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NON-NEGATIVE MATRIX FACTORIZATION UNDER SPARSITY CONSTRAINTS TO
UNMIX IN VIVO SPECTRALLY RESOLVED ACQUISITIONS
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ABSTRACT

Fluorescence imaging in diffusive media is an emerging
imaging modality for medical applications which uses in-
jected fluorescent markers (several ones may be simultane-
ously injected) that bind to specific targets, as tumors. The
region of interest is illuminated with near infrared light and
the emitted back fluorescence is analyzed to localize the
fluorescence sources. To investigate thick medium, as the
fluorescence signal decreases with the light travel distance,
any disturbing signal, such as biological tissues intrinsic flu-
orescence - called autofluorescence -, is a limiting factor. To
remove autofluorescence and isolate each specific fluorescent
signal from the others, a spectroscopic approach, based on
Non-negative Matrix Factorization, is explored. We ran an
NMF algorithm with sparsity constraints on experimental
data, and successfully obtained separated in vivo fluorescence
spectra.

Index Terms— Fluorescence imaging, positive source
separation, fluorescence in vivo spectroscopy.

1. INTRODUCTION

In fluorescence imaging, specific markers are injected to a
patient, and bind specifically to targeted compounds, like tu-
mors [1]. Several specific markers may be injected at once,
and bind to different compounds or organs. The region of in-
terest is illuminated with near infrared (NIR) light; an optimal
wavelength range may be defined – between 600 and 900 nm
– where the tissue absorption is lower and the marker opti-
mally excited. Finally, the emitted back fluorescence signal
is measured and the fluorescent source is localized. To in-
vestigate thick media for medical diagnostic application (' 4
cm), as the fluorescence signal gets exponentially weak with
the light travel distance, the autofluorescence of tissues be-
comes a limiting factor. The analysis of a fluorescence signal
impaired by autofluorescence may lead to a wrong localiza-
tion of the markers: the signal needs to be preprocessed in
order to remove autofluorescence. For in vivo fluorescence
spectroscopy, the unmixing problem is referred to as a blind
source separation problem since the spectra may vary accord-
ing to the fluorescent dye biological environment. Fluores-

cence spectra to separate are also supposed statistically de-
pendent, which filters out many methods (such as ICA). Non-
negative Matrix factorization (NMF) differs from classical
source separation methods (SVD, PCA) in that it forces the
matrices factors to be non-negative, and thus suits to spectra
separation. We propose to test this method on spectroscopic
data, and to define a new regularized NMF algorithm con-
strained by sparsity.

2. NON-NEGATIVE MATRIX FACTORIZATION

For initial non-negative mixed data M , NMF proposes to find
a couple of matrices (A,S) with non-negatives coefficients,
whose product optimally approaches M . The classical NMF
definition says[2]:

Given a non-negative matrix M ∈ RX×Y , find non-negative
matrices A ∈ RX×P and S ∈ RP×Y such that :

M ' AS (1)

where non-negative matrices are matrices whose all factors
are nonnegative and P stands for the number of sources to
unmix.

Applied to spectroscopy, matrix A is considered as the
weight vector, and S as the spectra matrix, both containing as
much elements P as fluorescent sources to separate.

To find the particular matrices A and S that satisfy equa-
tion 1, two distinct steps must be considered. First, we need
to define a criterion that link M with A and S. Then, in a sec-
ond step, optimizing this criterion under the non-negativity
constraint would lead to the best solution possible. Several
criteria (the Euclidean distance, the Kullback-Leibler diver-
gence [2]...) and different optimization methods (Alternating
Least Square, update rules) may be chosen to obtain an NMF
decomposition.

3. SPARSITY CONSTRAINTS

For local specific markers, we expect to get peaked weight
columns in matrix A. A contrario, when unmixing is not



complete, a residual autofluorescence baseline surrounds the
specific marker peak. This property is depicted figure 1.
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Fig. 1. Link between the quality of unmixing process and
resulting weight matrix A.

An intuitive reasoning to improve unmixing would be to
smooth over the unwanted autofluorescence residuals on spe-
cific markers weight profiles, by thresholding the smallest
values: in other words, we look for sparse A columns for
specific markers contributions.
We introduce a sparsity value[3]: let us consider a weight
matrix A of size X × P , the sparsity of a given column Ap
(p ∈ (1, P )) of A is:

sparsity (Ap) =

√
X −

(
X∑
x=1
|axp|

/√
X∑
x=1

a2
xp

)
√
X − 1

(2)

Sparsity value ranges from 0 for non-sparse results to 1 for
extremely sparse results, as depicted figure 2.

