (8)

Stop when the last component is an IMF, i.e., when
all local maxima are positive and all local minima
are negative, and the mean of the envelopes is lo-
cally zero, which ensures that the wave is symmet-
ric. The IMF is obtained after k iterations

h
(1,k−1)
j − m

(1,k)
j = h

(1,k)
j . (9)
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The function h(1,k) is then designated as an intrin-
sic mode function of the data and as a component
of our new basis

c(1) = h(1,k). (10)

4. Subtract the obtained IMF from the original data

xj − c
(1)
j = r

(1)
j . (11)

The residue r(1) is a new version of the data where
the finest oscillations have been removed. However,
it still contains information of longer period compo-
nents, so it is necessary to remove these additional
components.

5. Repeat steps 1 to 4, in order to extract all the IMF
components in the original data, using as new data
on each iteration the residue obtained in the previ-
ous one

r(1) − c(2) = r(2), ..., r(m−1) − c(m) = r(m), (12)

where m is the number of IMFs in the data. This
process can be stopped when the mth residue is a
monotonic function and no more IMFs can be ex-
tracted. The last residue is called the trend of the
data. It is important to notice that any residue
constitutes a trend for the previously extracted os-
cillation, i.e., r(i) is the trend followed by the c(i)

intrinsic mode function. For a discussion about the
specific details of the algorithm and details about
its convergence see [13–15].

After following this procedure, it is possible to express
the original data in terms of the IMFs as

xj =

m
∑

i=1

c(i) + r(m). (13)

We are interested in the last residue r(m), which is the
global trend.

The trend should be a constant for a δn obtained
from a correctly unfolded spectrum. Figure 1 shows
as solid black lines the trends obtained through the
EMD for the same spectrum, previously unfolded with
polynomials of order 5, 9 and 13. Two undesired effects
are apparent in this plot, the first one related to the
global trend, which is still visible after the unfolding
procedure. In each case it is evident that the EMD
technique captures the global behavior, so it is possible
to subtract it. The second effect is more subtle and has
to do with the fact that the values for the δn on the

edges of the spectrum change abruptly, especially when
the order of the original polynomial fit is low. If this is
the case, the EMD decomposition is not well suited for
these areas, due to the border conditions of the cubic
spline interpolations. In order to avoid this effect we
drop 5% of the eigenvalues at the beginning and at the
end of the spectrum.

In order to decrease the dependence on the unfolding
procedure, we propose to construct a new detrended
fluctuation, subtracting the trend obtained with the
EMD, δ′n = δn − r(m). Figure 2 shows the result of
excluding 5% of the eigenvalues on the edges of the
spectrum and subtracting the residual trend from the
original δn statistic (Fig.1). It is remarkable how in a
qualitative examination the main features of the fluctu-
ations are present on each plot and apparently display
the same features. A subtle difference is appreciated
at the last part of the δ′n obtained with a fifth order
polynomial. This plot has an extra oscillation around
n = 1200 which is present due to the effect mentioned
before, the abrupt change of δn values on the edges of the
spectrum. In this case dropping 5% of the eigenvalues
may not be enough. However this case is useful to
appreciate how the affected part is restricted to the end
of the δ′n statistic, i.e., it is a local phenomenon which
can be removed. To quantitatively show that the new δ′n
statistics are independent of the unfolding is the main
goal of the next section.

IV. MEASUREMENTS OF QUANTUM CHAOS

In order to demonstrate that the δ′n statistic, ob-
tained subtracting the EMD trend, leads to chaos
measurements independent of the unfolding procedure,
we performed a numerical experiment. We constructed
and diagonalized 100 GOE matrices with 2000 eigen-
values per matrix. Then the δn and δ′n statistics were
computed for each spectrum. Given these two statistics
the ensemble behavior of the usual measurements of
quantum chaos is compared for different orders of the
polynomial fit. The GOE system was chosen because
it is a well known example of a system presenting
quantum chaos and, in addition, the theoretical result
for the usual measurements of chaos are known [3, 10, 11].

