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Abstract

This paper is dedicated to the numerical simulation of nuclear
components (Cores and Steam Generators-SG) by fictitious domain
methods. The fictitious domain approach consists in immersing the
physical domain under study in a Cartesian domain, called the fic-
titious domain, and in performing the numerical resolution on this
fictitious domain. The calculation times are then efficiently reduced
by the use of fast solvers. In counterpart, one has to handle with an
immersed boundary, generally non-aligned with the Cartesian mesh,
which can be non-trivial.
The two fictitious domain methods compared here on industrial simu-
lations and developed by Ramière and coworkers, deal with an approx-
imate immersed interface directly derived from the uniform Cartesian
mesh. All the usual immersed boundary conditions (Dirichlet, Robin,
Neumann), possibly mixed, are handled through a unique formulation
of the fictitious problem. This kind of approximation leads to first-
order methods in space that exhibit a good ratio of the precision of
the approximate solution over the CPU time, which is very important
for industrial simulations.
After a brief recall of the fictitious domain method with spread inter-
face (Ramière et al., CMAME 2007) and the fictitious domain method
with immersed jumps (Ramière et al., JCP 2008), we will focus on the
numerical results provided by these methods applied to the energy
balance equation in a SG. The advantages and drawbacks of each
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method will be pointed out. Generally speaking, the two methods
confirm their very good efficiency in term of precision, convergence
and calculation time in an industrial context.

Keywords : Fictitious Domain; Immersed Boundary; Immersed Inter-
face; Nuclear component; Steam Generator; Finite Elements; Finite Volumes;
Computational Fluid Dynamics.

1 Introduction

This paper concerns the industrial numerical simulations of nuclear compo-
nents (cores and Steam Generators, SGs) by a Fictitious Domain Method
(FDM) following the works of Ramière and coworkers [1, 2, 3, 4]. These
works were indeed in line with the numerical R&D work package of the
Neptune platform [5], which is a software platform dedicated to the thermal-
hydraulic numerical simulation of nuclear power plants from the local scale
to the system scale through the component scale. The thermal-hydraulic
simulation of nuclear power plants consists in modeling two-phase flow (wa-
ter/steam) passing into obstacles: we are hence in presence of free and blind
regions with eventually free boundaries. The vibrations and displacements of
the obstacles under the flow action (fluid-structure interaction) are of great
importance for the safety analysis. Due to computer limited resources for
industrial component simulations, the two-phase fluid is usually modeled by
an equivalent mixture fluid in a porous region thanks to a homogenization
process [6]. This mixture fluid verifies Navier-Stokes-like balance equations
with specific non-linear coefficients and source terms. Based on this formal-
ism, the CEA (which is the French Atomic Commission) has developed two
softwares, Genepi [7] and Flica-IV [8], devoted to the engineering SG and
core simulations respectively. Numerically speaking, the Genepi software
uses a Finite Element (FE) resolution while the Flica-IV software is based
on a Finite Volume (FV) discretization.

Steam generators of nuclear power plants produce the steam feeding the tur-
bines. Those material can be roughly described as a 10 m high and 3 m
diameter cylinder. The riser is filled with about 5,000 upside down U-shaped
tubes of 1 cm diameter in which flows hot water (primary fluid) coming from
the nuclear core, see Figure 1. Some technological objects (e.g. tube-support
plates) complete the riser. The liquid feed water (secondary fluid) entering in
the riser is then heated by contact with the hot upside down U-tube bundle.
That leads to a liquid/steam fluid. After liquid separation, the ’dry’ steam
flows into the electricity turbines. We distinguish the so-called ’hot leg’ (on
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the primary fluid inlet side) and ’cold leg’ (on the primary fluid outlet side)
of the SG.

cold leghot leg

steam (secondary fluid)

liquid water recirculation

primary fluid inlet primary fluid outlet

bo
ili

ng
 fr

on
t

feed water (secondary fluid)

riser

Figure 1: Simplified scheme of a steam generator.

Here, we focus on the SG’s energy balance equation. As previously men-
tioned, the two-phase secondary fluid is viewed as an equivalent mixture
fluid [7]. Hence the secondary fluid energy balance equation is a convection-
diffusion-like with non-linear source terms

β∂t(ρH) + div(βGH) − div(βχT ∇H) = βQ − div(βx(1 − x)ρLVR). (1)

where the unknown is the mixture specific enthalpy H (KJ.kg−1) and

• β is the porosity (≡ ωm/ω) with ω the homogenization cell volume (m3)
and ωm the mixture volume (liquid + steam) in the homogenization cell
(m3),
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• ρ(H, P ) is the density (kg.m−3),

• P is the mixture pressure (Pa),

• G is the mixture mass flux (≡ ρV, with V the mixture velocity (m.s−1)),

• χT = a|G|L is the turbulent diffusion coefficient (kg.m−1.s−1) [9] with
L a typical eddy length and |.| the Euclidean norm,

• Q is the heat source term (W .m−3),

• L(P ) is the latent heat of vaporization (J .kg−1),

• x(H, P ) is the static quality (≡
H − Hls

L
) with Hls(P ) the saturation

liquid enthalpy (KJ.kg−1),

• VR is the relative velocity (steam velocity minus liquid velocity, m.s−1)
[10, 11].

The βx(1 − x)ρLVR term is called the drift term. The mixture pressure P
and mass flux G are data of the problem (generally obtained by the reso-
lution of the Navier-Stokes balance equations). The heat source term Q is
given by the resolution of the primary fluid energy balance equation in which
external correlations involving H and G are used.