Sparsity= 0.3 Sparsity= 0.5 Sparsity= 0.8 Sparsity= 0.9

Fig. 2. Sparsity value ranges from 0 to 1, from non-sparse to
highly sparse signals.

In the next section, we propose an NMF algorithm that finds
the perfect threshold so that our matrix A reaches a chosen
sparsity value.

4. SPARSITY-CONSTRAINED NMF ALGORITHM

4.1. Classical algorithm

We first present a classical NMF algorithm without any con-
straint. In 2001, NMF popularity increased after Lee and Se-
ung published two new NMF algorithm, based on the use of
multiplicative update rules that minimize specific criteria.

4.1.1. Cost function definition

Different criteria to minimize, or cost functions, can be used
[2]: we may cite the square of the euclidean distance be-
tween M and AS, and the Kullback-Leibler divergence cri-
terion. Here, we get interested in the cost function F , chosen
as the square of the Euclidean distance between M and AS
[2], lower bounded by 0, and defined as:

F =
Nx∑
x=1

Ny

y=1(mxy −
P∑
p=1

axpspy)2 = ‖M −AS‖2 (3)

4.1.2. Optimization

The following optimization problem is thus considered:

Problem 1 Minimize F with respect to A and S subject to the
constraints A,S ≥ 0.

Lee and Seung proposed multiplicative update rules to solve
Problem 1: those iterative rules offer a good compromise
between speed and ease of implementation to solve the opti-
mization problem (see problem 1); they are presented in the
form of the following theorem:

Theorem 1 The distance ‖M−AS‖2 is non increasing under
the update rules:

Sxp ← Sxp
(AtM)xp
(AtAS)xp

Apy ← Apy
(MSt)py
(ASSt)py

(4)

The proof of this theorem is given in Lee and Seung’s publi-
cation [2].

We precisely got interested in those update rules because of
their ease of implementation and speed, for which they were
initially created.

4.2. Constrained NMF

In this section, taking the classical algorithm as a basis, we
propose a new algorithm that takes into account sparsity con-
straints. The first NMF algorithm steps do not change from
the classical one, but several sparsity steps are added for each
iteration in order to reach a wanted sparsity value:

Algorithm: NMF with sparsity constraints

1. Initialize A and S with respectively positive constants
and positive spectra models



2. Update S: S ← S
(AtM)
(AtAS)

3. Update A: A← A
(MSt)
(ASSt)

4. Each column Ap of A referring to weights of spe-
cific markers, for a wanted sparsity value spa for coef-
ficients of column Ap, is changed into Ãp:

∀x ∈ (1, X),

ãxp =

 axp if axp ≥
max(axp)

βp

0 otherwise
(5)

with βp such as:

βp = argmin
βp

∣∣∣sparsity (Ãp(βp))− spa ∣∣∣
5. restart steps 2 to 4 until stopping criterion is obtained

(for example when ‖M −AS‖2 = ε for a chosen ε).

5. RESULTS

For in vivo experiments, an autofluorescence signal is neces-
sarily measured. Then several specific markers may be used
to simulate marked targets, such as tumors. In this section, we
test NMF to unmix three overlapping different fluorescence
sources, including the autofluorescence.

5.1. Methods

We perform feasibility experiments on a mouse. The ani-
mal procedure was in compliance with the guidelines of the
European Union (regulation n86/609), taken in the French
law (decree 87/848) regulating animal experimentation. All
efforts were made to minimize animal suffering. The ani-
mal manipulation was performed with sterile techniques and
approved by the Grenoble Animal Care and Use commit-
tee (France) (registration number 20 iRTSV Léti-FNG-02).
An adult female nude mouse (Janvier, Le Genest saint-isle,
France) was used throughout the experiments. It was housed
in approved facilities, at 21±1C under diurnal lighting con-
ditions. The mouse arrived at the animal facility two weeks
before the experiments start and had free access to food and
water.

