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REGULARIZED NONNEGATIVE MATRIX FACTORIZATION FOR AUTOFLUORESCENCE
REMOVAL IN FLUORESCENCE OPTICAL IMAGING

Anne-Sophie Montcuquet1,2, Lionel Herve1, Fabrice Navarro1, Jean-Marc Dinten1 and Jérôme I. Mars2

1CEA, LETI, MINATEC, 17 rue des martyrs, 38054 Grenoble cedex 9, France
2GIPSA-Lab, Rue de la houille blanche BP46, 38402 Saint Martin d’Hères, France

ABSTRACT

Fluorescence imaging in diffusive media locates cancers
thanks to injected fluorescent markers specific to the tumors.
The region of interest is illuminated with red light and the
emitted back fluorescence is analyzed to locate the fluores-
cence sources. To detect accurately the markers signal and
be able to explore thick media (breast, prostate), autofluores-
cence emitted by biological tissues has to be removed. We
propose a spectroscopic approach, based on Non-negative
Matrix Factorization (NMF) method, and present interest of
regularized NMF algorithms on unmixing results. In vivo
autofluorescence removal and tumor detection enhancement
results on mice will be presented.

Index Terms— Fluorescence spectroscopy, autofluores-
cence, positive source separation

1. INTRODUCTION

In fluorescence imaging, specific fluorescent markers are injected to
a patient to specifically bind to biological targeted such as tumors
[1]. The region of interest is then illuminated with near infrared
(NIR) light. An optimal wavelength range may be defined – between
600 and 900 nm – where the tissue absorption is lower: it allows light
to excite markers around tumors deep (a few centimeters) in tissues.
Finally, the emitted back fluorescence signal is measured and the tu-
mors are localized by fluorescence optical tomography (FDOT). As
NIR light excites injected fluorescent markers, it also excites all flu-
orophores naturally present in tissues: this unwanted measured sig-
nal is called autofluorescence. To investigate thick media for med-
ical diagnostic application (breast or prostate cancer diagnosis for
example), as the fluorescence signal gets exponentially weak with
the light travel distance, the autofluorescence of tissues becomes a
limiting factor. The analysis of a fluorescence signal impaired by
autofluorescence may lead to a wrong localization of the markers:
the signal needs to be preprocessed in order to remove autofluores-
cence. For in vivo fluorescence spectroscopy, the unmixing problem
is referred to as a blind source separation problem since the fluores-
cent sources spectra may vary according to the fluorescent dye bio-
logical environment. Fluorescence spectra to separate are also sup-
posed statistically dependent, which filters out many methods (such
as ICA). Non-negative Matrix factorization (NMF) differs from clas-
sical source separation methods (SVD, PCA) in that it forces the ma-
trices factors to be non-negative, and thus suits to spectra separation.

As in many cases, the obtained solution is non-unique, and prior
information is necessary to restrain the NMF solution set. We devel-
opped new regularized NMF algorithms (initialisation of problem,
and spatial sparsity constraints) which bring prior information to the
unmixing problem and improve NMF results. Finally, regularized
methods are tested and validated on in vivo mice data.

2. NON-NEGATIVE MATRIX FACTORIZATION

The classical NMF definition says[2]:

Given a nonnegative matrix V ∈ RNs×Nλ , find nonnegative matri-
ces A ∈ RNs×P and S ∈ RP×Nλ such that :

V ' AS (1)

where nonnegative matrices are matrices whose all factors are non-
negative and P stands for the number of sources to unmix.

Applied to spectroscopy, matrix A is considered as the weights
matrix, and S as the spectra matrix, both containing as much ele-
ments P as fluorescent sources to separate. Note that our model does
not include noise since in our system measurement noise is very low.
To find the particular matrices A and S that satisfy equation 1, we
define the following cost function to minimize:

F = ‖V −AS‖22 (2)

Then to minimize F , after matrices A and S initialization with
positive values, multiplicative update rules developped by Lee and
Seung [2] are iteratively applied. It brings us to the following NMF
implementation:

Algorithm: NMF

1. Initialisation of A and S with nonnegative coefficients

2. Update of S: S ← S
(AtV )
(AtAS)

3. Update of A: A← A
(V St)
(ASSt)

4. Restart steps 2 and 3 until stopping criterion (for example
when F = ε for a chosen ε value).

3. REGULARIZATION

3.1. Non-uniqueness of solution

The chosen cost function F is not jointly convex in matrices A
and S: there are numerous local minima to the function and non-
uniqueness of the NMF factorization. Let us assume a factorization
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of V by the product of some matrices A and S exists. If we now
consider any invertible matrix T of size P × P , then a new couple
(Ã, S̃) of solutions is easily found:

V = (AT−1)︸ ︷︷ ︸
Ã

(TS)︸ ︷︷ ︸
S̃

(3)

Without any constraint and prior information on sources, there is
an infinity of factorizations of matrix V . Non-negativity constraint
inherent to the NMF problem already restrains the solution set [3].
But other regularization constraints may be added to original cost
function F , and prior information may be considered to improve the
unmixing [4]. We propose to study the influence of initialization of
A and S on NMF decomposition, and to add spatial sparsity con-
straints to the unmixing problem. To underline regularization effect,
we compare NMF results with or without regularization on simu-
lated breast fluorescence data [5].