In most of industrial simulations, the shape of the physical domain involves
numerical resolution methods based on unstructured body-fitted meshes.
These classical methods induce a loss of efficiency and rapidity of numer-
ical solvers in comparison with methods based on Cartesian meshes. Indeed,
with Cartesian-based methods, the natural tensor formulation can be used,
fast solvers (based for instance on finite volume methods) and multi-level
or multi-resolution techniques (see [12, 13] for example) can be easily im-
plemented, . . . Moreover, in the particular case of moving boundaries, the
cost of mesh generation and re-meshing for boundary-fitted meshes can be
significant. In this context, FDMs are full of promising as they consist in
uncoupling the physical domain of interest and the computational domain.
This computational domain includes the physical domain and its moving and
is generally chosen to be easily meshed with a Cartesian grid. We then enjoy
all the advantages of Cartesian-based methods listed below without manag-
ing the re-meshing.
Concerning nuclear component simulations, the fictitious domain concept
allows furthermore the use of a unique formalism for free, porous or blind
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regions inside the component [14], with fixed or moving boundary (fluid-
structure interactions, free-surface flows in case of liquid leak, . . . ).

In this paper, our goal is to show the capability of an industrial software,
initially based on body-fitted unstructured meshes, to take advantage of the
fictitious domain approach without large modifications of this software.
In Sections 2 and 3, we detail the fictitious domain philosophy and more par-
ticularly the two fictitious domain methods introduced in [2] and [3] respec-
tively, which seem promising in an industrial context such the one described
here. In Section 4, we are interested in solving the SG’s energy balance equa-
tion by these two fictitious domain methods. More precisely, we investigate
the comparison in terms of accuracy and computer efficiency of the ficti-
tious domain methods and the classical FE body-fitted mesh solver usually
employed in engineering simulations. Finally some words of conclusion are
given.

2 The fictitious domain concept

In the fictitious domain approach, the original domain Ω̃ is embedded in a fic-
titious domain Ω which is geometrically bigger and generally simpler-shaped
(cf. Figure 2). Doing this, some immersed boundary Σ appears such that
Ω = Ω̃∪Σ∪Ωe, where Ωe is the complementary domain (often called ’exterior
domain’). The spatial discretization is now performed in Ω, independently of
the shape of the original domain Ω̃. Numerical methods involving structured
or Cartesian meshes can be used. Consequently, the resolution of the new
problem in Ω will be faster and simpler.
The main issue is to enforce the original boundary conditions (B.C.) on the
immersed interface Σ which is non-aligned with the mesh. Indeed, the re-
striction of the fictitious solution over the physical domain is expected to be
an accurate approximation of the physical solution.
The first fictitious domain methods were introduced in the fifties by Hy-
man [15] and the Russian’s school [16, 17, 18, 19, 20] and for a few years
now, fictitious domain methods have been hugely developed and have arisen
in different fields: computational fluid dynamics (e.g. [14]), solid mechanics
(e.g. [21]), medical simulation (e.g. [22]), . . . The FDMs can be classified
into two main categories depending on the way they enforce the immersed
boundary conditions. In the first category, the complementary domain has
only a numerical purpose and can be used to impose the immersed boundary
conditions: we design this group of methods as Immersed boundary methods.
In this category, we recover the root idea of the precursor fictitious domain
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Figure 2: Embedding the original domain Ω̃ inside a fictitious rectangular
domain Ω.

methods of the Russian’s school. The second category contains methods
based on immersed transmission conditions (jump conditions) that link two
physical domains. The complementary domain has then a real physical sense.
This category is called Immersed interface methods. As the transmission con-
ditions can be arranged to manage immersed boundary conditions, methods
of this category can generally also derived in immersed boundary methods
([23, 24, 25]).
In a non-exhaustive way, we can mention the following FDMs for each of the
previous categories.

• Immersed boundaries (between one physical domain and one supple-
mentary domain): the Immersed Boundary Method (I.B.M.) [26, 27],
the truncated domain method or cut-cell method [28, 29], the Direct
Forcing method [30, 31], the fictitious domain methods with surface La-
grange multipliers [32, 33] or the distributed (volume) Lagrange multi-
pliers [34], the penalty methods [16, 35, 36], the Finite Cell Method [21],
the Ghost-Cell method [37], the Fat Boundary Method [38, 39], the fic-
titious domain with spread interface [2], the diffuse domain approach [40],
the embedded finite-difference method [41], the X-FEM-based fictitious
domain methods [42, 43],. . .

• Immersed interfaces (between two physical domains): the Immersed
Interface Method (I.I.M.) [44, 45], the Ghost-Fluid method [46], the
Matched Interface and Boundary method (M.I.B.) [47], the Algebraic
Immersed Interface and Boundary method [48], the fictitious domain
method with immersed jumps [49, 3],. . .

Very few methods enable us to deal with all usual embedded boundary con-
ditions (Dirichlet, Neumann or Robin), possibly mixed, within a unique for-
mulation. The two FDMs detailed in the next section offer this possibility
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which is very comfortable, especially for an industrial software that has to
deal with all the possible physical situations.

3 Two general fictitious domain methods

In this section, we present the main characteristics of the fictitious domain
method with spread interface [2], which is an immersed boundary method,
and of the fictitious domain method with immersed jumps [3], which is an
immersed interface method. For more technical details, the reader is invited
to consult the corresponding articles.
We are interesting in solving a convection-diffusion-reaction-type equation
on a physical open bounded domain Ω̃ ⊂ R

d with a boundary ∂Ω̃ that is
sufficiently regular. In its general form, the original problem (P̃) writes:
For ã ∈ (L∞(Ω̃))d×d, ṽ ∈ L∞(Ω̃)d , b̃ ∈ L∞(Ω̃) and f̃ ∈ L2(Ω̃), find ũ ∈
H1(Ω̃) such that

(P̃)

{

div (−ã .∇ũ + ṽũ) + b̃ ũ = f̃ in Ω̃

B.C. on ∂Ω̃,
(2)

The symmetric tensor of diffusion ã ≡ (ãij)1≤i,j≤d and the reaction coefficient
b̃ verify the classical ellipticity assumptions. Hence the solution ũ of the
problem (P̃) exists and is unique.