To acquire spectrally resolved measurements, the animal is
illuminated with a planar laser at 690 nm. The emitted back
fluorescence signal is collected along a line of Nx points by
a spectrometer coupled with a charge-coupled device camera
(Andor Technologies): a Nx × Nλ acquisition is measured
(see Figure 3). A translation stage, covering Ny steps, is then

used to get a scanning of the whole animal: Ny acquisitions
are obtained, each of size Nx × Nλ. Before to run the NMF
algorithm, our data of size (Ny ×Nx ×Nλ) are reordered as
a 2-D array of size (Ny ×Nx, Nλ).

Fig. 3. Experimental set-up: acquisition on the animal and
data processing.

To draw a parallel between acquisitions with or without spe-
cific fluorescence, a first acquisition of the animal is run as a
reference, without any specific markers inserted (Figure 4-a).
Then, several specific markers are added to simulate marked
targets. First, a unique glass capillary tube filled with a spe-
cific marker is inserted subcutaneously on the animal, to clas-
sically simulate a marked target. The chosen marker is here
5 µl of Indocyanine Green loaded into Lipid Nanoparticules
(ICG-LNP) [4] at 0.35 µmol/l. We will use this first exam-
ple to illustrate the impact of sparsity constraints, running the
algorithm with different wanted sparsity values.

Subsequently, a second capillary tube filled with 5 µl of
Alexa 750 (an other specific marker) at 0.1 µmol/l is inserted.
Three distinct fluorescent sources – autofluorescence, ICG-
LNP and Alexa 750 – whose emission spectra are overlapping
have now to be unmixed. The resulting intensity scanning are
presented Figure 4-b and Figure 4-c. In this precise example,
we chose to constrain the sparsity level to 0.9 for the specific
markers – ICG-LNP and Alexa 750 – weight matrices.

5.2. Results

We run the NMF algorithm on our data. For the first experi-
ment, with a unique capillary tube (see data Figure 4-b), we
analyze the sparsity constraint effect on results, by increasing
the chosen value spa(see 4.2).
The number of components equal to zero in the column cor-
responding to ICG-LNP in matrix A increases with sparsity
value. Moreover, the spectra of matrix S get closer to initial-
izations with sparsity value increasing: S was here initialized
on purpose with mean spectra of considered data. Spectra of
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Fig. 4. (a) Autofluorescence acquisition (b) ICG-LNP tube
inserted (c) ICG-LNP and Alexa 750 tubes inserted.
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Fig. 5. FMN results: matrix S, matrix A, autofluorescence
and ICG-LNP separated contributions for increasing values
of wanted sparsity spa.

matrix S getting closer to initialization may mean that results
improve. For now, it is just an empirical observation to con-
firm. Finally, as expected, a strong sparsity value allows to
remove the autofluorescence residuals and improves results
(see Figure 5).

Figure 6 presents unmixing results of the second experi-
ment (with two capillary tubes, initial data presented on Fig-
ure 4-c), for an high value of sparsity (spa = 0.9). NMF under
sparsity constraints successfully unmixed the three compo-
nents. Nevertheless, a few errors may be noticed on the aut-
ofluorescence contributions: holes are present on ICG-LNP
and Alexa 750 signals locations.

6. CONCLUSION AND FUTURE WORK

Beyond the specific fluorescence signal of specific markers
used in optical imaging, the autofluorescence of biological
tissues is also detected in the wavelength range we use, and
needs to be removed to get accurate detection results. To un-
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Fig. 6. Two capillary tubes experiment: unmixing results

mix fluorescence spectra, a blind source separation method
was chosen: the Non-negative Matrix Factorization. We pre-
sented a classical NFM algorithm, before to introduce sparsity
constraints. The constrained NMF algorithm was run on in
vivo acquisitions, and successfully unmixed up to three differ-
ent fluorescent sources. Empirically, results seem to improve
with sparsity value imposed to specific markers weights pro-
files, but we still have to prove the convergence of the con-
strained algorithm. Moreover, sparsity value is by now em-
pirically chosen: future work will explore methods to pre-
define the best sparsity value to use, and improve the exis-
tent algorithm. As optical imaging tries to detect deeper and
deeper embedded tumors, NMF – as a preprocessing tool to
remove autofluorescence signal and isolate specific fluores-
cence contributions, sharpened by several constraints – is an
helpful tool.
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