As a first test we choose a quantum chaos measure
which is computed using the δn statistic, the power law
behavior of the power spectrum of the fluctuation time
series [10]. The power spectrum of a given time series,
xn, is defined as

S(k) = |X̂k|2 =
1√
N

∑

n

xnexp

(−2πikn

N

)

, (14)

where X̂k is the Fourier transform of xn and N is the
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FIG. 2: Color online. Detrended δn statistic for a GOE
spectrum, definied as δ′n = δn − r(m) where r(m) is the

trend obtained through EMD. The spectrum was
unfolded with polynomials of order 5 (bottom, red
online), 9 (middle, blue online) and 13 (top, green

online). The dashed lines show the mean on each case.
Each plot was moved along the vertical axis to avoid

overlapping.

the number of elements in the series. It has been demon-
strated that the power spectrum of the fluctuations
of quantum spectra follows a power law dependence
〈S(k)〉 ∼ 1/kβ, this relation is only an approximation,
valid without taking into account the highest frequencies
of the spectrum. Therefore in the numerical analysis,
we take only the region of frequencies which follows
a power law behavior, [10, 16–18]. In the case of an
integrable system the value of the exponent approaches
β = 2, because the inter-level spacings behave as random
independent variables [2]. For the GOE system the
value β = 1 corresponds to the fact that correlations
exists on all available scales. According to this, the
power spectrum of a correctly unfolded GOE spectrum
must follow the power law 〈S(k)〉 ∼ 1/k. The numerical
experiment compares the effectiveness of detecting the
presence of quantum chaos using both statistics, the δn

fluctuation obtained by the traditional unfolding of the
spectrum and the one without trend, the δ′n. In order
to compare the ensemble behavior of the system, an
ensemble average power spectrum is computed using
the 100 individual power spectra, which lowers disper-
sion and brings out the power law behavior of the system.

The results of the numerical experiment are compared
in figure 3. This figure shows the values of the exponent
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FIG. 3: Color online. Value of the β exponent of the
power law behavior in the average power spectrum of

the fluctuations as a function of the degree of the
polynomial fit used to unfold the quantum spectra.

Two cases are shown, the β exponent values for the δn

fluctuation (filled squares, red online) and the case for
the δ′n fluctuation obtained detrending the previous one
(empty circles, blue online). The dashed line shows the
theoretical result for the GOE. The error bars show the

standard deviation of the ensemble.

β obtained for different orders of the unfolding poly-
nomial fit. The filled squares (red online) corresponds
to the case of the average power spectrum of the δn

fluctuation and the empty circles (blue online) shows the
case of the power spectrum of the detrended fluctuation
δ′n. The error bars show the standard deviation using
individual fits to the power spectra of each member
of the ensemble. The gray dashed line indicates the
theoretical value of the β exponent for the GOE system.
It is evident that the value of β depends on the order of
the polynomial used to unfold the quantum spectra. If
the order of the polynomial is too low then spurious long-
range correlations are introduced and the low frequency
part of the power spectrum is enhanced producing power
law exponents larger than β = 1. However, the use
of the EMD to remove the residual trend eliminates
these spurious correlations and improves the value of
the exponent which gets closer to the theoretical value.
When the trend is removed, for all the degrees of the
polynomial fit lower than 15, the β value agrees with the
theoretical value, except for the example corresponding
to the third order polynomial, which is an extreme case.

As the order of the polynomial increases the β value
approaches the theoretical one. If the order of the
polynomial is big enough then the polynomial unfolding
destroys correlations and the β value tends towards
values lower than β = 1. This situation cannot be
improved by the use of the EMD because important
correlations are missing and cannot be recovered.

Using the detrended fluctuation δ′n it is possible to ob-
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tain a detrended dimensionless spectrum ǫ′i as

ǫ′i+1 = δ′i + ǫ1 + i〈s〉, (15)

where δ′n are the fluctuations or the difference between
the dimensionless quantum spectrum of the system
ǫ′ and a regular version of it, ǫ1 + n〈s〉. Given this
detrended spectrum it is possible to explore the de-
pendence of other measurements of chaos as a function
of the order of the polynomial used in the unfolding.
The short-range correlations are usually analyzed by
means of the nearest neighbor spacing distribution
P (s). It is known that the spectra from GOE follow the
Wigner surmise. This distribution is not sensitive to
the unfolding details [5] and we only mention here that
the Wigner distribution is conserved after removing the
trend of the fluctuations.

