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ABSTRACT

In this article, we present a new tool for sparse coding : Multivariate
DLA which empirically learns the characteristic patterns associated
to a multivariate signals set. Once learned, Multivariate OMP ap-
proximates sparsely any signal of this considered set. These methods
are specified to the 2D rotation-invariant case. Shift and rotation-
invariant cases induce a compact learned dictionary. Our methods
are applied to 2D handwritten data in order to extract the elementary
features of this signals set.

Index Terms— Sparse coding ; Multivariate DA ; Multivariate
OMP; Shift-invariant ; Rotation-invariant; Levenberg-Marquardt;
Handwritten characters.

1. INTRODUCTION

In signal processing, sparsity is a very interesting property which
becomes more and more popular. Usually, it is used as a criterion
in a transformed domain for compression, compress sensing, denoi-
sing, etc [1]. As we will then consider, sparsity can also be used
as a feature extraction method, to make emerge from data elements
containing relevant information. In our application, we extract mo-
tion primitives of the handwriting.

In a Hilbert space, we define the matrix inner product' as
(A, B) = trace(B™A) and its associated Frobenius norm denoted
||-||. We consider a signal y € C™ of N samples and a normed dictio-
nary ® € CV*™ composed of M atoms {¢y, }_, . The decomposi-
tion of the signal y is done on the dictionary ¢ such that y = ®x+e,
assuming = € CM the coding coefficients and € € C" the residual
error. The dictionary is said redundant when M > N : the linear sys-
tem is thus under-determined and accepts several possible solutions.
The introduction of constraints such as positivity, sparsity or other,
allows to regularize the solution. The decomposition under sparsity
constraint is formalized by : min. ||z, s.t. |ly — ®z||> <Co (Po),
in which Cj is a constant and ||z||, the £o pseudo-norm defined as
the cardinal of the  support®. In order to solve (Py), we want to
determine the dictionary ® which fits the set of the studied signals.
That means & contains dedicated atoms allowing to sparsely code
any signal of this set. To provide the decomposition sparsity, a
first approach consists in the union of several classical dictionaries
such as wavelets, curvelets and others with fast transforms [1] : the
main drawback is the choice of these dictionaries. A second ap-
proach, called sparse coding, is a data driven learning method which

1. The conjugate transpose operator is denoted (.)*.

2. The support of x is support(z) = {i€Ny : x; 0} .
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adapts atoms to elementary patterns characteristic of the studied set
[2, 3, 4]. The obtained atoms do not belong to classical dictionaries :
they are appropriate to the considered application.

In this paper, we briefly present the existing sparse approxima-
tion and dictionary learning algorithms. We look at the multivariate
and shift-invariant cases. We then expose our new methods : Multi-
variate OMP (Orthogonal Matching Pursuit) and Multivariate DLA
(Dictionary Learning Algorithm), and their specifications to the 2D
rotation-invariant case. As a validation, proposed methods are ap-
plied to handwritten signals : results are shown and then discussed.

2. STATE OF THE ART

2.1. Sparse Approximation Algorithms

In general, finding the sparsest solution of the coding problem
(Po) is NP-hard. To overcome this difficulty, one way consists in re-
laxing (Py) with a £1 norm : min, ||z||, s.t. ||y — ®z||* < C1 (Pr),
with C; a constant. (P;) is a convex optimization problem having a
single minimum. Different algorithms solving this problem are pre-
sented in [5] such as methods based on Interior Point, Homotopy,
Iterative Thresholding, etc. A high coherence® p14 does not ensure
that these algorithms recover the optimal = support, and if it is the
case, the convergence is long.

Another way consists in simplifying (FPp) in a sub-problem :
ming |ly — ®z|* s.t. ||z|,<Ch (P3), with Cj a constant. Pursuit
algorithms [5] tackle sequentially (Py), but this optimization is non-
convex. The OMP algorithm [6] solves the least squares problem
increasing iteratively the constant C{). The obtained solution is sub-
optimal because the support recovery is not guaranteed especially
for a high coherence pas. However, it is fast when one searches very
few coefficients.

