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Dislocation climb mobilities, assuming vacancy bulk diffusion, are derived and implemented
in dislocation dynamics simulations to study the coarsening of vacancy prismatic loops in
fcc metals. When loops cannot glide, the comparison of the simulations with a coarsening
model based on the line tension approximation shows a good agreement. Dislocation dynamics
simulations with both glide and climb are then performed. Allowing for glide of the loops along
their prismatic cylinders leads to faster coarsening kinetics, as direct coalescence of the loops
is now possible.
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1. Introduction

The strength of crystalline materials is mainly determined by the motion of dislo-
cations, the carriers of plastic flow. At high temperatures the mechanical properties
of metals and alloys can change fundamentally because of dislocation climb. Climb
occurs when the motion of the dislocations has a component perpendicular to
their glide plane. This requires the emission or absorption of point defects and
their long-range diffusion. Due to the ability to annihilate edge dislocation dipoles,
climb plays a fundamental role, for instance, in high temperature creep [1, 2] and
recovery [3]. Climb mobility has also an important effect on dislocation morphology
[4, 5]. Specifically, climb and cross-slip control the length scale of the cells of the
dislocation network [6–8], and the suppression of climb leads to the freezing of the
network into a diffuse-looking random distribution [8, 9]. It is thus highly desirable
to incorporate these mechanisms in dislocation dynamics (DD) simulations which
constitute the most suitable tool to study the evolution of a whole dislocation
population, and thus to model the plastic flow at a mesoscopic scale.
Dislocation climb was introduced in several two- [6–8, 10] and three-dimensional

(3D) [11–16] DD simulations. These models generally treat dislocation climb as
a glide motion, i.e. a conservative motion, with a smaller mobility. This is not
sufficient to capture all the involved physics. When the point defect concentration
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in the bulk is different from its equilibrium value (e.g. under irradiation or after a
quench of the crystal), dislocations can climb without the existence of a mechanical
force. Point defect super- or under-saturation gives birth, in this case, to an ad-
ditional force, the osmotic force. This is not described in simulations where climb
is treated like glide, and only DD models based on the diffusion theory of point
defects [14–18] lead then to a proper description of dislocation climb.
We introduce in the present article a diffusion based climb model in 3D DD sim-

ulations using a nodal representation of dislocations [19, 20]. The climb model is
similar to the one previously used by Mordehai et al. [15, 16] in 3D DD simula-
tions where dislocations were discretized in edge and screw segments. These DD
simulations are used to study the coarsening kinetics of prismatic dislocation loops.
Prismatic dislocation loops, whose Burgers vector has a component normal to

their habit plane, may be obtained in both thermal quenching [21, 22] and irra-
diation experiments [23–26]. They result from the condensation of point-defects,
vacancies or interstitials, into discs which collapse to form a dislocation loop. These
loops contribute in irradiated metals to the material embrittlement by radiation
damage. In semiconductors, loops formed during the annealing stage which follows
ion implantation may affect electronic properties of the device [27–29]. Knowing
the long term time evolution of the loop population is therefore essential.
It has been observed experimentally [22, 24, 28–32] that loops coarsen: large

loops grow at the expense of the smaller ones. Their size thus increases on average,
whereas their density decreases. Different mechanisms for loop coarsening have
been proposed and modeled. Large loops may grow by the absorption of vacancies
emitted by the shrinking loops, the exchange being carried out through vacancy
bulk diffusion [22, 24, 28, 32–36]. Pipe diffusion of point defects along the disloca-
tion lines may also lead to a transfer of matter around the loops. This generates
a translation of the loop in its habit plane, a process known as self climb or con-
servative climb [37]. Coarsening can then occur by direct coalescence of the loops
[24, 29, 30]. Finally, if loops are unfaulted, they can glide along their prismatic
cylinder, thus also allowing for coalescence [24]. Depending of the material, the
type of the loops (vacancy or interstitial, faulted or unfaulted), and the annealing
temperature, loop coarsening occurs by one or several of the mechanisms described
above. In the present article, we do not consider pipe diffusion, which will be de-
voted to future work, and we study loop coarsening controlled by bulk diffusion.
This coarsening regime has been reported in several experiments [28, 32, 34].
The paper is organized as follows. In the next section we describe our climb model

and its introduction in 3D DD simulation. Then simulations of loop coarsening are
performed, where prismatic glide of the loop is forbidden. This allows a comparison
with the coarsening model first proposed by Kirchner [33], and revisited by Burton
and Speight [35]. Finally, the contribution of prismatic glide to the kinetics is
presented. The paper ends with concluding remarks.