The generic aspect of the fictitious domain methods developed by Ramière
and coworkers is to consider that all the general B.C., which will become
immersed B.C. in a fictitious domain context, can be expressed as a Robin
boundary condition:

−(ã.∇ũ).n = αR ũ + gR (3)

where n is the outward unit normal vector on ∂Ω̃, 0 ≤ αR ∈ L∞(∂Ω̃) and
gR ∈ L2(∂Ω̃).
Indeed, a Neumann B.C. is directly obtained setting αR = 0 in the previous
expression while a Dirichlet B.C. u = uD can be viewed as a penalized Robin
B.C.:

αR =
1

η
, gR = −

1

η
uD (4)

where 0 < η ≪ 1 is a real penalty parameter, called penalty coefficient, which
is chosen to be very small (typically around 10−12).
With this formalism, mixed boundary conditions (i.e. different B.C. sup-
porting by different parts of the boundary) are easily taken into account by
setting the suitable values of the Robin coefficients on the different parts of
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the boundary.
Hence the fictitious domain methods of Ramière and coworkers focus on the
modelization of immersed Robin B.C.

3.1 The fictitious domain method with immersed spread

interface [2] (ISI)

The fictitious problem (Ps) to be solved in Ω is build from the original prob-
lem (P̃) by extending the physical partial differential equation (PDE) to the
whole fictitious domain Ω. The coefficients of the equation in Ωe are a priori
not determined. In order to handle the immersed B.C. on Σ, we consider
the transmission problem between Ω̃ and Ωe preserving the continuity of the
solution u on Σ. In the distribution sense, we then get:

(Ps)







div (−a .∇u + vu) + b u = f − [[(a.∇u).n]]Σ δΣ + [[(v.n)]]Σ u δΣ in Ω

original B.C. on ∂Ω ∩ ∂Ω̃

suitable B.C. on ∂Ω\∂Ω̃
(5)

where the tensor of diffusion a and the reaction coefficient b satisfy classical
ellipticity assumptions. The symbol [[.]]Σ denotes the jump across Σ oriented
by the outward unit normal n (turned to the exterior of Ω̃), while δΣ is the
Dirac delta measure supported by Σ.
For B.C. correctly chosen on ∂Ω\∂Ω̃, a ∈ (L∞(Ω))d×d, v ∈ L∞(Ω)d , b ∈
L∞(Ω) and f ∈ L2(Ω), we can prove that the solution u ∈ H1(Ω) of the
problem (Ps) exists and is unique.

Remark 1 The coefficients a, v, b and f as well as the solution u may
depend on the penalty coefficient η. However for sake of simplicity, we omit
this index in the notation.

This method enables us to take into account immersed jumps of fluxes (dif-
fusion and convection). However, as the continuity of the solution across the
immersed interface is assumed, the treatment of a general immersed Robin
B.C. requires the control of the coefficients of the fictitious problem in the
complementary domain. Hence, we consider this method as an immersed
boundary method.
The diffusion flux jump carried by Σ contains the information about the im-
mersed Robin B.C. For sake of simplicity we impose −(a.∇u).n|+

Σ
≈ 0 by

setting ae = ηId on Ωe, so that

[[(a.∇u).n]]Σ = αR u|Σ + gR (6)
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We then have to impose v|Ωe
= ve = 0 in order unconstrained the solution

in the complementary domain Ωe.
The convection-diffusion equation to be solved in (Ps) can be finally still
written in the distribution sense as

div (−a.∇u + v u) + b u = f −
(

αR u + gR + (v.n)− u
)

δΣ (7)

The problem (Ps) then guaranties u|
Ω̃
→ ũ when η → 0.

Concerning the numerical aspects, if a Finite Element or a Finite Volume
scheme is used, the Dirac delta measure of Eq.(7) will lead to an integral
over the immersed boundary Σ. However, in a fictitious domain context, a
Cartesian mesh is used and hence the support of Σ is not exactly defined.
Ramière et al. [2] then proposed to use the characteristic function as molli-
fiers [50] of the Dirac measure δΣ in order to distribute the effect of this Dirac
measure to an approximate spread interface ωh,Σ derived from the mesh. This
approximate immersed interface is simply defined as the union of the cells
crossed by the immersed interface Σ, see Fig. 3. The jumps of fluxes intro-
duced in Eq.(5) are then spread on ωh,Σ thanks to a characteristic parameter
ǫh that ensures the local conservativity of the fluxes. In practice, this cell
parameter is the ratio of the measure of the cell by the measure of the origi-
nal immersed interface intersected by this cell (see [2] for more details).

Ω
~

eΩ

Σ

n

(a) Original domains

h,ΣhΩ~

Ωe,h

ω

(b) Approximate domains with a
spread interface

Figure 3: Spread interface ωh,Σ derived from the Cartesian mesh.