2.2. Dictionary Learning Algorithms

The aim of DLA is to find a dictionary adapted to the signals
set we want to code. Classical learning methods alternate between
two steps : 1) ® is fixed and « is obtained by sparse approximation
(Section 2.1), ii) « is fixed and @ is updated. The update is based on
criteria such as Maximum Likelihood (ML) [2], Maximum A Poste-
riori [3] or Majorization-Minimization. There are also simultaneous
learning methods such as K-SVD presented in [4], the bibliography
of which synthesizes well the state of the art. Some of these me-
thods have been modified to deal with atoms overlappings in the
shift-invariant case : extensions of MOD [7] and of K-SVD [8].

3. The coherence of the dictionary ® is e = maxix; [(ds, ¢;)I-



3. MULTIVARIATE AND SHIFT-INVARIANT CASES
In the multivariate case, the studied signal becomes y € cV,
denoting V' the number of components. Two problems can be consi-
dered depending on the ® and z natures :

- & € CVM ynpivariate and 2 € C*V multivariate, the com-
mon case handled by multichannel sparse approximation al-
gorithms [9, 10, 11, 12].

- & cCNVMXV multivariate and 2 € C™ univariate *, case only
evoked in [13] for sparse approximation, but with a particular
dictionary template. In the present work, we will focus on this
case, with ® multivariate and normed.

In the shift-invariant case, we want to code the signal y as a
sum of few structures, named kernels, characterized independently
of their positions. The L shiftable kernels of the compact ¥ dic-
tionary are replicated at all positions to provide the M atoms of
the ® dictionary. Kernels {wl}le can have different lengths : zero-
padding is done to make them all have N samples. The /N samples
of the signal y, the residue e, the atoms ¢,,, and the kernels 1); are in-
dexed by t¢. Considering a kernel ¢, o; is a subset of the N indexes
t. Translated at all positions T € oy, the kernels 1;(t) generate all
atoms @m (t) :

Y(t) = > wmdm(t) +e(t) =D Y wm it —7)+e(t) (1)

l=1T€0;

To sum up, the multivariate signal y is approximated as a weigh-
ted sum of few shiftable multivariate kernels ;.

4. METHODS PRESENTATION

We now expose our new methods for sparse coding : Multiva-
riate OMP (M-OMP) for multivariate sparse approximation, Multi-
variate DLA (M-DLA) for multivariate dictionary learning and their
specifications to the 2D Rotation-Invariant (2DRI) case.

4.1. Multivariate OMP

Sparse approximation can be achieved by any algorithm able to
overcome the high coherence due to the shift-invariant case. OMP
is chosen for its speed : a more precise description is given in [6].
We modify it to handle the multivariate case described previously
(Section 3) and we name it Multivariate OMP (Algorithm 1). De-
noting k the current iteration, the inner product between €*~' and
each atom is now replaced by the correlation with each kernel (step
1), generally computed by FFT. The orthogonal projection (step 4)
is often computed recursively by different methods : we choose the
block matrix inversion one [6]. The obtained vector 2" is reduced to
its active (i.e. nonzero) coefficients. The multivariate case is taken
account in selection (step 2) and in the orthogonal projection where
the multivariate signal y (resp. dictionary D) is unfolded along the
components dimension in a univariate vector y| (resp. matrix D |).
Compared with the original OMP, the complexity of the M-OMP is
only increased by a factor of 1/, the number of components.

4.2. Multivariate DLA

Our learning method named Multivariate DLA (Algorithm 2) is
an alternation between two steps : a sparse approximation step done

4. ®x is considered as a element-wise product along dimension M.
5. The complex correlation between the u*" components of the multiva-
riate signals a and b is denoted I" {a[u], b[u]}.
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Algorithm 1: x = Multivariate_OMP (y, ¥)

initialization : k = 1, ¢ =y, dictionary D° =%

repeat
1. Correlations”® : for ! < 1 to L do

| CF(r) S0 T{ e ], ] } (7)
2. Selection : (I¥, 40, T 0e) < arg maz | - } CF(r) |
3. Active Dictionary : D¥ < D*~1 U Yk (t—TFes)
4. Active Coefficients : " < arg min, H y|—DF|x H2
5. Residue : ¢* « y — D*z"
6. k< k+1
until convergence

by M-OMP and a dictionary update step. M-DLA is applied on trai-
ning signals {yp}f:1 representative of the studied set. Our update
step is based on the ML criterion [2], usually optimized by the Sto-
chastic Gradient method. To achieve this optimization, we choose
a Levenberg-Marquardt 2" order Gradient Descent [14] which in-
creases the convergence speed, blending Stochastic Gradient and
Gauss-Newton methods. The current iteration is denoted 7. For each
multivariate kernel ¢;, the update rule is given by :

