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Abstract. We consider the radial transport of test particles due to the E× B

drift motion in the guiding center approximation. Using an explicit expression
to modify the electrostatic potential, we show that it is possible to construct a
transport barrier which suppresses radial transport. We propose an algorithm
for the implementation of this local modification computed from an electrostatic
potential known on a spatio-temporal grid. The number of particles which escape
the inner region defined by the barrier measures the efficiency of the control.
We show that the control is robust by showing a significant reduction of radial
transport, when applied with a reduced number of probes aligned on a circle.

1. Introduction

Control of chaotic transport is an important topic in many areas of physics with
considerable research and technical applications. Its aim is to reduce chaos when it
is harmful and enhance it when it is beneficial. A lot of efforts have been devoted to
reduce chaotic and turbulent transport in laboratory plasma physics. Two examples
are afforded by the control of stochasticity of magnetic field lines and the transport
generated by plasma instabilities. In magnetically confined fusion plasmas, like
tokamaks, the electrostatic turbulence associated with the E × B drift motion, is
one of the main sources for the loss of energy confinement [1, 2, 3] and consequently
constitutes a relevant obstacle to the attainment of plasma ignition. The development
of control strategies able to induce a relevant change in transport properties by means
of a small and localized perturbation constitutes a way to understand the complex
behavior of laboratory plasmas.

A convenient way to control these systems is by using electromagnetic fields. Since
the plasma dynamics is very sensitive to electrostatic fluctuations, a control method
for the E × B drift motion of test particles has been proposed by a small and apt
modification of the electrostatic potential [4, 5]. This method has been tested on a
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Travelling-Wave Tube (TWT) for the reduction of chaotic transport [6]. It is worth
noticing that for these methods, the relevant modifications were applied in all the
plasma region. To step forward in the applicability of this control scheme to more
complex plasma devices, we present a method and its practical algorithm to construct
a transport barrier for the radial dynamics where the modification of the potential is
only applied locally in a peripheral region of the plasma. Our strategy does not depend
on the electrostatic potential at hand whether it is known analytically, numerically
or experimentally. The geometry we are considering is a cylindrical spatial geometry
which is shared by many linear devices like for example VINETA [7], MIRABELLE [8]
or CSDX [9]. Moreover, as in these devices the plasma temperature is not too high,
plasma density and electrostatic potential are routinely measured by inserting probe
arrays with large radial and poloidal extents. In that way it is possible to have a very
accurate description of the space time behavior of the plasma [10, 11, 7]. In addition
it is worth noticing that it is also possible to act on the plasma using electrodes
directly in contact with the plasma, producing for example a mode locking between
the injected sinusoidal signal and the plasma dynamics [12, 13]. Moreover, in the SOL
region of tokamaks where the field lines are connected to the wall, a parallel current
created by probes acts on perpendicular dynamics [14].
Section 2 deals with the analytical solution of the potential to create a radial transport
barrier for test particles. In Sec. 3, we describe the numerical algorithm to compute
this modified potential from the electrostatic potential data. Finally, Section 4 is
dedicated to the computation and the results of the control of test particle dynamics
in a mock electrostatic potential.

2. Method

2.1. Guiding-center dynamics

The equations of motion of charged particles (of charge e and mass m) in
electromagnetic fields (E = −∇V − ∂A/∂t and B = ∇ × A) can be obtained in
a Hamiltonian framework [15, 16] where the Hamiltonian is

H(p,q, t) =
(p− eA(q, t))

2

2m
+ eV (q, t),

where q is the position of the particle and p is its canonically conjugate momentum.
In strong magnetic fields, particles have a fast gyration motion around the guiding-
center [17]. The relation between the position of the particle and its guiding center
is:

q = x+ ρ,

where x is the position of the guiding-center and ρ is the Larmor vector. In what
follows, we restrict our study to the case where the magnetic field is constant and
uniform: B = Bẑ. In this case, in order to reduce the system, we apply the generalized
canonical transformation (q,p) 7→ (x,u) given by x = q − ẑ × (p − eA)/eB, and
u = (p− eA)/m. The Hamiltonian becomes [18, 19]:

H =
mu2

2
+ eV

(

x+
m

eB
ẑ× u, t

)

,

and the Poisson bracket has pairs of conjugate coordinates: (z, uz), (x, y) and (ux, uy).