In the end, we solve the following generic discrete convection-diffusion ficti-
tious problem (Ps

h) over the Cartesian mesh of Ω

(Ps
h)







div (−ah .∇uh + vhuh) + bh uh = fh in Ωh

original B.C. on ∂Ωh ∩ ∂Ω̃h

suitable B.C. on ∂Ωh\∂Ω̃h

where the discrete coefficients are reported in Table 1. On ∂Ωh ∩ ∂ωh,Σ, a
homogeneous Neumann B.C. is imposed to be coherent with the required
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external flux, see Eq. (6).

In Ω̃h In ωh,Σ In Ωe,h

ah = ãh, vh = ṽh, ah = ãh, vh = ṽh, ah = η Id, vh = 0,

bh = b̃h, fh = f̃h bh = b̃h +
αR,h

ǫh
+

ṽh.n

ǫh
, fh = f̃h −

gR,h

ǫh
bh = 0, fh = 0

Table 1: Coefficients of the fictitious convection-diffusion problem with
spread interface

The rate of convergence of this fictitious domain method has been proved [4]
to be in O(h1/2) for the H1-norm and in O(h) for the L2-norm, where h
denotes the mesh step. In [2], various academic numerical test cases have
been performed to validate this spread interface fictitious domain method.
A Q1 FE scheme had been used. The results confirm the accuracy of the
method for all general B.C. as well as the expected orders of convergence.
The modelling error with respect to the penalty parameter η is also looked at
in [2]: we obtain a behaviour in O(η1/3) for an immersed Dirichlet problem.

Remark 2 When only a Dirichlet boundary condition is under consider-
ation, this method returns to a classical volume penalization method (see
e.g. [35]).

3.2 The fictitious domain method with immersed jumps [49,

3] (JEBC)

The acronym JEBC used by Angot for this method refers to ’jump embedded
boundary conditions’ even if this method deals with more general embedded
jump conditions. The first model with embedded jump transmission con-
ditions has been proposed in [51]. Using these transmission conditions, the
treatment of general embedded B.C. has been theoretical developed in [49]
and numerically performed and validated in a fictitious domain context in [3].
The fictitious domain problem is an extended convection-diffusion problem
with immersed jump conditions:

(Pj)























div(−a∇u + vu) + b u = f in Ω,

original B.C. on ∂Ω ∩ ∂Ω̃

suitable B.C. on ∂Ω\∂Ω̃,
[[(a∇u).n]]Σ = α u|Σ − q on Σ,

(a∇u).n|Σ = β [[u]]Σ − g on Σ

(8)

10



where the symbol [[.]]Σ represents the jump of traces across Σ oriented by the
unit normal vector n (turned towards Ωe) while the symbol . refers to the
arithmetic mean of traces on Σ.
The uniformly positive definite tensor of diffusion a, the reaction coefficient
b and the transfer coefficients α, β (defined on Σ) are supposed measurable
and verifying classical ellipticity assumptions. For data f ∈ L2(Ω), g and
q given in L2(Σ) and B.C. on ∂Ω\∂Ω̃ correctly chosen, the problem (Pj) is
proved to be well-posed (see [49]) and the solution u belongs to H1(Ω̃∪Ωe).

Remark 3 When α = g = q = 0 and β → ∞, the perfect transmission
problem is recovered with u ∈ H1(Ω).

The jump conditions on Σ are more general than in the I.I.M. where the
jumps of solution and flux are supposed to be given. A suitable choice of the
transmission conditions coefficients of the problem (Pj) enable us to impose
Robin immersed B.C. on Σ without requiring any control of the exterior
problem

α = 4β = 2αR, g −
q

2
= gR (9)

Then, the coefficients of the fictitious convection-diffusion equation are sim-
ply those of the two independent sub-problems (original and exterior).

Remark 4 With the ’no exterior control’ choice for the transfer coefficients,
we can impose an immersed Robin B.C. leaving independent the solutions of
the two domains Ω̃ and Ωe: this method is actually an immersed interface
method.

Numerically speaking, this fictitious domain model with immersed transmis-
sion conditions requires the discretization scheme to allow jumps of fluxes
and solution. A special cell-centered FV scheme has been developed for this
purpose in [51] for diffusion problems and extended in [3] for convection-
diffusion problems. This cell-centered scheme with jumps at cell boundaries
uses the standard (2d+1)-points stencil only. It is as cheap as the standard
cell-centered FV scheme without any jump.
On the Cartesian mesh of the fictitious domain, an approximate stair-case
interface Σh lying on sides of control volumes is thus defined, see Fig.4. The
choice of Σh is non-unique but must respect |meas(Ω̃h) − meas(Ω̃)| = O(h).
The jump conditions are then applied on Σh with discrete transfer coefficients
deduced from (9). As for the fictitious domain method with spread interface,
a geometric correction ǫh has then to be introduced in order to take into
account the local ratio of surface measures between the original immersed
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interface and the approximate one, see [3] for more implementation details.
The B.C. on ∂Ωh ∩Σh must be compatible with the required immersed B.C.

Ω
~

eΩ

Σ

n

(a) Original domains

hhΩ~

Ωe,h

Σ

(b) Approximate domains with a
stair-case interface

Figure 4: Stair-case interface Σh derived from the Cartesian mesh

Academic test cases are proposed in [3]. Among them, one confirms the
efficiency of the method to deal with mixed immersed B.C. The theoretical
first-order of convergence in space for the L2-norm [4] is numerically recovered
for all kind of immersed B.C. The modelling error of the surface penalization
used for a Dirichlet B.C. seems to be in O(η1/2).

