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1. Introduction

Quantifying the effects of material disorder is important for the understanding of the su-
perconducting ground state of iron-based superconductors (IBS). On the one hand, the prox-
imity of the superconducting state to anti-ferromagnetism may lead to phase segregation
that will be heavily influenced, for example, by macroscopic heterogeneity of the chemical
composition. On the other hand, the superconducting ground state in these materials was
proposed to have a so-called s± symmetry [1,2], in which the superconducting gap not only
has a different value on different Fermi surface sheets, but may also change sign from one
sheet to another. Then, superconductivity is thought to be exquisitely sensitive to interband
scattering [3,4].

The effect of impurities is usually characterized by the scattering rate such as this can be
extracted from resistivity measurements in the normal state, or from the surface resistance
in the superconducting state. Another well-known but little exploited probe of microscopic
disorder is the pinning of vortex lines in the superconducting mixed state. The radius of
their core, of the order of the coherence length ξ ∼ 1.5 nm, makes vortices ideal probes
for impurities. The fact that the vortex density can be easily varied by orders of magnitude
simplybyadjusting thevalue of the appliedmagnetic fieldHa makes “vortexmatter” sensitive
to local variations of material properties on different length scales. The bulk pinning force
Fp exerted by the material disorder on the vortex ensemble inhibits the latter’s motion for
currents smaller than the critical current density jc = Fp/B. In the following, we analyze
vortex distributions and jc-data in IBS, show how these can be used to characterize the type
of disorder, and to bracket impurity scattering rates.
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Fig. 1. Loops of the hysteretic magnetization M(Ha) versus the magnetic field Ha, measured on a Ba(Fe0.925Co0.0.075)2As2 single
crystal, at different indicated temperatures.

2. Critical currents

Fig. 1 shows hysteresis loops of the irreversible magnetization M(Ha) versus the applied
magnetic field Ha, measured on a single crystal of Ba(Fe0.925Co0.075)2As2, with critical
temperature Tc = 23.5 K, using a commercial Superconducting Quantum Interference De-
vice magnetometer. As in all IBS, the hysteretic magnetic moment features a pronounced
low–field maximum, superposed on a nearly field–independent contribution. A double-
logarithmic plot of the critical current density as this follows from the Bean model [5],
jc ∼ 3M/a (with a the crystal width), shows that the low–field maximum amounts to a
plateau jc(0), followed by a decrease jc(B) ∼ B−1/2. Such a behavior is naturally described
in terms of strong pinning by sparse, extrinsic defects of dimension greater than ξ, and
density ni ≪ ξ−3 [6,7]. The plateau–value

jc(0) ∼ (fp/
√
πΦ0ε)(Upni/ε0)

1/2 (1)

and the decrease jc(B) ∼ (fp/Φ0ε)(Upni/ε0)(Φ0/B)1/2 can be parameterized in terms of the
elementary pinning force fp of a single strong defect, and the ratio of the energyUp gained by
placing a vortex on a defect to the vortex line energy ε0 [8] (ε ≈ 0.4 is the material anisotropy
parameter [9] andΦ0 = h/2e is the flux quantum). Elimination of (Upni/ε0)

1/2 directly yields
the experimental value fp = 3× 10−13 N at low T .

Further measurements were performed using the magneto-optical- [8,10] and Hall-array
techniques [10,11]. The temperature dependence jc(0, T ), and that of the field-independent
contribution jcollc (T ) observed at fields exceeding ∼ 1 T is plotted in Fig. 3. In the following,
we first discuss the strong pinning contribution, before turning to jcollc in Section 4.
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Fig. 2. Field-dependence of the critical current density jc ∼ 3M/a (with a the crystal width), as extracted from Fig. 1.

3. Heterogeneity and strong pinning

Fig. 4 shows the vortex ensemble in single crystalline Ba(Fe0.9Co0.1)2As2 (with Tc = 19.5
K), atHa = 10G(1mT).Vortex positions are revealed usingBitter decoration at 4.2K, after
field-cooling through the superconducting transition [8]. The featureless Fourier transform
of the set of vortex positions indicates the absence of long–range positional- or orientational
order, and the presence of large fluctuations in the nearest-neighbor distance. The very dis-
ordered vortex structure is the combined result of the narrow temperature trajectory over
which it is frozen in during field-cooling and the importance of flux pinning at high T [8].