{F,G} = −
1

eB
ẑ ·

(

∂F

∂x
×
∂G

∂x

)

+
eB

m2
ẑ ·

(

∂F

∂u
×
∂G

∂u

)
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+
1

m

(

ẑ ·
∂F

∂x
ẑ ·

∂G

∂u
− ẑ ·

∂F

∂u
ẑ ·

∂G

∂x

)

.

It is important to notice that the two coordinates (x and y) of the guiding center in
the plane transverse to the magnetic field are conjugate, as well as the two velocities
(ux and uy) of the particle in this transverse plane. Nothing is changed along the
direction of the field lines. In order to reduce the dimensionality of our system, we
approximate the potential by

V
(

x+
m

eB
ẑ× u, t

)

≈ V (x, t) ,

which is a standard hypothesis for plasma devices with a strong magnetic field. In
this way, we notice that the equations of motion for the position of the guiding center
are decoupled from the ones of the velocity of the particle. The equations of motion
are given by

ẋ = −
1

B

∂V

∂y
,

ẏ = +
1

B

∂V

∂x
,

that is the velocity of the guiding centers is equal to the E×B drift velocity.
We consider a cylindrical geometry as encountered in linear plasma devices. In

this geometry, the polar coordinates are better suited. We perform the (non-canonical)
change of coordinates x = r cos θ and y = r sin θ. The Poisson bracket of the reduced
system in the poloidal plane is changed into [20]

{F,G} =
1

reB

(

∂F

∂θ

∂G

∂r
−
∂F

∂r

∂G

∂θ

)

,

with a reduced Hamiltonian H = eṼ (r, θ, t), where Ṽ (r, θ, t) = V (x, y, t). In what
follows, we remove the tildas for simplicity of the notations. Hence, the equations of
motion for the guiding centers are:

ṙ = −
1

rB

∂V

∂θ
, (1)

θ̇ = +
1

rB

∂V

∂r
. (2)

The singularity at r = 0 can be removed by reformulating the equations of motion
in the canonically conjugate pair of variables (Ψ, θ) with Ψ = r2/2. However the
singularity is in general not a problem in the numerical integration of test particles
since the measured fluctuating potentials vanish in the core region around r = 0. The
important region where confinement is crucial is the peripheral (edge) region.

2.2. Control term for a transport barrier

We are looking at modifications of the Hamiltonian, i.e. of the electrostatic potential
V , in order to create a radial transport barrier. We consider the following expression
for the controlled potential Vc:

Vc(r, θ, t) = V (f(r, θ, t), θ, t) , (3)

where f(r, θ, t) is the control function that has to be determined. We define the map
T as:

T : (r, θ, t) 7→ (f(r, θ, t), θ, t), (4)
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with which the controlled potential is written as Vc = V ◦T . We impose that this new
potential creates a transport barrier for the guiding centers located at r = R(θ, t).
This is equivalent to imposing that r = R(θ, t) is invariant by the dynamics. More
specifically, we have

Ṙ = ∂tR(θ, t) + θ̇∂θR(θ, t), (5)

where Ṙ and θ̇ are given by Eqs. (1) and (2) for the potential Vc given by Eq. (3).
Equation (5) translates into

1

RB

∂V

∂r

∂

∂θ
[f(R(θ, t), θ, t)] +

∂R

∂t
+

1

RB

∂V

∂θ
= 0,

where the derivatives of V are taken at r = f(R(θ, t), θ, t). This equation has two
unknown functions f and R to be determined. We assume that the time-average of V
is zero for all θ at a given radius r0. We obtain a solution for f and R assuming that

f(R, θ, t) = r0, (6)

and

R(θ, t) =

√

r20 −
2

B
Γ
∂V

∂θ
(r0, θ, t), (7)

where Γ is a linear operator acting on any function (with vanishing mean value) of
time as the pseudo-inverse of the derivative with respect to time, e.g., acting on a
function φ(t) as

∂ (Γφ(t))

∂t
= φ(t). (8)