4 Numerical results in an industrial context

We present here an application of the FDMs of Sections 3.1 and 3.2 to in-
dustrial engineering computations of the steam generator energy balance
equation. Our purpose is to assess these methods, validated on academic
numerical test cases [2, 3], in a representative industrial context. Indeed,
we want to take advantage of the fictitious domain approach with Cartesian
meshes while modifying as less as possible the industrial Genepi code. For
the method based on the spread approximation of the immersed interface
described in Section 3.1, we directly perform modifications on the FE solver
of the Genepi code. As mentioned in Table 1, we only have to add extra
terms in (1) to deal with the immersed boundary conditions. We denote this
solver FE-ISI. For the method based on a ’thin’ approximation of immersed
interface supporting immersed jumps, cf. Section 3.2, we replace the gen-
uine FE solver of the Genepi code by a FV solver dedicated to this fictitious
domain method with flux and solution jumps. By default, we perform an
exterior approximate immersed interface Σh (such that Ω̃ ⊂ Ω̃h) and transfer
coefficients verifying the ’no exterior control’ choice (9). In this latter case,
Genepi only manages the physical correlations and the time evolution. For
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efficiency reason, this FV-JEBC solver uses the so-called (i, j, k) implemen-
tation instead of the nodal implementation of the Genepi FE solver. Hence,
data-format transformations have to be done between the FV-JEBC solver
and Genepi.
Let us precise that the choice of a finite-element discretization is not the
only one possible for the ISI method. A finite-volume discretization could
also be used with this method. On the other hand, for the JEBC method, a
finite-volume discretization is the natural framework.
In the sequel, we aim to compare the FE-ISI solver and the FV-JEBC solver
in terms of accuracy and computation efficiency. Moreover a special atten-
tion will be paid to the comparison of these FDM solvers with the classical
body-fitted FE solver.

4.1 The test case

The industrial test case is build on the CEA half-steam-generator 3-D mock-
up Clotaire (at scale 0.7) [52]. We are only interested in the riser simulation.
The geometry of the mock-up riser is a 9.17 m high (z coordinate) and 0.62 m
diameter (x and y coordinates) half-cylinder filled with a bundle of 184 upside
down U-shaped tubes (7.2 m in height) in which flows the hot primary flow.
One flow-distribution baffle, nine tube-support plates and one anti-vibrating
bar are, respectively located at the bottom, straight and curved part of the
tube bundle. Let us notice that, looking at the vertical planar side of this
mock-up, the hot leg is on the right side .
The boundary conditions of the secondary-fluid energy balance equation are
Dirichlet B.C. at the inflow window (hot leg H = 119.3 KJ.kg−1, cold leg
H = 118.5 KJ.kg−1), see Figure 1, and homogeneous Neumann B.C. else-
where (∇H.n = 0 with n the external normal). The initial condition of the
enthalpy is given by a linear profile from 118.5 KJ.kg−1 on the U-tube plate
to 140 KJ.kg−1 at the outflow.
As no analytic solution is available for this problem, the FE Genepi solution
obtained with a 648,388-cell body-fitted-mesh is considered as the reference
solution. The mean space steps hx ≈ hy ≈ 10−2 m and hz ≈ 2.10−2 m
are around the dimensions of the periodic arrangement of the U-tube bun-
dle. In order to be well suited to the physical-domain boundary and the
inner structures (U-tube support plates), this unstructured mesh is highly
non-uniform.
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4.1.1 Fictitious-domain meshing and boundary conditions

For the fictitious-domain computations, the half-cylinder geometry of the
physical domain Ω̃ is immersed into a rectangular parallelepiped Ω (cf. fig-
ures 5(a) and 5(b)). Three Cartesian meshes of the fictitious domain Ω
involving 7,200, 57,600 and 460,800 cells are built. The space step is divided
by two from one mesh to the next one. The space steps of the finest mesh
(hx ≈ 1.3 10−2 m, hy ≈ 1.4 10−2 m and hz ≈ 2.3 10−2 m) are around those of
the reference simulation.

(a)
Fic-
ti-
tious
do-
main
mesh.

(b) Section of the physical-domain adapted
mesh (blue) and of the Cartesian fictitious-
domain mesh (red).

(c) ISI representation of the
Dirichlet immersed interface
(green: hot leg inflow window,
blue: cold leg inflow window).

Figure 5: Physical domain adapted mesh, Cartesian fictitious domain mesh
and immersed Dirichlet boundary conditions for the spread approximation
of the interface.

The geometry of the approximate immersed interface is computed from the
intersection between the body-fitted mesh and the fictitious Cartesian mesh,
see Figure 5(b). For each cell cut by the interface, we dispose of the interface
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measure inside the cell. About 15% of the Cartesian cells are located in the
external domain that is considered as an obstacle with a small porosity for
the fluid.
The Robin immersed boundary condition formalism (cf. section 3) allows us
to deal with the mixed immersed boundary conditions (Dirichlet/Neumann)
under study. By this way, we test our modeling of the immersed Robin
B.C. with extreme values of the coefficient αR. Concerning the own B.C.
of the fictitious domain (∂Ω\∂Ω̃), we also impose mixed boundary condi-
tions: homogeneous Neumann B.C. everywhere except on faces in front of
the immersed Dirichlet boundaries. For these particular faces, we impose the
Dirichlet value of the corresponding immersed boundary.