2. Dislocation climb model

The climb model used in our DD simulations is based on the diffusion theory of
point defects. As our DD simulations are used to study the annealing kinetics of
post-irradiated or quenched materials, only vacancies are contributing to disloca-
tion climb. Interstitials play a role only under irradiation. Jogs and pipe-diffusion
are not considered in our model. This means that dislocations are assumed to be
perfect sinks for vacancies which are thus at equilibrium all along the dislocation
lines and not only on localized points corresponding to the jogs. These are the same
assumptions as in the work of Mordehai et al. [15], where it has been shown that
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such an idealized model leads nevertheless to a reasonable description of disloca-
tion climb and is justified for high temperatures like the one of the present work
(600K in Al). In contrast with this earlier work, our DD simulations are based on
a nodal representation of the dislocation line and not on a discretization in edge
and screw segments. We therefore avoid discretization problems1, but we need to
define a climb velocity for all the dislocation characters, and not only for the edge
ones.

2.1. Climb mobility law

The starting point to derive the dislocation climb rate is the diffusion equation for
the vacancy concentration c in the steady-state limit. Neglecting the elastic inter-
action between vacancies and dislocations, this reduces to the Laplace equation,

∆c(r) = 0. (1)

In order to obtain simple analytical expressions, we derive the solution of this
equation for an isolated infinite straight dislocation. We therefore do not consider
the interaction between the diffusion fields of the individual dislocation segments.
A cylindrical control volume with inner radius rc of order of the core radius is

defined around the dislocation segment whose climb rate we want to calculate. As
we are not taking into account jogs nor pipe-diffusion, vacancies which diffuse into
this control volume are absorbed immediately. At the distance rc from the line,
they are at equilibrium with the dislocation. This leads to a vacancy concentration
[17, 38]

ceq = c0 exp

(

FclΩ

kTb sin (θ)

)

, (2)

where c0 = exp [−(U f
v − P∆Vv)/kT ] is the equilibrium vacancy concentration in

the defect-free crystal at the pressure P , Ω is the atomic volume, θ describes the
dislocation character1, i.e. the angle between its line direction unit vector ζ and
its Burgers vector b, U f

v is the vacancy formation energy and ∆Vv the associated
relaxation volume2, k is the Boltzman’s constant and T is the temperature. The
mechanical climb force Fcl is the projection of the Peach-Koehler force in the
direction perpendicular to the dislocation glide plane [40],

Fcl = [(σb)× ζ] · n, (3)

where σ represents the stress tensor acting on the dislocation segment. It is thus
the combination of the stress created by all other segments present in the sim-
ulation and of the externally applied load. The hydrostatic part of this tensor,
P = −1/3Tr (σ), gives the pressure controlling the vacancy equilibrium concentra-
tion in Eq. (2). The normal n to the dislocation glide plane appearing in Eq. (3)

1In their work, Mordehai et al. needed to correct the climb velocity of the edge segments to consider the
actual orientation of the dislocation line (§ 2.3 in Ref. [15]).
1θ is defined from sin (θ) = ‖b × ζ‖/b, as a consequence, sin (θ) is always positive.
2The pressure dependence [39, 40] of the equilibrium vacancy concentration is not considered in the present
simulations where a relaxation volume ∆Vv = 0 is assumed.
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is defined for non screw dislocation by the convention

n =
b× ζ

‖b× ζ‖ =
b× ζ

b sin (θ)
. (4)

With such a convention, a dislocation emits vacancies when it climbs in the direc-
tion of n, and absorbs vacancies otherwise.
The solution of Eq. (1) at distance r from the dislocation segment is obtained

by imposing c(r = r∞) = c∞ in the bulk, far from the dislocation, leading to

c(r) = c∞ + (c∞ − ceq)
ln(r/r∞)

ln(r∞/rc)
. (5)

An infinitesimal dislocation segment of length δl emits vacancies with a rate
given by

δNv = −2πrcδl
Dv

Ω

∂c

∂r

∣

∣

∣

∣

r=rc

= −2πδl
Dv

Ω

c∞ − ceq
ln(r∞/rc)

, (6)

where the vacancy bulk diffusion coefficient is given by

Dv = D0
v exp

(

−Ud
v

kT

)