The study of the long-range correlations in quantum
spectra is traditionally done by means of the rigidity of
the spectrum, which is represented by the ∆3 statistic.
The ∆3(L) is defined as the average over γ of the func-
tion:

∆3(L; γ) =
1

L
mina,b

∫ γ+L

γ

[N(E) − aE − b] dE, (16)

where N(E) is the integrated level density of the un-
folded spectrum and a and b are parameters of a linear
model which fits N(E) in the energy range (γ, γ + L).
Theoretically the values of the ∆3(L) for the integrable
system and for the GOE are well known [19], in the case
of GOE ∆3(L) = (Log(L)− 0.0687)/π2 while in the case
of an integrable system ∆3(L) = 1/15.

It is possible to compute the ∆3 statistic for the
detrended spectrum and compare it with the ∆3 ob-
tained from the traditionally-unfolded spectrum. Figure
4 shows this comparison. The upper part shows the
ensemble average of the ∆3 obtained for the unfolded
spectrum using different degrees for the polynomial fit.
The dashed gray line shows the predicted theoretical
behavior for GOE. We observe that for all polynomial
degrees the expected result is followed up to L = 200,
except for the third order polynomial which shows some
small deviations. For greater values of L the low order
polynomial spectra deviate systematically from the
theoretical behavior due to the spurious correlations,
which correspond to the residual trend. Since the trend
can be represented as low frequency oscillations it is ex-
pected that the effect will be reflected in the long-range
correlations region. The high order polynomial spectrum
also deviates because of the effect mentioned before
for the case of the Fourier spectrum analysis, i.e., the
polynomial unfolding destroys important correlations.
The lower part shows the ensemble average of the ∆3

computed using the detrended spectra from eq (15). The
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FIG. 4: Color online. Value of the ∆3(L) averaged over
the ensemble. The upper part shows the ∆3 computed

using polynomials of different order to unfold the
spectra, where the plots have been displaced to avoid
overlap. The lower part shows the ∆3 calculated from

detrended spectra obtained from the detrended
fluctuation δ′n. Plots for different degrees of the

polynomial fit used to unfold the quantum spectra are
shown in both cases. The dashed line shows the

theoretical result for the GOE.

effect of subtracting the residual trend of the fluctuations
is evident. In the region of small L the deviations for
the third order polynomial are gone while in the region
of larger L the low order polynomial behavior improves
and follows the expected theoretical behavior. The
case for the high order polynomials does not improve,
because once important correlations are destroyed they
cannot be recovered.

The ∆3 statistic is a good measure of the long-range
correlations of a quantum spectrum, but it is difficult
to obtain a quantitative deviation from the theoretical
behavior, as done in the previous example of the Fourier
power spectrum by means of the value of the exponent
β. Recently another measurement of the chaoticity of a
quantum system has been proposed [20]. This method
uses a detrended fluctuation analysis technique [21]
(DFA) which has been directly related to the ∆3 [20].
The DFA technique was proposed in the context of time
series analysis as a method to investigate the long-range
correlation properties of nonlinear time series. In order
to apply the DFA the time series is integrated and then
divided into nonoverlaping N/l boxes of equal length
containing l data points. Then a local trend is defined
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for each box, i.e. a linear fit to the integrated time series.
Then the variance between the integrated time series and
the local fit is computed for each box and averaged over
all the boxes of size l. The average variance F (l) depends
on the box size. The analysis of this dependence allows
to study the scaling properties of the system and the
presence of long-range correlations. A linear relationship
between Log(F (l)) and Log(l) will indicate a scaling
behavior. The slope α in the Log(F (l)) vs Log(l) plot
characterizes the scaling properties of the time series
because it reflects a power law of the form F (l) ∼ lα. In
the case of a regular uncorrelated system the theoretical
value of the slope is α = 1/2. In the case of GOE the ex-
pected value is α = 1 [20]. The DFA technique allows us
to compare the δn fluctuation with the detrended one, δ′n.
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FIG. 5: Color online. Value of DFA variance Log(F (l))
averaged over the ensemble. The upper part shows
Log(F (l)) computed using the DFA on the δn, these
plots have been displaced to avoid overlap. The lower

part shows the Log(F (l)) from the DFA on the
detrended δ′n. Plots for different degrees of the

polynomial fit used to unfold the quantum spectra are
shown in both cases. The dashed line shows the

theoretical result for the GOE.