3.2. Simulated example

Many clinical experiments on breast allow us to design a com-
puter breast model with realistic tissues optical properties. A fake
marked tumor is introduced to the model, and consistent modeling
fluorescence acquisitions of the simulated breast are obtained, with
modified depth of the marked tumor.

Definition of simulated matrices A and S: The breast fluo-
rescence acquisition model is composed of an homogeneous aut-
ofluorescence distribution and of a specific fluorescence contribution
(to mimic the tumor pointed out by an injected fluorescent marker).
Signal ratio between healthy tissue and tagged tumor depends on
biomarkers. From bibliography, and from experience, ratios from 3
to 15 [6] (for more specific-to-tumor markers) are usual. We chose
for our simulation study a ratio between tumor and healthy tissue
approximately equal to 10 when tumor is 1 mm deep in tissues.

The specific fluorescence part is the product of a weight vector
A1 by a fluorescence spectrum S1 (see figure 1 - a). In the same
way, the autofluorescence part is the product of the weight vector A2

by a fluorescence spectrum S2 (see figure 1 - b). Simulated spectra
are gaussian models chosen close to usual fluorescence spectra of
autofluorescence and fluorescent markers (Indocyanine Green for
example). Finally the total simulated acquisition is obtained by
adding the specific fluorescence and the autofluorescence parts (fig-
ure 1 - c).

Contrast definition: We introduce the contrast CT,N , measured
between tumorous area T and normal tissues area N : it characterizes
the improvement of tumor detection after autofluorescence removal,
on simulation and experimental results. Average intensity of fluo-
rescence signal is measured on both concerned areas: T̄ and N̄ are
respectively the average intensities in photons per pixel of areas T
and N defined figure 1, and: CT,N = (T̄ − N̄)/(T̄ + N̄). The
closer to one the contrast value gets, the better the detection will
be. On next regularization tests, simulated marked tumor is moved
from surface to 5 cm deep in tissues, and contrast between tumor
and healthy tissue is calculated for each position.

3.3. Influence of initialization choice on NMF decomposition

NMF decomposition directly depends on the initial guess on matri-
ces A and S. We study influence of initialization on our simulated
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Fig. 1. The sum of a specific fluorescence signal a) and an
autofluorescence signal b) leads to simulated mixed data c).

example: Gaussian spectra similar to simulation spectra of matrix S
are chosen to initialize the NMF algorithm, but a range of translated
initialization spectra is tested. Initialization spectra for matrix S0 are
translated on a range of 100 nm, on both sides of simulation spectra,
as depicted figure 3.3.
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Fig. 2. Influence of S0 initialization translation on NMF de-
composition.

First we observe healthy tissue/tumor contrast on raw data, with-
out any unmixing processing: contrast and detection are naturally
decreasing with depth (see figure 3 - a). Then NMF processing is
applied on data but with random initialization (random non-negative
values for matrices A and S, 30 draws per depth): unmixing process-
ing improves detection (see figure 3 - b). Finally NMF algorithm
with this time Gaussian initialization for S (Gaussian models are
translated on a 100 nm range) is tested: even with less appropriate
initialization (in that case when both simulation spectra are trans-
lated 50 nm up that simulation models for initialization), contrast is
considerably improved compared to both prior cases (see figure 3 -
c).

From that example, we show initialization choice is very sensi-
tive and may be unexpected, but necessary to improve markers detec-
tion. Even if an approximate initialization already improves contrast
between tumoral area and healthy tissue compared to the algorithm
with random initialization (see figure 3), a more accurate initializa-
tion selection may push back the detection limits. Such selection can
be obtained with a multi-start initialization step prior to the classical
NMF algorithm [4] which finds the most appropriate initial candi-
dates for matrices A and S: the initial estimates from a defined range
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Fig. 3. Influence of initialization on resulting contrast (breast
simulation example).

of initialization which give the lowest value of healthy tissue/tumor
contrast or cost function F after a few iterations are expected to be
the most suitable for carrying on the optimization step.

3.4. Sparsity constraints

An other regularization we considered for our unmixing problem is
based on spatial sparsity constraints.

Indeed, for local specific markers distribution (only around the
tumor), we expect to get peaked weight columns in matrix A. A
contrario, when unmixing is not complete, a residual autofluores-
cence baseline surrounds the specific marker peak. This property is
depicted figure 3.4.
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Fig. 4. Link between the quality of unmixing process and
resulting weight matrix A.

