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Abstract The Progressive Edge Growth (PEG) algorithm is one of the
most widely-used methods for constructing finite length LDPC codes.
In this paper we consider the PEG algorithm together with a scheduling

distribution, which specifies the order in which edges are established in
the graph. The goal is to find a scheduling distribution that yields “the
best” performance in terms of decoding overhead, performance metric
specific to erasure codes and widely used for upper-layer forward error
correction (UL-FEC). We rigorously formulate this optimization prob-
lem, and we show that it can be addressed by using genetic optimiza-
tion algorithms. We also exhibit PEG codes with optimized scheduling
distribution, whose decoding overhead is less than half of the decoding
overhead of their classical-PEG counterparts.

Keywords: LDPC codes, bipartite graph, PEG, UL-FEC, decoding
overhead/inefficiency.

1 Context and motivations

Low Density Parity Check (LDPC) codes constitute a very broad class of FEC
codes, distinguished by the fact that they are defined by sparse parity-check
matrices, and can be iteratively decoded in linear time with respect to their
block-length. Invented by Gallager in early 60’s [1], but considered impractical
to implement, these codes have been neglected for more that three decades, and
“rediscovered” in the late 90’s [2]. Nowadays, a large body of knowledge has
been acquired (analysis, optimization, construction); LDPC codes are known
to be capacity approaching codes for a large class of channels [3], and became
synonymous with modern coding.

However, this capacity approaching property holds in the asymptotic limit of
the code length, and codes optimized from this asymptotic perspective may suffer
significant performance degradation at practical lengths. Actually, the asymp-
totic optimization, performed by using density-evolution methods [4], yields an
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irregularity profile, which specifies the distribution of node-degrees in the bipar-
tite (Tanner) graph [5] associated with the code. It is assumed that the girth4

of the bipartite graph goes to infinity with the code-length. Hence, optimized
irregularity profiles can be used to construct codes that are “long enough” (at
least few thousand bits) to avoid short cycles, although they must be “short
enough” to be practical.

One of the most widely-used method for constructing finite length codes is
the Progressive Edge Growth (PEG) algorithm [6]. It constructs bipartite graphs
with large girth, by establishing edges progressively: the graph grows in an edge-
by-edge manner, optimizing each local girth. There is an underlying edge order

within the PEG, corresponding to the order in which edges are established in the
graph. In general, edges are progressively established starting with those incident
to symbol-nodes of degree-2 and ending with those incident to symbol-nodes of
maximum degree. However, any other order with respect to the symbol-node
degrees would also be possible. Besides, for a given symbol-node degree, edges can
be established in a node-by-node manner (all edges incident to some symbol node
are established before moving to the next symbol-node), or in a degree-by-degree

manner (a first edge is established for each symbol-node, then a second edge is
established for each symbol-node, and so on until all the symbol-nodes reach the
given degree). Although this order may significantly impact the performance
of the constructed code, it is rather difficult to formalize and has practically
not been investigated in the literature. There are however several papers that
aim to enhance the PEG construction by optimizing some objective function,
as for instance minimizing the number of cycles created [7], or minimizing the
approximate cycle extrinsic (ACE) message degree [8], [9].

2 Scheduled-PEG construction

In this paper we consider the PEG algorithm together with a scheduling distribu-

tion, which will be referred to as scheduled-PEG, or SPEG for short. Within the
SPEG algorithm, symbol-nodes are divided into subsets, each subset containing
symbol-nodes of same degree. Edges incident to the symbol-nodes of a subset
are established in a degree-by-degree manner, before moving to the next subset.
The scheduling distribution specifies the fraction of nodes within each subset.
Our purpose is to find a scheduling distribution that yields the best performance
in terms of decoding overhead (performance metric widely used for UL-FEC).
We rigorously formulate this optimization problem, and we show that it can be
addressed by using genetic optimization algorithms.

The proposed Scheduled-PEG algorithm allows the enhancement of the clas-
sical PEG algorithm. By varying the scheduling distribution, one can explore the
ensemble of LDPC codes with fixed code-length and degree distributions, which
allows us to find codes with very small average inefficiency (the performance
metric considered in this paper).

4 Length of a shortest cycle.
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We show that the SPEG algorithm can be successfully combined with genetic
optimization algorithms[10], which significantly improves the average inefficiency
of the constructed LDPC codes over the classical-PEG construction. In terms of
error rate curves, this translates into a significant improvement of the waterfall
region.

Finally, we remark that the optimization of the scheduling distribution makes
use of the specific channel model (through the use of the decoding inefficiency).
Hence, LDPC codes constructed by using the SPEG algorithm together with
an optimized scheduling distribution are channel dependent. However, the pro-
posed algorithm could be generalized for more general channel models (e.g. by
optimizing with respect to a target FER, or to the area under the FER curve.).
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