Tocharacterizepinning, thevortex interaction energies,E i
int =

∑

j(Φ
2

0
/2πµ0λ

2

ab)K0(rij/λab),
and the force to which each vortex is subjected, fi =

∑

j(Φ
2

0
/2πµ0λ

2

ab) (rij/|rij|)K1(rij/λab),
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Fig. 3. Temperature dependence of jc at different applied fields. Values for µ0Ha & 1 T are representative of jcoll
c

(T ). The drawn
line is a fit to Eq. (2), with σtr = 3 Å2.
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Fig. 4. Bitter decoration of vortices in a Ba(Fe0.9Co0.1)2As2 single crystal, for a field µ0Ha = 1 mT applied parallel to the
crystalline c-axis. The scale bar represents 10 µm. Inset: Fourier transform of vortex positions.

were determined from the inter-vortex distance ensemble {rij} (λab is the ab-plane penetra-
tion depth [12], and K0 and K1 are modified Bessel functions). The result is mapped out in
Fig. 5. The probability distribution of E i

int, depicted in Fig. 6a, shows that the mean inter-
action energy 〈E i

int〉 exceeds the value E△ for vortices arranged in a triangular vortex lattice
of the same (average) density. Also, the distribution is considerably broadened with respect
to the regular lattice δ-function. We interpret the Eint–distribution as being determined by
the contribution from the vortex pinning energy, with mean 〈Ep〉 = 〈Eint〉 − E△ ≈ 0.5ε0.
This large value of 〈Ep〉 signifies that pinning cannot originate from well-defined defects
in a homogeneous superconducting matrix, but must be interpreted as arising from the
heterogeneity of the superconducting properties of the material [8].

In order to verify whether such heterogeneity can account for jc, we turn to the distribution
of |fi|. Since the vortex system is at rest, Newton’s third law implies that the force map
(Fig. 5b) and the histogram of |fi| (Fig. 6b) are to be interpreted as representing the local
pinning forces fi acting on each vortex. The critical current density will be determined by
the average force 〈fi〉 ∼ 5 × 10−6 Nm−1, rather than by the most strongly pinned vortices.
The effective pin density can now be estimated from the ratio of the pinning force per vortex,
〈fi〉, and the elementary force per pin, fp = 3 × 10−13 N determined above. This yields an
average distance between effective pins of 60 nm, and a pin density ni ∼ 5 × 1021 m−3 ≪
ξ−3. Strong pinning in Ba(Fe1−xCox)2As2 must therefore be due to heterogeneity on the nm
scale. Substituting the obtained values in Eq. (1) reproduces the magnitude of jc, for a spatial
variance of the line energy ∆ε0/ε0 ≈ 0.05.

4. Quasiparticle scattering and weak pinning

The intermediate field (µ0Ha & 1 T) plateau of constant jc = jcollc is attributed to weak
collective pinning [13] by fluctuations of the dopant atom density nd ≫ ξ−3 at length scales
much less than the coherence length [15]. This contribution to pinning is found in all charge-
doped IBS, as well as in Ru-doped BaFe2As2 and FeSe1−xTex [14], but not in the P-doped
materials [15]. The magnitude and temperature dependence of jcollc indicate [15] that dopant
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atom density fluctuations are effective through the variation of the quasi-particle mean free-
path they entail [13,15,16]. In the field-regime where vortex lines are pinned independently
from their neighbors (i.e. the “single-vortex regime” of collective pinning [13]), the resulting
critical current contribution reads [15]

jcollc =
Φ0√

3µ0λ2

abξ

[

0.01ndσ
2

tr

εξ

(

ξ0
ξ

)]2/3

(2)

(with ξ0 = 1.35ξ the T–independent Bardeen-Cooper-Schrieffer coherence length). Fig. 3
shows that, after insertion of a quasi-particle transport scattering cross-section σtr ≈ 3 Å2

per Co ion, and of the λab(T )–dependence of Ref. [12], Eq. (2) also satisfactorily describes
both the magnitude and the T–dependence of the intermediate–field critical current density
of our Ba(Fe1−xCox)2As2 single crystals. The extracted value of the transport cross-section
can be related to the elastic quasiparticle mean-free path as l = (ndσtr)

−1 ≈ 26 nm, to the
scattering phase angle as sin δ0 = (k2

Fσtr/2π)
1/2 ≈ 0.2, and to the quasiparticle scattering

rate Γ = nd[πN(0)]−1 sin2 δ0 ≈ 3 meV (here N(0) ∼ mkF/π
2h2 is the normal state Density

of States and m is the electronic mass) [15].

Fig. 5. Maps of (a) the vortex interaction energy and (b) the pinning force, obtained from the image in Fig. 4.
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5. Summary and conclusions

The bulk vortex pinning force Fp and the critical current density jc in single crystalline
Ba(Fe1−xCox)2As2 is representative of that found in other iron-based superconductors and
can be consistently described in terms of two additive contributions. At low magnetic fields,
strong pinning by nm-scale variations of the vortex line energy (of the order of 5%) is the
most relevant. Such variations may arise from the inhomogeneity of the gap [17] or from that
of the superfluid density [12] . At higher fields, the effect of quasiparticle mean-free path
variations due to spatial fluctuations of the dopant atom density is dominant.
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