There is still a lot of freedom for the choice of the control term, even if all these
choices lead to the same equation for the transport barrier R given by Eq. (7). We
solve Eq. (6) using the following control terms:

f1(r, θ, t) = r + ψ1(θ, t), (9)

f2(r, θ, t) = r + e−(r−r0)
2/2σ2

ψ2(θ, t), (10)

where the ψi(θ, t) are arbitrary functions of θ and t to be determined by Eq. (6). The
first expression f1 for the control term implies that the potential has to be modified
on the entire phase space. However it is desirable to only apply the modifications on
a particular region of the transverse plane. In order to localize radially the control
required for creating the transport barrier, a first idea is to localize the potential
modifications in a neighborhood of the barrier R(θ, t). The fact that this localization
is varying in time makes this strategy challenging for an experimental realization. In
order to address this issue we adopt a slightly different strategy: the control term
f2 leads to a modification of the potential only in the neighborhood of a circle of
radius r0 which is more adapted to an experimental application since the control is
envisaged through a set of probes usually aligned along a circle, or a predefined fixed
geometry (see below). A Gaussian function around the radius r0 is used to describe
this localization and σ is related to the width at half maximum. Using Eqs. (3), (6)
and (7), the controlled potentials associated with the control terms (9) and (10) are
respectively:

Vc(r, θ, t) = V (r + r0 −R, θ, t) , (11)

Vc(r, θ, t) = V
(

r + (r0 −R)e((R−r0)
2−(r−r0)

2)/(2σ2), θ, t
)

, (12)

where R(θ, t) is defined by Eq. (7).
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3. Numerical algorithm

We investigate numerically the effect of the controlled potential Vc = V ◦ T on
the dynamics of guiding centers. We have developed our algorithm such that it
is applicable for any potential known on a spatio-temporal grid as obtained from
numerical codes or as measured experimentally.

3.1. Computation of the controlled electrostatic potential

The measurement of the electrostatic potential V is performed on a grid ofMr×Mθ×
Mt points called the measurement grid. This is the input of our numerical algorithm.
This measurement can be given by experimental measurements or numerical data.
However the control term f is computed on a refined spatial grid of Nr × Nθ × Nt

points where Nr > Mr and Nθ > Mθ in order to minimize the error in the numerical
scheme. The potential given by Eq. (3) is used in order to create a local barrier of
radial transport. The controlled potential Vc is computed on the measurement grid
or on the refined one if the original grid is too coarse-grained (in order to avoid fake
dissipation due to an imprecise way of computing Hamilton’s equations). The output
of this computation is the modifications of the electrostatic potential given on the
measurement grid.
The derivatives with respect to periodic variables (e.g., θ) as well as the Γ-operator
given by Eq. (8) are computed using the Fast Fourier Transform and for non-periodic
variables (e.g., r) with a fourth order finite-difference scheme.
As we can see from Eqs. (11) and (12), the controlled potential Vc is simply obtained
from the original one V by a shift in the radial position r (which depends on θ and
t). This means that for determining Vc on a given spatial grid, one has to recover
by interpolation, the values of V on a deformed grid as schematically represented in
Fig. 1. In this way, the method does not resort to an expansion of the potential and is
more easily applicable to electric potentials obtained numerically or experimentally.

3.2. Computation of test particles

We compute and compare the dynamics of test particles given by the equations
of motion (1) and (2) obtained with the uncontrolled and controlled electrostatic
potentials, V and Vc = V ◦ T respectively. In order to integrate these equations
of motion, we use a fourth order Runge-Kutta integrator. Even though this is not
a symplectic scheme, we monitor the total energy E + V (x(t), y(t), t) where the
dynamics of the additional variable E is defined by Ė = −∂V/∂t, so as to ensure
that the numerical error is negligible. This also constitutes a way to check globally
our numerical scheme. The dynamical equation for E is integrated with the same
numerical scheme as Eqs. (1) and (2).

With a set of initial conditions inside the barrier r = R(θ, t), we compute the
dynamics of test particles separately for the uncontrolled and for the controlled
electrostatic potentials. If there is radial transport, the particles which are initially
inside the barrier may leave the inner region. When the control creates a radial
transport barrier, the test particles are expected to remain inside this barrier at all
times.
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Figure 1. The controlled potential Vc on the initial grid is obtained by
interpolating the uncontrolled potential V (from the red grid) on the deformed
blue grid obtained from the map T given by Eq. (4).