4.1.2 Numerical features

It is worth to give some precisions concerning the Genepi code and the ficti-
tious domain solvers. In Genepi, the enthalpy (H), the porosity (β) as well
as the drift term are expressed in a Q1 finite element base, while the density
(ρ), the pressure (P ), the advection mass flux (G), the turbulent diffusion
coefficient (χT ) and the heat source term (Q) are expressed in a Q0 finite
element base. Whatever the solver is, the primary-fluid energy balance equa-
tion is solved by 1-D FE computations coupled at each time step with the
secondary-fluid energy balance equation through the source term Q of (1).
For the secondary-fluid equation, the mixture pressure P and mass flux G
fields are interpolated on cell barycenters from a complete N-S resolution by,
respectively, a constant and a trilinear interpolation, see Figure 6(a). The
stationary regime is found by a semi-implicit march-in-time algorithm, in
which the time step ∆t is limited to 2.5 times the CFL time step, and is
defined by the following criteria ‖ξn+1 − ξn‖L2/‖ξn‖L2 ≤ 10−5∆t with ξ rep-
resents the unknowns.
The characteristics of the FE-ISI solver are those of the Genepi code. Hence
the FE-ISI discretization algorithm is second-order in space for the diffu-
sion and the convection terms and second-order in time (Crank-Nicholson
scheme). Balancing tensor-diffusivity correction [53] is used to prevent spu-
rious oscillations introduced by the central-difference discretization of the
convection term. The FV-JEBC solver is based on constant cell values. Then
cell projections of Q1 FE quantities are done between Genepi and this solver.
In the FV-JEBC solver, the discretization of the diffusion term is also second-
order in space, but the convection scheme is only first-order in space (upwind
scheme). The time scheme is the first-order semi-implicit Euler scheme. At
each time step, linear systems are smoothed by some ILLU [54] (Incom-
plete Line LU factorization)-preconditioned CGS [55] iterations (FE-ISI) or
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diagonal-preconditioned Bi-CGStab [56] iterations (FV-JEBC). Typically, a
maximum number of 20 iterations is done. These iterations are early stopped
if the initial residual is reduced by a factor 107.

(a) Given mixture
mass-flux field G.

y

0,14m

x
0,06m 0,2m 0,29m

0,04m

c1

c4

c2

c3

(b) Locations of vertical lines for the enthalpy z-
profiles. Left side: cold leg, right side: hot leg.

Figure 6: Mixture mass-flux field and locations of enthalpy z-profiles.

4.2 Results

Results are appreciated on criteria concerning the global primary/secondary-
fluid heat exchange Wech, the secondary-fluid enthalpy or the computation
cost. Comparisons are made between the fictitious domain solutions and
the reference solution. For example, L2-norm errors of the enthalpy are per-
formed in the whole physical domain as well as along several vertical lines
(enthalpy z-profiles), see Figure 6(b).

The stationary regime is reached after respectively 441, 1,080 and 2,719 time
steps for the 7,200, 57,600 and 460,800-cell meshes whatever the FD solver
is. This is similar to the number of time steps required for body-fitted simu-
lations with the same stationary-regime criteria and a similar minimal space
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step.
Following the space step h, the global primary/secondary-fluid heat exchange
is recovered with a relative error around 10−3 to 10−5 in comparison with the
reference computation, see Table 2. The heat exchange Wech quickly con-
verges toward the reference value. For the finest mesh, we seem to reach the
industrial computational precision. Hence, both fictitious domain methods
have the same level of accuracy as regard to this global quantity that is of
interest for industrial steam-generator simulations.

Cell # 7,200 57,600 460,800
FE-ISI 2.4 10−3 5.9 10−4 8.0 10−5

FV-JEBC 1.8 10−3 7.2 10−4 7.0 10−6

Table 2: Absolute values of the relative error on primary/secondary-fluid
heat exchange Wech. The reference heat exchange is equal to 1.48 106 W.

Figure 7(a) (resp. 7(b)) shows the enthalpy isovalues obtained on a hori-
zontal cut plane at half elevation of the SG mock-up with the ISI method
(resp. JEBC method). In these Figures, the reference solution (top) is com-
pared with FE-ISI and FV-JEBC solutions obtained with the 57,600-cell
mesh (bottom). Qualitatively the results are very close, particularly for the
FE-ISI method. Indeed, the error associated to the FV-JEBC method seems
to be higher than the error obtained for the FE-ISI method. A first conclu-
sion drawn from these simulations is that the immersed boundary method is
slightly more accurate than the immersed interface method.
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(a) FE-ISI solution.
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(b) FV-JEBC solution.

Figure 7: Enthalpy isovalues for a horizontal cut plane at 5 m (half elevation).
For each figure, top: body-fitted mesh reference solution; bottom: 57,600-cell
Cartesian mesh FD solution.
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We can notice that, as expected, the isovalue lines of all simulations
are perpendicular to the wall (homogeneous Neumann boundary condition),
see Figures 8(a), 8(b) and 8(c). On the zoom of the FV-JEBC solution
(Figure 8(c)), this feature is sometimes locally masked by the bad post-
processing of the strong variating solution near the immersed boundary.

(a) Body-fitted mesh reference solution.

(b) FE-ISI solution (57,600-cell Cartesian mesh).

(c) FV-JEBC solution (57,600-cell Cartesian mesh).

Figure 8: Zoom near the wall (immersed boundary) of the physical domain
enthalpy isovalues. Horizontal cut plane at 5 m (half elevation).