(7)

with Ud
v being the vacancy migration energy and D0

v a constant pre-factor charac-
terizing vacancy diffusion. If δNv < 0, the segment actually absorbs vacancy. Its
climb velocity vcl = vcln is given by

vcl = δNv
Ω

bδl sin (θ)

=
2πDvc0

b sin (θ) ln (r∞/rc)

[

ceq
c0

− c∞
c0

]

. (8)

Eq. (8) actually gives the climb rate of the infinitesimal dislocation segment of
length δl. We need to deduce from it the velocity of the nodes. This is done using
“shape functions” [19, 20], i.e. functions which are non-zero only when a spatial
point lies on the segment connected to a given node. This allows to define nodal
forces by integration along each segment of the forces acting on this segment. This
integration is done using 5 Gauss points on each segment with weights given by the
shape function. The nodal velocities are obtained by solving the set of equations
that link the nodal forces to the nodal velocities [19, 20], using mobility laws such
as the one given by Eq. (8). This is more easily done if the velocity varies linearly
with the applied force. We therefore linearized Eq. (8) by taking advantage that
the climb force Fcl is small enough so that the exponential appearing in Eq. (2)
can be expanded to the first order. This leads to the linear relation

vcl = Mcl[Fcl + Fos], (9)
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where we have defined the climb mobility

Mcl(θ) =
2πDvΩc0

kTb2 sin2 (θ) ln(r∞/rc)
, (10)

and the osmotic force [38–40]

Fos(θ) =
kT

Ω

(

1− c∞
c0

)

b sin (θ)n. (11)

With this force, dislocations are climbing in presence of a vacancy supersaturation.
Considering that each point along the dislocation line may act as a sink or source

of vacancies, and thus neglecting the effect of jogs and pipe-diffusion, implies that
the climb mobility and the osmotic force depend only on the dislocation character,
θ. As seen from Eq. (11), the osmotic force tends to zero for a dislocation of
screw character: a point defect supersaturation does not exert any force on a pure
screw dislocation. But the climb mobility given by Eq. (10) is diverging for a
screw dislocation. If the Peach-Koehler force has a component perpendicular to the
dislocation glide plane1, our model leads to an infinite climb velocity for a screw
dislocation. This artifact is usual in models where a climb mobility is defined for all
dislocation characters [17] without incorporating jogs in the modeling. A proper
account of the interaction between a vacancy and a jog in the case of a screw
orientation, may remove the divergence of the climb mobility. In the present work,
the divergence is handled by considering that screw dislocations do not climb. We
therefore enforce zero climb velocity for all segments which are nearly parallel with
their Burgers vector. When the dislocation character θ is less than 10−6 radians, the
segment is handled in our code as pure screw. We check that varying this threshold
does not change the results of our simulations.
The incorporation in the diffusion equation (1) of the elastic interaction between

vacancies and dislocations will change the climb mobility (10) by multiplying it
with a prefactor depending on the interaction energy and the temperature [41]. It
will therefore only lead to a correction on the time scale. Such an elastic interac-
tion is important to consider when two different point defects, like vacancies and
interstitials, are diffusing as it can lead to some bias on their relative absorption by
dislocations [41]. In our simulations, only vacancies are present and we therefore
neglect the effect of this elastic interaction.

2.2. Simulation setup

For simulations the materials parameters of fcc aluminum are used: lattice constant
a = 0.404 nm, shear modulus µ = 26.5GPa, Poisson coefficient ν = 0.345, vacancy
migration energy Ud

v = 0.61 eV, vacancy formation energy U f
v = 0.67 eV, atomic

volume Ω = 16.3 × 10−30 m3, diffusion coefficient pre-exponential D0 = 1.18 ×
10−5 m2s−1.
At each simulation step, the stresses, forces, and velocities are calculated. No

external loading is applied. Then the dislocations are moved using an integration
time interval inversely proportional to the maximum velocity of all nodes. The
nodes are allowed to fly over a maximum distance of one Burgers vector in case of