A qualitative comparison on the DFA relation between
Log(F (l)) and Log(l) for the δn and δ′n fluctuations is
shown on figure 5. Once again, the improvement due
to the detrended process is noticeable. The upper part
shows Log(F (l)) as a function of Log(l) obtained from
a DFA calculation on the unfolded fluctuations δn for
different degrees of the polynomial. The theoretical
value for GOE (α = 1) is shown as a dashed gray line.
It is evident how for low order polynomials the result

diverges from the expected theoretical behavior when l
increases. Large values of l correspond with long-range
correlations on the time series. This plot shows how if
the degree of the polynomial is too low the unfolding is
capable of representing the correlations correctly, up to
a certain range. On the other hand, if the polynomial
degree is too big then the unfolding procedure destroys
important long-range correlations. This effect is also
observable on the upper part of figure 5 but is more
subtle. The lower part of the same figure shows the
result of the DFA on the detrended δ′n fluctuation. It
is clear how the divergence observed for the low order
polynomials has decreased. All the cases have a linear
behavior which corresponds to the theoretical case.
For very large values of l the third order polynomial
case begins to diverge, which means that some very
long-range correlations are still missing. However, the
range for which the DFA variance Log(F (l)) follows a
linear relation has been substantially improved.
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FIG. 6: Color online. Value of the α exponent of the
power law behavior in the ensemble average calculation

of the DFA for the fluctuation as a function of the
degree of the polynomial fit used to unfold the quantum
spectra. Two cases are shown, the α exponent values

for the δn fluctuation (filled squares, red online) and the
case for the δ′n fluctuation obtained detrending the

previous one (empty circles, blue online). The dashed
line shows the theoretical result for the GOE. The error

bars show the standard deviation of the ensemble.

The results shown in figure 5 demonstrate qualita-
tively how detrending the fluctuation improves the range
for which the long-range correlations of the system can
be detected. However, the DFA allows us to observe this
improvement in a quantitative way through the calcula-
tion of the value of the α exponent. Figure 6 compares
the values obtained for α as a function of the order of
the unfolding polynomial using the fluctuation δn (filled
squares, red online) and the values obtained using the
detrended fluctuation δ′n (empty circles, blue online).
The theoretical behavior is shown as a gray dashed line.
The improvement for small values of the polynomial
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degree is evident, after detrending the α exponent
coincides with the predicted one. This improvement is
observed up to the ninth order polynomial. For cases
with larger values of the polynomial degree there is no
improvement, again due to the effect mentioned before,
i.e., a high order polynomial unfolding destroys impor-
tant correlations which cannot be recovered detrending
the fluctuations.

V. CONCLUSIONS

In order to study the statistical fluctuations of quan-
tum spectra it is necessary to split the spectrum into two
parts, a secular and a fluctuating one. This separation
is done by means of an unfolding procedure. Several
methodologies exist to unfold quantum spectra, but this
procedure is not trivial. In this work we demonstrate
that the usual measurements of quantum chaos can
strongly depend on the unfolding procedure, i.e., an
incorrect separation of the fluctuating part from the
regular one can lead to erroneous conclusions about the

chaoticity of a quantum system. In order to decrease
this dependence we propose to remove the global trend
which remains after an incorrect unfolding procedure.
The detection of this global trend is the essential part
of our proposal, which makes use of the Empirical
Mode Decomposition techinique. Finally, we show that
the detrending operation on the fluctuations removes
to a large extent the dependence on the unfolding
procedure for the usual measurements of the presence
of quantum chaos. The effect of an incorrect unfolding
is either to introduce spurious long-range correlations
or to destroy important ones. In the first case the use
of the EMD to detrend the fluctuations improves the
range on which the correlations are correctly represented.
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