Vi) = () + (H + A1)

TEO]

it t+T) ()

with ¢ the indexes limited to the 1); temporal support, (.)* the conju-
gate operator, A the adaptive descent step and H; the average hessian
computed for the kernel (and not for each sample). In atoms overlap-
pings cases, the learning method can become unbalanced due to the
error done on the gradient estimation. We slightly overestimate the
hessian H; to compensate this phenomenon. The update step, which
now stabilizes the method, is called LM-modif (step 2). Moreover,
kernels are normalized at the end of each iteration and their lengths
are modified depending on the energy present in their edges.

Added to the non-convex optimization of the M-OMP, the
convergence of the M-DLA towards the global minimum is not
guaranteed owing to its alternating minimization. However we find
a minimum, local or global, which assures the solution sparsity.

Algorithm 2: ¥ = Multivariate_DLA ({y,}. )

initialization : i = 1, U° = {L kernels of white noise}
repeat
for p < 1to Pdo
1. Sparse approximation : z* <~ M-OMP (y,, #*™)
2. Dictionary update : ¥* < LM-modif (y,, z*, #")
3.i<i+1

until convergence

4.3. 2D Rotation-Invariant case

Studying bivariate real signals, 2D movements for example, we
aspire to characterize them independently of their orientations. The
rotation-invariance implies introducing a 6; , angle rotation matrix
R for each bivariate kernel ¢; (¢t — 7). Equation (1) becomes :

y(t) = > > wmu RO )t — 7) + €(t) 3)

=1 T€0;



Now, in the selection step (Algorithm 1, step 2), the aim is to find the
angle 0, . which maximizes the correlations ’Clk (1,61,7) ! A
naive ap%?(z)ac%agonsists in sampling 6; - into © angles and to add a
degree of freedom in the correlations computation (Algorithm 1, step
1). The complexity is increased by a factor of © with respect to the
M-OMP used in the bivariate real case.

To avoid this additional cost, we transform the y signal from
R to CN and we apply M-OMP : coding coefficients z are now
complex. The modulus gives the coefficient amplitude and the ar-
gument gives the rotation angle. Now able to rotate, kernels are no
longer learned through a particular orientation as in the previous ap-
proach said oriented (V =2, y € RV*?). Thus, kernels are shift and
rotation-invariant, providing a non-oriented decomposition (V =1,
y € C™). This 2DRI specification of the approximation (resp. lear-
ning) method is further denoted 2DRI-OMP (resp. 2DRI-DLA).

5. APPLICATION DATA

Our methods are applied to the Character Trajectories signals
available on the UCI database [15] and initially dealt with a probabi-
listic model and an EM learning method [16], but without real spar-
sity in the resulting decompositions. Data are composed of a hundred
occurrences of 20 letters written by the same person. The temporal
signals are the cartesian pen tip velocities v, and vy.

We aim at learning an adapted dictionary in order to code spar-
sely velocity signals. Dictionary is learned on the first 20 occurrences
of each letter and the approximation method is tested on the remai-
ning ones. Velocity signals, on which our methods are applied, are
integrated only to display the associated trajectories.

6. RESULTS

Results are directly presented for the non-oriented case. The in-
tegrated kernels dictionary (Fig 1) shows that the 2DRI-DLA has
successfully extracted motion primitives. Indeed, straight and curved
strokes correspond to the elementary patterns of the set of handwrit-
ten signals.