1As we are modeling climb in fcc crystals where dislocations are dissociated, the glide plane can be defined
even for a screw dislocation although b× ζ = 0 in this case.
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glide motion and b/10 in case of climb, this defining the duration of the time step
for integration.
No image stress corresponding to free surfaces or periodic boundary conditions

are considered. The stress field calculation therefore assumes that dislocations are
in an infinite homogeneous elastic medium. The stress calculation is performed
using the non singular expressions of Cai et al. [42] assuming isotropic elasticity

with a parameter a = 3 Å for the core spreading.
For the numerical simulations of prismatic loop coarsening, the loops are of

vacancy type and we assume that they are far enough from surfaces and grain
boundaries, so that the loops are the only sources and sinks for vacancies. The
total number of vacancies in the system, i.e. the sum of vacancies condensed in
the loops and the free vacancies diffusing in the bulk, is therefore a conserved
quantity. Climbing dislocations emit or absorb a number of vacancies proportional
to the area they sweep. The vacancies in the bulk are considered to reach steady
state instantaneously. The time evolution of the bulk vacancy concentration is then
governed by the equation

dc∞
dt

=
b

V

dS

dt
, (12)

where V is the volume of the sample and S is the area swept by the loops during
climb. If a dislocation segment δl climbs a distance vcl ∆t, the corresponding swept
area is given by δS = vcl ∆t δl sin (θ). The sign of the climbing velocity fixes the sign
of the swept area and therefore determines if the dislocation segment is absorbing
(δS < 0) or emitting vacancies (δS > 0).

3. Climb-only controlled coarsening

3.1. DD simulations of loop coarsening

We first use the climb model to simulate the coarsening kinetics of prismatic loops
which are not allowed to glide, thus putting the glide mobility to zero in the DD
simulations. This corresponds to the behavior of faulted loops which cannot glide
on their prismatic cylinder because of the existing stacking fault. The additional
force exerted by the stacking fault on the dislocation segments is not included in
the simulation.
The initial configuration is a population of circular loops which are placed at

random in a box of size L × L × L, L = 2µm, and with the condition that they
do not overlap and the disks corresponding to them do not intersect. Their habit
planes are also chosen at random from the plane family {110}. The Burgers vector
of the loops is of 1/2 〈110〉 type and is perpendicular to the loop habit plane. The
loops are then pure prismatic. As glide is not allowed, they can only grow or shrink
in their habit plane by climb. As a consequence, they remain pure prismatic during
the whole simulations. This means that all the dislocation segments are pure edge.
These loops are of vacancy type and thus the glide plane normal n, as defined by
Eq. (4), is pointing at every point to the center of the loop.
We set the temperature to a constant value, T = 600K, during the simulation,

and we start with no vacancy supersaturation: c∞(t = 0) = c0. For a short time
at the beginning, all loops start shrinking because of their line tension and emit
vacancies. As a result, the vacancy concentration c∞ in the bulk increases. This
transient regime occurs because c0 is the equilibrium vacancy concentration in a
defect-free crystal. Because of the line tension of the loops and of the associated
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Figure 1. [Color online] Typical configuration of loops, when glide is not possible. Darker [blue] lines
represent the loops at t = 0 and lighter [red] lines at t = 1 s. (See video as supplementary online material.)

Gibbs-Thomson effect, the vacancy concentration in equilibrium with the vacancy
prismatic loops needs to be higher than c0. This vacancy supersaturation creates
an osmotic force. The coarsening kinetics will then result from the competition be-
tween this osmotic force and the mechanical climb force. For small loops, the line
tension leads to a mechanical climb force higher than the osmotic force, thus mak-
ing the loops shrink. Larger loops have a smaller line tension. Therefore the osmotic
force is higher than the mechanical climb force for them. The larger loops grow then
by absorbing the vacancies emitted by the smaller ones which are shrinking. The
frontier between stable and unstable loops is controlled by the instantaneous va-
cancy concentration c∞(t) through the Gibbs-Thomson effect. As c∞(t) is tending
to c0 with the time evolution, this frontier is going to the larger sizes of the loops.
As a consequence, as time evolves, the loops grow on average in radius whereas
their density decreases. A typical configuration at t = 0 and time t = 1 s is shown
in Figure 1.

3.2. Coarsening kinetics

To extract quantitative information from our DD simulations, we consider 500
statistically equivalent systems with different realization of randomness. The pris-
matic loops at t = 0 have random radii generated with uniform distribution, with
the constraint that their total area at t = 0 is the same in all simulations. Simula-
tions have been performed for three different initial total loop areas S(0) = L2/4,
S(0) = L2/2, S(0) = L2, where L is the size of the simulation box. The time
evolution of the average radius Rav of the loops, of the average number of loops
Nloops(t) in the simulation box, and of the vacancy supersaturation c∞(t)/c0 in the
bulk is respectively shown in Figure 2, 3, and 4.
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Figure 2. Time evolution of the average radius of the loops for three different initial total areas L2/4,
L2/2, and L2. The line corresponds to Eq. (13).
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Figure 3. Time evolution of the average number of loops for two different total initial areas L2/4 and
L2/2. The lines correspond to Eq. (15).