Figures 7(b) and 9 confirm that for the JEBC method with ’no exterior
control’ transfer coefficients, the exterior domain has no influence on the
physical domain solution. Moreover, we can see on Figure 9 that this method
definitely allows (at least) jumps of solution!
The L2-norm error over the whole physical domain of the secondary-fluid
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Figure 9: 3D representation of the enthalpy isovalues for a horizontal cut
plane at 5 m (half elevation) of the 57,600-cell Cartesian mesh FV-JEBC
solution.

enthalpy is reported in Table 3. Also, we indicate the L2-norm error for
the part of the physical domain in regard to the inflow window Dirichlet
immersed B.C.. As a whole, the space convergence order of the FDMs in
the L2-norm tends to O(h) before reaching the discretization error of the
reference solution. This is coherent with the academic test cases [2, 3] and the
convergence analysis [4] that conclude to first-order methods. Richardson’s
extrapolation formula [57] enables us to obtain the intrinsic convergence order
of the enthalpy L2-norm : we obtain a convergence in O(h1.23) for the FE-ISI
solution and in O(h1.15) for the FV-JEBC solution over the whole physical
domain. This lower-bound of the L2-norm of the error is coherent with the
expected first-order convergence of the methods.
Then the first-order discretization in space (convection) of the FV-JEBC
method is optimal since using higher-order discretization schemes does not
improve the overall accuracy. These results also confirm that the ISI method
is globally more accurate than the JEBC method with ’no exterior control’
coefficients. However, it is worth to underline that the JEBC method leads
to the lower error values for the subdomain in front of the inflow window and
then seems to better simulate Dirichlet B.C..

The z-profiles of the secondary-fluid enthalpy are plotted in Figures 10(a) and
10(b) for the c4 lines (see Figure 6(b)). These figures enable us to conclude
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Whole physical domain Inflow window part
Cell # 7,200 57,600 460,800 7,200 57,600 460,800

(convergence order) (convergence order)
FE-ISI 3.43 10−3 1.67 10−3 1.08 10−3 2.81 10−3 2.08 10−3 1.06 10−3

(-) (1.03) (0.63) (-) (0.43) (0.95)
FV-JEBC 4.09 10−3 2.14 10−3 1.36 10−3 1.82 10−3 7.76 10−4 9.92 10−4

(-) (0.93) (0.65) (-) (1.23) (-0.36)

Table 3: Relative L2-norm error of the secondary-fluid enthalpy over the
whole physical domain or the part of this domain in front of the inflow
window.

to the good accuracy of both FDMs. Moreover the mesh convergence is
recovered. We can notice that, for the coarsest mesh, the ISI profiles are
closer to the reference profiles than the JEBC ones.
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(a) Immersed spread interface method (FE-
ISI).
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(b) Thin interface with immersed jumps
method (FV-JEBC).

Figure 10: Secondary-fluid enthalpy profiles for the c4 lines. The notation
’-’ for the lower curves (respectively ’+’ for the upper curves) is related to
the cold leg (respectively the hot leg). The legends ’fict coarse’, ’fict’ and
’fict fine’ refer to the Cartesian mesh sizes (respectively 7,200; 57,600 and
460,800 cells).

The relative L2-norm errors for the set of enthalpy z-profiles are plotted in
Figures 11(a) and 11(b). As for the results from Table 3, these errors are
always lower than 5 10−3. These Figures confirm the previous qualitatively
results (cf. Figures 10(a) and 10(b)): both FDMs converge with the mesh
size. For some profiles (e.g. line c4+), the fictitious domain solution early
reaches the reference solution. Again, the L2-norm error globally decreases
with order O(h) in space, see Table 4. In view of these representations,
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the previous conclusion is still valid: the FE-ISI solver is a little bit more
accurate than the FV-JEBC solver. However this latter solver converges in
a more monotone way.
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(b) Thin interface with immersed jumps
method (FV-JEBC).

Figure 11: Relative L2-norm error versus the space step h for the enthalpy
profiles (0 ≤ z ≤ 8 m). The notation ’-’ (respectively ’+’) is related to the
cold leg (respectively the hot leg).

FE-ISI FV-JEBC
Ratio r Aver. order Ratio r Aver. order

C1- 2.68 1.84 1.14 2.56 1.99 1.14
C1+ 2.56 1.60 1.04 1.43 1.65 0.77
C2- 2.71 1.66 1.09 2.55 1.83 1.09
C2+ 3.06 1.16 1.06 1.61 1.76 0.84
C3- 2.57 1.64 1.06 2.49 1.81 1.07
C3+ 4.89 1.09 1.50 1.99 1.90 0.97
C4- 2.95 1.91 1.22 2.92 2.52 1.36
C4+ 1.77 1.15 0.73 2.74 1.11 0.96

Table 4: Arithmetic-averaged orders of convergence in space of the L2-norm
error of the enthalpy z-profiles. Ratio r between the z-profile L2-norm errors
computed using one grid and the next finer one. Convergence order defined
as ln(r)/ln(2).

Now, we focus on the computational efficiency point of view. It is more
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linked to the space discretization and to the data structures than to the
FDMs themselves. A first difference between the solution procedures con-
cerns the minimal value of the η coefficient that can be effectively performed.
In case of the FV-JEBC solver, this value can be as small as 10−14 without
any problem to solve the linear systems even using simple preconditioner as
the diagonal one. On the other hand, for the FE-ISI solver, the value of η is
bounded by 10−6 (it can be decreased to 10−9, but the algorithm convergence
is slower). This is due to the fact that the mass matrix resulting from the
Q1 FE discretization of the reaction term involves off-diagonal entries with
large values. The built of a good preconditioner is then by far not trivial.
No off-diagonal terms appear with the cell-centered FV scheme. Hence a di-
agonal preconditioner is sufficient to improve the matrix condition number.