An intuitive reasoning to improve unmixing would be to smooth over
the unwanted autofluorescence residuals on specific markers weight
profiles, by thresholding the smallest values: in other words, we look
for sparse A columns for specific markers contributions.
We introduce a sparsity measurement [7]: let us consider a weight
matrix A of size X × P , the sparsity of a given column Ap

(p ∈ (1, P )) of A is:

sparsity (Ap) =

√
X −

(
X∑

x=1

|axp|

/√
X∑

x=1

a2
xp

)
√

X − 1
(4)

Sparsity value ranges from 0 for non-sparse results to 1 for extremely
sparse results. Existing algorithms [7] propose from a chosen spar-
sity value to find a solution with exactly the same sparsity value.
Since sparsity value of markers column can not be exactly known,
we prefered to deal with thresholding. We also choose a sparsity
value ϕ, and our methopd looks for most appropriate threshold value
in order to find a solution whose saprsity value remains close to ϕ.
Nevertheless, the minimization of F alternatively will prevent the
NMF solution to remain exactly equal to the sparsity set point. The
following NMF implementation has been developped in order to
take sparsity constraints into account:

Algorithm: NMF with sparsity constraints

1 to 3: idem classical NMF implementation
4. Each column Ap of A referring to weights of specific

markers, for a wanted sparsity value ϕ for coefficients of column
Ap, is changed into Ãp:
∀x ∈ (1, X),

ãxp =

 axp if axp ≥
max(axp)

βpmin

0 otherwise
(5)

with βpmin the threshold value such as:
βpmin = argmin

βp

∣∣∣sparsity
(
Ãp(βp)

)
− ϕ

∣∣∣
5. restart steps 2 to 4 until stopping criterion is obtained (for

example when F = ε for a chosen ε).
6. At last iteration, run again steps 2 and 3.

Finally, when running this new algorithm on simulated data pre-
sented earlier, we considerably improve tumor detection, specially
for deep embedded tumors. Figure 5 gives contrast values between
tumor and healthy tissue depending on tumor depth obtained when
running different NMF method (with or without regularization) on
breast example. On that particular example, coupling sparsity con-
straints to multi-start initializations, allowed to get a contrast value
equal to 0.6 for example for markers 3 cm deep in tissues. Without
NMF processing, detection with a contrast equal to 0.6 was obtained
for markers only 2 mm deep in tissues. Finnaly NMF processing
without any regularization improved detection results compared to
the no processing case, with a contrast of 0.6 at 12 mm, far from the
3 cm offered by sparsity constraints and multi-start initialization. By
selecting accurate regularization for the unmixing problem, one may
push the tumor detections limits back of a few centimeters, which is
not negligible for clinical applications.

4. IN VIVO RESULTS

In order to simulate marked tumors on a mouse, two glass capillary
tubes filled with respectively 5 µl of Indocyanine Green loaded into
nanoparticles (ICG-LNP) [8] at 0.35 µmol/l and with 5 µl of Alexa
750 at 0.1 µmol/l are inserted subcutaneously on the animal (see
figure 6). Low markers dosage are chosen, in order to emphasize
autofluorescence problem and to reproduce deep tumor detection in
human organs.

The resulting intensity scanning is presented figure 6. On that
precise example, we run the NMF algorithm with the multi-start ini-
tialization step and the sparse NMF iterations (initial sparsity value is
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pending on tumor depth, and NMF method. Accurate regu-
larization on NMF may improve detection and tumor local-
ization of a few centimeters in tissues.

chosen equal to 0.9 for both specific markers weight vectors). Mixed
data size (matrix V) is 255×1024, and the NMF run-time is less than
a minute.

Mixed data
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tube

Alexa 750
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Fig. 6. Experiment on mouse; left: two capillary tubes
filled with fluorescent markers simulate marked tumors, right:
mixed fluorescence acquisition obtained

Figure 7 presents the unmixing results: three fluorescence spec-
tra have been separated (figure 7-left) and the unmixed fluorescence
distrbution are presented figure 7. NMF under sparsity constraints
successfully unmixed the three components, and considerably im-
proved both simulated tumors detection.

5. CONCLUSION

Beyond the specific fluorescence signal of specific markers used in
optical imaging, the autofluorescence of biological tissues needs to
be removed to get accurate detection results. To unmix fluorescence
spectra, Non-negative Matrix Factorization method was chosen, and
regularized algorithm were proposed to restrain the non-uniqueness
ambiguity of separation. Simulated results and in vivo mice results
underlined accurate regularization interest on tumor detection im-
provement. Autofluorescence removal as a preprocessing step for

Unmixed fluorescence data (A)

autofluorescence Alexa 750 ICG-LNP

750 800 850 900 950700

Autofluorescence 
Alexa 750               
ICG-LNP

S

Wavelength (nm)

Separated spectra

Fig. 7. Unmixing results after NMF with sparsity constraints
and multi-start initialization.

fluorescence optical imaging data is more than necessary to get cor-
rect 3D tomographic reconstructions, and to accurately localize tu-
mors.
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