Kirchner [33] and Burton and Speight [35] have modeled the coarsening kinetics
for prismatic dislocation loops (KBS model). Their model is based on the line
tension approximation for the loops and uses the same assumptions as in our
DD simulations: loops cannot glide and only vacancy bulk diffusion makes the
loops grow or shrink. A good agreement has been observed with experimental data
[28, 32, 34] when these assumptions are valid. We check, in the present work, if
such an agreement can also be obtained with our DD simulations.
According to this coarsening model, the average radius of the loops Rav(t) should

increase like t1/2, following the law

Rav(t) = Rav(0)[1 + αt]1/2, (13)
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The lines are predictions of the KBS model for different line tension approximations. The solid line corre-
sponds to Eq. (16) where the line tension is µb/R. The dashed line corresponds to Eq. (18) where the line

tension is given by Eq. (17) with rc = 1.5 Å.
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where the temperature dependent growth rate is given by

α =
η

2R2
av(0)

c0DvµΩ

kT
. (14)

Here η is a geometric factor depending on the approximation used and on the
boundary conditions when solving the vacancy diffusion equation for an isolated
loop. Burton and Speight [35] assumed that the loops are acting as a point source /
sink for vacancies and obtained η = 2. This value has been found in good agreement
with the one derived from our DD simulations of the shrinkage of an isolated loop
(cf Appendix A). We therefore use this value. Using in Eq. 14 the input parameters
of our DD simulations, we compare the time evolution of the loop average radius
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observed in our DD simulations with the one predicted by Eq. (13). Figure 2 shows
that a quantitative agreement is obtained for all the initial loop areas studied. As
predicted by the KBS model, the average size of the loops only depends on its
initial value and not on the loop density.
The KBS model predicts that the number of loops Nloops(t) decreases like the

inverse of the time:

Nloops(t) =
Nloops(0)

1 + αt
. (15)

This is in perfect agreement with the results obtained in our DD simulations (Figure
3).
The vacancy supersaturation is directly linked to the average size of the loops

according to the KBS model:

c∞(t)

c0
= 1 +

µbΩ

kTRav(t)
. (16)

It should therefore decay asymptotically like t−1/2. The agreement with our DD
simulations is not as perfect as for Rav(t) and Nloops(t), but the discrepancy is
nevertheless small (Figure 4). This difference may arise from the line tension ap-
proximation used in the KBS coarsening theory where it is assumed that a loop of
radius R is subject to the stress τ = µb/R. A more precise expression of the line
tension exist for a circular prismatic loop [43]. Such a loop of radius R is indeed
subject to the self stress

τ(R) =
µb

4π(1 − ν)R
log

(

4R

rc

)

. (17)

The core radius rc appearing in this expression is directly linked to the parameter
a used to spread dislocation core in the non singular expressions of the stress field
[42]. For a prismatic loop, one should take rc = a/2, i.e. 1.5 Å in our case. With
this value of the core radius, τ(R)R/µb varies between 0.96 and 1.08 for loop radii
between 100 and 250 nm. This shows the correctness of the approximation used by
Kirchner [33] and Burton and Speight [35] for the line tension. This small difference
on the value of the line tension only slightly impact the vacancy supersaturation.
Using Eq. (17) for the line tension instead of µb/R, the time evolution of the
vacancy supersaturation is given by

c∞(t)

c0
= 1 +

µbΩ

4π(1− ν)kTRav(t)
log

(

4Rav(t)

rc

)

. (18)

Figure 4 shows that the change on the vacancy supersaturations is small in the
considered size range. This does not really improve the agreement with our DD
simulations. Probably, even Eq. (17) based on an improved line tension approxi-
mation only roughly estimates the stress existing on the dislocation segments in
the DD simulations. Eq. (17) assumes that the loops are circular and neglect the
interaction between different loops: DD simulations do not make these approxima-
tions. On the other hand, one cannot exclude that the discretization of the loops in
our DD simulations induces a noise on the line tension which may impact the va-
cancy supersaturation. For instance, 5 Gauss points on each segment were used to
integrate forces on each segment so as to obtain nodal forces. A better estimation
of the line tension may require more Gauss points or an analytical expression of
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the nodal forces [20]. Despite all these limitations on the comparison between the
results of our DD simulations and the predictions of the KBS model, the agreement
on the vacancy supersaturation is reasonable.
Finally, the KBS theory predicts that the size distribution of the loops, once

normalized, is stationary and is given by

g(z) =
1

8e2
z

(z − 2)4
exp

(

4

z − 2

)