To evaluate the sparse coding qualities, decompositions of 5 oc-
currences of the letter d on this dictionary are considered in (Fig
2). The velocity signal (Fig 2a) (resp. (Fig 2b)) is the original (resp.
reconstructed i.e. approximated) signal, composed of the real part
vz (in solid line) and the imaginary part v, (dotted). The relative
mean square error on velocities is around 12% with 4-5 atoms used
for the reconstruction. Coding coefficients z; ~ are displayed by a
time-kernel representation called spikegram (Fig 2c). It condenses

Kernel 1 s Kernel 4‘ Kernel E| Kernel E|
Kernel 2 /
Kemel 5 Kermel 7| Kermel 9|

Kemela/ \

Fig. 1. Dictionary, learned by 2DRI-DLA, of the trajectories asso-
ciated to kernels.
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Fig. 2. Original (a) and reconstructed (b) velocity signals of 5 occur-
rences of the letter d, and their associated spikegram (c).

four indications : the temporal position 7 (abscissa), the kernel in-
dex [ (ordinate), the coefficient amplitude |z, -| (gray level) and the
rotation angle 6; - (number next to spike, in degree). The low num-
ber of atoms used for signals reconstruction shows the decompo-
sitions sparsity. Primary atoms are the large amplitude ones : they
concentrate relevant information. Secondary atoms code variabilities
between different realizations. The decompositions reproducibility,
highlighted by the primary atoms repetition (amplitudes and angles
values) of the different occurrences, is the proof of an adapted dic-
tionary.

The trajectory of the original letter d (Fig 3a) (resp. p (Fig 3d))
is reconstructed with its primary atoms, comparing the oriented case
(Fig 3b) (resp. (Fig 3e)) and the non-oriented one (Fig 3c) (resp.
(Fig 3f)). For instance, letter d (Fig 3c) is rebuilt as the sum of the
kernels 2, 4 and 9 (Fig 1) specified by the amplitudes and the angles
of the spikegram (Fig 2c). We now focus on the principal vertical
stroke common to letters d and p (Fig 3a and Fig 3d). To code it,
the oriented case uses two different kernels : kernel 5 for d (Fig 3b,
dotted line) and kernel 12 for p (Fig 3e, dashed line). Whereas, the
non-oriented case needs only one for the two letters : kernel 9 (Fig
3c and Fig 3f, solid line) used with an average difference of 180°.
Thus, the non-oriented approach reduces the dictionary redundancy
providing a kernel dictionary even more compact.

7. DISCUSSION

The dictionary learning allows to recover signals primitives. The
resulting dictionary can be thought of as a catalog of elementary pat-
terns dedicated to the considered application and having a physical
meaning as opposed to classical dictionaries such as wavelets, curve-
lets, etc. Therefore, decompositions based on such a dictionary are
made sparsely on the characteristic components of the studied si-
gnals set. Considering the reconstruction mean square error, the few
kernels used shows the efficiency of this sparse coding approach.

The 2DRI approach reduces the dictionary size in two ways :
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Fig. 3. Letter d (resp. p) : original (a) (resp. (d)), oriented recons-
tructed (b) (resp. (e)) and non-oriented reconstructed (c) (resp. (f))
trajectories.

— when the studied signals cannot rotate, like in the presented
application. The non-oriented approach detects rotational in-
variants (vertical stroke of letters d and p for example) that
reduces the dictionary size : from 12 to 9.

— when the studied signals can rotate : for example, when the
acquiring tablet is revolved. To provide an adapted dictionary
for sparse coding, the oriented approach needs to learn mo-
tion primitives for each of possible angles as opposed to the
non-oriented case. That is the noticeable reduction of the dic-
tionary size.

Thereby, shift and rotation-invariant cases provide a compact learned
dictionary W (Fig 1). Moreover, the non-oriented approach allows to
be robust to any writing direction (tablet rotation) and to any writing
inclination (intra and inter-users variabilities).

8. CONCLUSION

We have presented new tools : M-DLA for automatically lear-
ning the patterns characteristic of a multivariate signals set, with the
dictionary update done by a ML criterion, and M-OMP for coding
sparsely all signal of this set. They are specified to the 2D Rotation-
Invariant case, respectively named 2DRI-DLA and 2DRI-OMP. Shift
and rotation-invariant cases induce a compact learned dictionary.
Their applications are dimension reduction, compression, denoising,
gestures representation and analysis, and all other processing which
is multivariate feature extraction based. Moreover, we apply these
methods to motion signals that is new with regards to custom sparse
coding applications.

The considered prospects are to compare our method with other
learning methods appropriate to the shift-invariant case and to inte-
grate a dilatation parameter to take in consideration the movement
execution speed. These methods provide sparse descriptors, we also
project to add a classification step to make gestures recognition.
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