FE-ISI FV-JEBC Ref.
Cell # 7,200 57,600 460,800 7,200 57,600 460,800 648,388
Trans. - - - 1.30 10−2 1.65 10−1 1.35 -
Ass. > 1.35 10−1 > 1.10 > 7.93 3.70 10−2 3.67 10−1 3.05 unknown
Sol. 5.70 10−2 5.59 10−1 4.23 2.80 10−2 2.06 10−1 5.41 unknown
∆t 4.46 10−1 3.50 25.90 3.27 10−1 4.64 24.02 37.60
Mem. 67 240 1,588 65 230 1,554 2,148

Table 5: Comparison of the computational efficiency between the FD simula-
tions and the reference one. CPU time are expressed in seconds and memory
in MBytes. Linear system solvers: ILLU-preconditioned CGS for the FE-ISI
method and the reference simulation; diagonal-preconditioned Bi-CGStab for
the FV-JEBC method. ’Trans.’: data translation CPU time; ’Ass.’: matrix
assemblage CPU time; ’Sol.’: linear system solver CPU time; ’∆t’: a time
step CPU time; ’Mem.’: memory.

Table 5 shows the CPU time used by the simulations. The data translation
time is the extra CPU time required to convert the FE mesh-oriented data
storage (node/face/cell connexions) into table-oriented data storage ((i, j, k)
indexes) and vice-versa. The table-oriented format of the data storage and
the smaller number of matrix entries give advantage to the FV-JEBC solver:
the matrix assemblage CPU time is the smallest one. The FV-JEBC method
also offers better performances for the linear system solver: lower matrix
band size (cache memory effect for small numbers of unknowns) and easier
preconditioning. As a whole, taking into account the data translation time,
the FV-JEBC solver requires only as CPU time as the FE-ISI solver to com-
pute a time step. The analysis of the memory leads to the same conclusion
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since the FV-JEBC memory shown in Table 5 includes extra memory for the
data translation. Then, the performances concerning data storage and CPU
time of the FV-JEBC method should be even more obvious with a code fully
exploiting the (i, j, k) index format.

Remark 5 Other transfer coefficient choices in (8) have been tested for the
FV-JEBC method leading to similar numerical results than the ’no exterior
control’ choice (9). For example, if we want to preserve the continuity of the
solution ( u+

Σ
≈ u−

Σ
:= uΣ), we have to set α = αR, β = 1/η, q = −gR and

g = 0. If we look at the 57,600-cell mesh solutions (cf. Figures 12(a) and
12(b)), we can remark that the numerical results are very close. Actually the
only differences can be found in the increase of smoothness near the immersed
interface brought by the ’solution continuity’ choice (no enthalpy jump) and in
the easier solve of the linear systems. But the main drawback is the necessity
to control the external part of the fictitious domain setting −(a.∇u).n|+

Σ
≈ 0

through aΩe,h
= ηId as in the spread interface approach.

Remark 6 Likewise, we have tested other definitions of the approximate
immersed-interface geometry for the JEBC method. In particular, defining
the approximate immersed interface as the set of faces cut by the exact im-
mersed interface brings a small increase of accuracy for the coarsest Carte-
sian mesh simulation (several percents only).

5 Conclusion

In this paper we have tested and compared two fictitious domain methods
enforcing immersed boundary conditions. The first one is based on a spread
approximation of the immersed interface [2], while the second one is based on
immersed jumps supported by a thin approximation of the immersed inter-
face [3]. Both methods can deal with mixed immersed boundary conditions
(Dirichlet, Neumann and/or Robin B.C.). Actually, the fictitious domain
method with immersed jumps can be used as an immersed interface method
in the sense where the external fictitious domain is related to the physical
domain by transmission conditions. This work has been devoted to assess
these methods, already validated on academic test cases in [2, 3], in a rep-
resentative industrial test case: the thermal-hydraulic simulation of nuclear
power plant components. As a first inside in this task, we have considered the
computation of the energy balance-equation of the steam-generator mock-up
Clotaire. We have paid a particular attention to the easiness of the intro-
duction of this kind of approach in existing industrial codes.
For this purpose, the immersed spread interface method has been directly
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(a) ’No exterior control’ choice.

(b) ’Solution continuity’ choice.

Figure 12: Effect of the transfer coefficients on the enthalpy field (horizontal
cut plane at 5 m; half elevation) for the FV-JEBC solver with a 57,600-cell
Cartesian mesh.

introduced in the finite-element Genepi code (FE-ISI solver), adding extra
terms in the discretized equations. On the other hand, the native Genepi
energy-balance equation solver can be also replaced by a finite-volume fictitious-
domain solver (FV-JEBC solver) to test the method with immersed jumps.
Hence, these two methods present good properties concerning their capabil-
ities to be easily introduced in an pre-existing industrial code. By this way,
we have tested the generic immersed B.C. modeling, based on the Robin
formalism, to deal with an industrial problem with immersed mixed Dirich-
let/Neumann B.C..
The reported simulations illustrate the really satisfactory performances of
these fictitious domain methods in a industrial context. Although they use
different modelling to handle immersed B.C. as well as different space and
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time discretizations, both fictitious domain methods lead to the same ac-
curacy as a whole: the relative L2-norm errors calculated from a reference
solution quickly decrease under 0.1%. The theoretical first-order mesh con-
vergence is recovered [4]. For comparable space steps, the fictitious domain
methods enable us to save about 30% of the global reference computational
cost involving CPU time and memory. This gain should be even more appre-
ciable with a code fully exploiting the (i, j, k) data-storage format, well suited
for fictitious domain simulations on Cartesian meshes. Generally speaking,
the FE-ISI errors are slightly lower than the FV-JEBC ones. In counterpart,
the FV-JEBC solver already benefits of the optimal data storage and offers
the great possibility of obtaining the physical domain solution in a totally un-
coupled way with the external domain modeling. All these conclusions give
us confidence to extend these fictitious domain methods to the Navier-Stokes
equations for fully simulate nuclear components and study fluid-structure in-
teractions.
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