(19)

if 0 < z < 2, and 0 otherwise. z = R/Rav(t) is a normalized radius and g(z)dz
is the probability to find a loop with a normalized size between z and z + dz.
The normalized size distribution in our DD simulations is stationary and perfectly
obeys Eq. (19), as can be seen in Figure 5.
A perfect agreement is therefore obtained between the simulations and the coars-

ening model for prismatic loops of Kirchner [33] and Burton and Speight [35]. The
agreement shows that this model is well suited when studying the coarsening of
loops by vacancy bulk diffusion.

4. Contribution of glide to the loop coarsening

The advantage of DD simulations is that they are not restricted to the study of
climb associated with bulk diffusion. We can superpose dislocation glide to see
how it affects loop coarsening. Loops are able to glide if they are unfaulted. One
observes then experimentally [24] a faster coarsening kinetics than with only bulk
diffusion.

4.1. Combining climb and glide motion

The drag coefficient, the inverse of the mobility, for dislocation glide is mainly con-
trolled by phonon drag in pure fcc metals and varies linearly with the temperature.
The temperature dependence in aluminum was obtained by molecular dynamics
calculations by Kuksin and coworkers [44] who found

Bgl(T ) = Bgl(300K)
T

300
, (20)

where Bgl(300K) = 1.4 × 10−5 Pa·s is the value of the drag coefficient at tem-
perature 300K. This value lies in between the two available experimental data
Bgl(300K) ≈ 0.6 × 10−5 Pa·s (Ref. [45]) and Bgl(300K) ≈ 2.6 × 10−5 Pa·s (Ref.
[46]), and is also close to other molecular dynamics simulation results by Olmsted

and coworkers [47], Bedge
gl = 1.2× 10−5 Pa·s and Bscrew

gl = 2.2× 10−5 Pa·s at 300K,

and Groh and coworkers [48], Bgl(300K) = 4.5 × 10−5 Pa·s. For simplicity, we ne-
glect in our simulations that screw segments glide slower than edge segments and
we consider a drag coefficient for glide which does not depend on the dislocation
character, as given by Eq. (20).
The important point is that the glide mobility is much higher than the climb

mobility at the considered temperatures. At 600K, the glide mobility is Mgl =
3.3× 105 Pa−1·s−1, whereas the climb mobility for edge dislocations is only Mcl =
1.75 × 10−5 Pa−1·s−1. Due to this difference of 10 orders of magnitudes between
both mobilities, it is not possible to handle both dislocation motions in the same
step in our DD simulations. The time interval compatible with the glide mobility
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would be so small that no climb could be observed during this period.
We therefore perform the glide and climb motions separately with two differ-

ent time steps, using an adiabatic approximation which assumes that the degrees
of freedom corresponding to dislocation glide reach an equilibrium between two
successive climb events. The dislocation microstructure is equilibrated first with
respect to the glide motion. Once glide is not producing any plastic strain, one
climb step is performed: the glide mobility is put to zero and the time step is set to
a value compatible with the climb mobility. After this climb event, we equilibrate
again the dislocation microstructure with respect to glide and then go back to
climb, thus cycling between climb events and glide equilibration. The dislocations
are considered to be in equilibrium with the glide motion, when the relative dif-
ference in the change of the Frobenius norm of the plastic strain tensor ε between
two consecutive time steps is less, than 10−3. Assuming index notation this can be
expressed as

∣

∣

∣

∣

∣

1−
√

εij(t+ dt)εij(t+ dt)
√

εij(t)εij(t)

∣

∣

∣

∣

∣

< 10−3. (21)

