
Scheduled-PEG construction of LDPC codes for

Upper-Layer FEC

Lam Pham Sy, Valentin Savin, David Declercq, Nghia Pham

To cite this version:

Lam Pham Sy, Valentin Savin, David Declercq, Nghia Pham. Scheduled-PEG construction of
LDPC codes for Upper-Layer FEC. WCC 2011 - Workshop on coding and cryptography, Apr
2011, Paris, France. pp.429-432, 2011. <inria-00614468>

HAL Id: inria-00614468

https://hal.inria.fr/inria-00614468

Submitted on 11 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52691073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00614468


Scheduled-PEG construction of LDPC codes for

Upper-Layer FEC

Lam Pham Sy1, Valentin Savin2, David Declercq3, and Nghia Pham1

1 Eutelsat, Paris, France
lphamsy@eutelsat.fr, HPham@eutelsat.fr

2 CEA-LETI, MINATEC campus, Grenoble, France
valentin.savin@cea.fr

3 ENSEA, Cergy-Pontoise, France
declercq@ensea.fr

Abstract The Progressive Edge Growth (PEG) algorithm is one of the
most widely-used methods for constructing finite length LDPC codes.
In this paper we consider the PEG algorithm together with a scheduling

distribution, which specifies the order in which edges are established in
the graph. The goal is to find a scheduling distribution that yields “the
best” performance in terms of decoding overhead, performance metric
specific to erasure codes and widely used for upper-layer forward error
correction (UL-FEC). We rigorously formulate this optimization prob-
lem, and we show that it can be addressed by using genetic optimiza-
tion algorithms. We also exhibit PEG codes with optimized scheduling
distribution, whose decoding overhead is less than half of the decoding
overhead of their classical-PEG counterparts.

Keywords: LDPC codes, bipartite graph, PEG, UL-FEC, decoding
overhead/inefficiency.

1 Context and motivations

Low Density Parity Check (LDPC) codes constitute a very broad class of FEC
codes, distinguished by the fact that they are defined by sparse parity-check
matrices, and can be iteratively decoded in linear time with respect to their
block-length. Invented by Gallager in early 60’s [1], but considered impractical
to implement, these codes have been neglected for more that three decades, and
“rediscovered” in the late 90’s [2]. Nowadays, a large body of knowledge has
been acquired (analysis, optimization, construction); LDPC codes are known
to be capacity approaching codes for a large class of channels [3], and became
synonymous with modern coding.

However, this capacity approaching property holds in the asymptotic limit of
the code length, and codes optimized from this asymptotic perspective may suffer
significant performance degradation at practical lengths. Actually, the asymp-
totic optimization, performed by using density-evolution methods [4], yields an



430

irregularity profile, which specifies the distribution of node-degrees in the bipar-
tite (Tanner) graph [5] associated with the code. It is assumed that the girth4

of the bipartite graph goes to infinity with the code-length. Hence, optimized
irregularity profiles can be used to construct codes that are “long enough” (at
least few thousand bits) to avoid short cycles, although they must be “short
enough” to be practical.

One of the most widely-used method for constructing finite length codes is
the Progressive Edge Growth (PEG) algorithm [6]. It constructs bipartite graphs
with large girth, by establishing edges progressively: the graph grows in an edge-
by-edge manner, optimizing each local girth. There is an underlying edge order

within the PEG, corresponding to the order in which edges are established in the
graph. In general, edges are progressively established starting with those incident
to symbol-nodes of degree-2 and ending with those incident to symbol-nodes of
maximum degree. However, any other order with respect to the symbol-node
degrees would also be possible. Besides, for a given symbol-node degree, edges can
be established in a node-by-node manner (all edges incident to some symbol node
are established before moving to the next symbol-node), or in a degree-by-degree

manner (a first edge is established for each symbol-node, then a second edge is
established for each symbol-node, and so on until all the symbol-nodes reach the
given degree). Although this order may significantly impact the performance
of the constructed code, it is rather difficult to formalize and has practically
not been investigated in the literature. There are however several papers that
aim to enhance the PEG construction by optimizing some objective function,
as for instance minimizing the number of cycles created [7], or minimizing the
approximate cycle extrinsic (ACE) message degree [8], [9].

2 Scheduled-PEG construction

In this paper we consider the PEG algorithm together with a scheduling distribu-

tion, which will be referred to as scheduled-PEG, or SPEG for short. Within the
SPEG algorithm, symbol-nodes are divided into subsets, each subset containing
symbol-nodes of same degree. Edges incident to the symbol-nodes of a subset
are established in a degree-by-degree manner, before moving to the next subset.
The scheduling distribution specifies the fraction of nodes within each subset.
Our purpose is to find a scheduling distribution that yields the best performance
in terms of decoding overhead (performance metric widely used for UL-FEC).
We rigorously formulate this optimization problem, and we show that it can be
addressed by using genetic optimization algorithms.

The proposed Scheduled-PEG algorithm allows the enhancement of the clas-
sical PEG algorithm. By varying the scheduling distribution, one can explore the
ensemble of LDPC codes with fixed code-length and degree distributions, which
allows us to find codes with very small average inefficiency (the performance
metric considered in this paper).

4 Length of a shortest cycle.



431

We show that the SPEG algorithm can be successfully combined with genetic
optimization algorithms[10], which significantly improves the average inefficiency
of the constructed LDPC codes over the classical-PEG construction. In terms of
error rate curves, this translates into a significant improvement of the waterfall
region.

Finally, we remark that the optimization of the scheduling distribution makes
use of the specific channel model (through the use of the decoding inefficiency).
Hence, LDPC codes constructed by using the SPEG algorithm together with
an optimized scheduling distribution are channel dependent. However, the pro-
posed algorithm could be generalized for more general channel models (e.g. by
optimizing with respect to a target FER, or to the area under the FER curve.).

Acknowledgment

This work was supported by the French National Research Agency (ANR), grant
No 2009 VERS 019 04 – ARSSO project.

The complete version of the paper can be found on hal.inria.fr and

arxiv.org websites.

References

1. R. G. Gallager, Low Density Parity Check Codes, M.I.T. Press, 1963, Monograph.
2. D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,”

IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 399–431, 1999.
3. T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity ap-

proaching irregular low density parity check codes,” IEEE Trans. Inform. Theory,
vol. 47, no. 2, pp. 619–637, 2001.

4. T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check
codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, no.
2, pp. 599–618, 2001.

5. R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions

on Information Theory, vol. 27, no. 5, pp. 533–547, 1981.
6. X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive

edge-growth tanner graphs,” IEEE Trans. Inform. Theory, vol. 51, no. 1, pp.
386–398, 2005.

7. A. Venkiah, D. Declercq, and C. Poulliat, “Design of Cages with a Randomized
Progressive Edge Growth Algorithm,” IEEE Commun. Letters, vol. 12, no. 4, pp.
301–303, 2008.

8. T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Construction of irregular
LDPC codes with low error floors,” IEEE Trans. Commun., vol. 52, pp. 12421247,
2004.

9. H. Xiao and A. H. Banihashemi, “Improved progressive-edge-growth (PEG) con-
struction of irregular LDPC codes,” IEEE Commun. Letters, vol. 8, no. 12, pp.
715–717, 2004.

10. R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces,” J. of Global Optimization, vol. 11,
no. 4, pp. 341–359, 1997.



432