We check that the result of our simulations does not depend on the value of this
threshold by performing some simulations also with a 10−4 threshold.
Finally, one should stress that the definite {111} initial glide planes are lost in

our DD simulations. A climbing dislocation is jogged. It therefore, does not lie,
on average, in a definite {111} plane. The nodal representation of the dislocation
lines does not describes all jogs existing on the dislocation, but “coarse-grains”
the line to use less nodes per dislocation length. As a consequence, the dislocation
line vector ζ may lie in a plane different from a {111} plane. The dislocation glide
plane is then fixed by this line vector ζ and the Burgers vector b. The mobility
of the jogged dislocation should be smaller than the one of the perfect dislocation
as revealed by atomic simulations [49]. Nevertheless, this is negligible compared to
the mobility difference between glide and climb. We therefore do not consider the
effect of jogs on the glide mobility. This is different from the picture of a jogged
dislocation in DD simulations where dislocations are discretized in edge and screw
segments [15, 16]: in such simulations, all segments belong to a definite {111}〈110〉
glide system, but the jogs have to be concentrated in a single point instead of being
spread all along the dislocation line, thus creating a superjog in the simulation.

4.2. Glide and loop coarsening

When the glide mobility is non-zero, prismatic loops can glide on the surface of
a cylinder, whose axis is parallel to the Burgers vector of the loops. Due to the
elastic interactions between them, loops move on this prismatic cylinders. The first
consequence is that they can deviate now from their pure edge orientation. Most
importantly, if the cylinders of two different loops intersect, the loops can come
into contact with each other. Loops can thus merge by gliding on their prismatic
cylinder, a process much faster than coarsening by bulk diffusion. This is illustrated
in Figure 6 which shows the time evolution of a system formed by two attracting
prismatic loops. The two circular loops at t = 0 (Figure 6a) approach each other in
a short time by gliding on their prismatic cylinders (Figure 6b) until they come in
contact and reach an equilibrium configuration (Figure 6c). They then climb, the
largest loop absorbing the vacancies emitted by the smallest one (Figures 6d-6f).
During all this coalescence stage, glide allows the loops to keep their equilibrium
shape. At the end (Figure 6f), only the largest loop survives. The coarsening thus
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Figure 6. [Color online] Coarsening of a system formed by two attracting loops gliding on prismatic
cylinders which intersect each other. The initial glide cylinders of both loops are sketched with thin lines.
The axis of these cylinders correspond to the Burgers vector of the loops which are a/2[101] and a/2[1̄10]
respectively for the red and the blue loops. The Burgers vector of the junction that can be seen in the
insets d and e is a/2[011] The initial radius of the red loop is r = 210 nm and of the blue loop r = 230 nm.

results from climb assisted by glide. One should also note that, in this case, the
loops are so close that the mechanical climb force does not only arises from the
loop line tension but also from the stress exerted from one loop to the other one.
This is another factor, associated with loop glide, which leads to a speed-up of the
coarsening.
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Figure 7. Initial probability density distribution of loop surfaces for the simulations with glide and climb.

The influence of the glide on the time evolution of the quantities of interest
(vacancy supersaturation, loop density, mean projected loop area) was studied on
four different sets of loops. The initial size distributions corresponding to the four
different sets of simulations are presented in Figure 7. All sets contain the same
number of vacancies condensed in the loops, but some sets correspond to a high
density of small loops (sets 2 and 3), whereas some other sets to a broader distri-
bution with larger loops and a smaller density (set 1). The side of the simulation
box was set to L = 500 nm and the statistics was obtained by averaging over 50
statistically equivalent simulations. Initially no vacancy supersaturation exists in
the simulation box (c∞(t = 0) = c0). The area of the loops was calculated by
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Figure 8. [Color online] Coarsening dynamics of loops in a typical simulation for Set 1 (top) and Set 3
(bottom). (See video as supplementary online material.)
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Figure 9. [Color online] Time evolution of the vacancy supersaturation c∞(t)/c0 and of the loop density
in the simulations with glide and climb.

projecting the loops on planes perpendicular to the Burgers vector of the loops. It
gives thus a measure of the number of vacancies condensed in the loops.
Glide makes the loop population rapidly evolve at the beginning of the simula-

tion. In set 1, which contains large loops close to each other, loops come in contact
by glide and form a complicated network (Figure 8) which then evolves by climb
assisted by glide. In contrast, in set 3, which is a collection of small loops sepa-
rated by larger distances compared to their radius, few loops coalesce by glide at
the beginning. The coarsening mainly proceed by climb, with glide leading to some
isolated coalescence events and thus enhancing the kinetics.
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Figure 10. [Color online] Time evolution of the vacancy supersaturation, loop density, and mean projected
loop area in the simulations with finite glide drag coefficient, compared to the simulations with infinite
glide drag coefficient, for the data set 1 (on the left) and data set 3 (right column).

The time evolution of the vacancy supersaturation and of the loop densities is
presented in Figure 9. The vacancy supersaturation initially increases for short
time so as to reach equilibrium with the given loop population. This is similar to
what was observed in the previous section without glide. Then the supersaturation
decays as the loops absorb the excess of vacancies during the coarsening, whereas
the loop density decreases and their size increases.
To highlight the effect of glide on the coarsening of the prismatic loops, the

simulations were repeated on the data sets 1 and 3, with a glide mobility set to
zero. As it can be seen from Figure 10, the simulations with glide and climb result
in faster coarsening than simulations with climb only. Of course, when loops are
allowed to glide, the coarsening model of Kirchner [33] and Burton and Speight [35]
does not apply anymore. This is quite normal as this model assumes that loops can
only climb thanks to vacancy bulk diffusion and, as soon as loop glide is allowed,
it dramatically changes the coarsening kinetics.
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5. Conclusion

The introduction in DD simulations of a dislocation climb model based on va-
cancy bulk diffusion allows us to study the coarsening kinetics of prismatic loops.
When loops cannot glide, because they are faulted for instance, we obtain a perfect
agreement between our simulations and the coarsening model of Kirchner [33] and
Burton and Speight [35]. The average size of the loops increases with time t like
t1/2, the loop density decreases like 1/t, and the vacancy supersaturation decreases
like t−1/2.
When the loops can also glide on their prismatic cylinders, a much faster coars-

ening kinetics is obtained. Prismatic glide leads to direct coalescence of the loops.
These coalescence events enhance the coarsening of the loop distribution. For high
loop densities, where the distance between loops is small compared to their size,
glide leads to a complex dislocation microstructure and coarsening mainly proceeds
by aggregation.
Only vacancy bulk diffusion has been taken into account in our simulations. It

has been proposed in the literature [30] that vacancy pipe-diffusion also leads to
coalescence of the loops, as a result of a motion of the loops in the plane perpen-
dicular to their prismatic cylinder. The next step of this work will therefore be to
include climb associated with vacancy pipe diffusion so as to simulate all coarsen-
ing regimes. The effects of jogs on climb [50] should also be considered so as to
improve the climb mobility law.
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Appendix A. Isolated loop

The coarsening model of Kirchner [33] and of Burton and Speight [35] makes use
of the growing law of a prismatic loop. Such a law is based on the line tension
approximation and on the solution of Fick’s equation for vacancies diffusing from
the bulk to the loop. Several solutions can be found in the literature depending of
the assumed geometry for the flux fields and of the boundary conditions for the
vacancy concentration. These solutions differ only in the value of the geometrical
factor η which appears in Eq. (14) in the modeling of coarsening kinetics of pris-
matic loops. Seidman and Balluffi [51] assuming toroidal boundary conditions for
the flux field around the prismatic loop obtained η(R) =

√
6π/ ln (8R/rc), where

rc is the circular cross-section of the torus and R is its radius. If the loop is treated
as a disc [33], the value is η = 4/π

√

3/2 ≈ 1.56. Burton and Speight obtained
η = 2 by assuming spherical symmetry for the vacancy flux field around a loop
considered to be a punctual source/sink.
Following the approach of Mordehai et al. [15], we use our DD simulations in

combination with a line tension model to evaluate the value of η. We therefore
simulate the loop shrinkage of an isolated loop under equilibrium vacancy concen-
tration c∞ = c0, and we maintain fixed this vacancy concentration in the bulk.
One observes that a vacancy loop annihilates. According to the line tension model
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Figure A1. Time evolution of the surface S of an isolated loop with initial radius R(0) = 80 nm when
c∞(t) = c0.

[15, 33, 35, 51] its surface S is decreasing like

S(t) = S0

(

1− t

τ0

)

, (A1)

where S0 is the initial surface of the loop and the annihilation time τ0 is given by

τ0 =
kTS0

2πηc0DvµΩ
. (A2)

The shrinkage of an isolated loop with initial radius R(0) = 80 nm is presented
in Figure A1: the linear variation with time of the surface of the loop is clearly
obtained. Using Eq. (A2), the value of the geometric factor η can be deduced. For
loops with radius from R = 80 nm up to R = 4µm, we get values η ≈ 1.92 − 1.98,
close to the value η = 2 obtained by Burton and Speight [35]. For the sake of
simplicity we then also assume that η(R) is constant, and we use the value η = 2.
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