4. Numerical results

4.1. Computation with uncontrolled potential

In order to validate our method with the computation of test particles, we use a
toy analytic potential with a decay of the spatial modes in k−3 consistent with
experimental measurements [21, 1], which corresponds to the inertial range of the
drift wave turbulence spectrum. We use only one frequency given that the frequency
spectrum does not introduce changes in the algorithm as shown in Ref. [22]. This
potential has been studied in Ref. [3] and is given by:

V (r, θ, t) = a

N
∑

n,m = −N
n2 + m2 < N2

n 6= 0,m 6= 0

1

(n2 +m2)
3/2

sin (nr cos θ +mr sin θ + ϕnm − t) , (13)

where a is the amplitude of the potential and ϕnm are random phases in order to model
a turbulent potential with N = 25. The amplitude a is a parameter to modulate the
importance of chaotic transport. Figure 2 is a representation of this potential at time
t = 0. We add a filter in a small circular region centered in r = 0 to model the fact
that the electrostatic fluctuations are weak at the center of the device.

In order to obtain an accurate numerical simulation, we choose the number of
points Nr = 256 (in the radial position r), Nθ = 512 (in the poloidal angle θ)
and Nt = 64 (in time) for the electrostatic potential grid. The measurement of the
electrostatic potential is performed with (Mr,Mθ) = (128, 256) and Mt = Nt. The
total energy conservation is accurate up to 10−4 up to a time of integration of 100
periods. The initial positions of test particles are chosen near the center (randomly
inside the position of the barrier R(θ, 0) obtained later with the controlled electrostatic
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Figure 2. Potential V given by Eq. (13) at t = 0 for a = 0.4. The initial
condition of test particles positions are chosen randomly inside the barrier R(θ, 0)
which will be obtained for the controlled potential Vc (see Fig. 6).
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Figure 3. Poincaré section of 100 test particles for the potential V given by
Eq. (13) for a = 0.4, up to t = 100 × 2π. The green curve is the position of the
barrier R(θ, 0) which will be obtained with the controlled potential Vc (see Fig. 6).
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potential Vc, i.e. inside the interval [0.45; 2.55] where the minimum radius of the barrier
will be approximately 2.6). The Poincaré section (stroboscopic plot with the period of
the potential) of test particles obtained with the uncontrolled electrostatic potential is
shown in Fig. 3. The green curve defined by r = R(θ, t) at t = 0 is added to show that
guiding-centers can diffuse (without control) in all the available plane perpendicular to
the magnetic field lines. More precisely, in the computation presented in Fig. 3, only
12% of the trajectories remain inside the barrier after 100 periods of the potential.

4.2. Computation with controlled potential

−4 −2 0 2 4
−4

−2

0

2

4

x

y

Figure 4. Initial grid (red dots) where the uncontrolled potential V is known.
Modified grid (blue lines) defined by Eq. (4) where V is interpolated to obtain Vc

given by Eq. (11) on the initial grid (red dots). The green curve is the position
of the barrier fluctuating near the fixed point r0 = π at time t = 0. We use the
potential V given by Eq. (13) with a = 0.4.

The control term and electrostatic potential are computed on the measurement
grid (Mr,Mθ). An additional step is to interpolate the controlled potential on the
initial grid (Nr, Nθ) using a spline interpolation. We apply our control algorithm
in order to confine test particles inside the barrier. The controlled potential given by
Eq. (12) is considered. It is computed numerically performing an interpolation method
of V on the deformed grid explicitly defined by Vc = V ◦ T following the procedure
sketched in Fig. 1. For example, in Fig. 4 we represent the deformation of the grid
associated with the computation of the controlled potential given by Eq. (11). The
difference Vc −V where V is given by Eq. (13) and Vc is given by Eq. (12) is shown in
Fig. 5. In this case, the maximum amplitude of the modification Vc − V is less than
50% of the maximum amplitude of the potential V for a = 0.4.

The efficiency of the control algorithm is estimated from the dynamics of test
particles obtained by integrating Eqs. (1) and (2) with the controlled potential Vc.
The Poincaré section of test particles obtained with the controlled potential Vc given
by Eq. (12) is shown in Fig. 6.
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Figure 5. Difference Vc − V between Vc given by Eq. (12) with σ = 0.6 and V

given by Eq. (13) at t = 0 for a = 0.4. This modification is centered around the
black circle with radius r0 = π.
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Figure 6. Poincaré section of 100 test particles for the potential Vc given by
Eq. (12) with σ = 0.6 and r0 = π where V is given by Eq. (13) for a = 0.4 up to
t = 100× 2π. The red curve is the position of the barrier R(θ, 0).
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The position of the control barrier R(θ, 2kπ) = R(θ, 0) is represented by the solid
red curve. We notice that most of the particles do not cross the transport barrier
r = R(θ, t). A quantitative estimate of the efficiency of the control scheme is obtained
by comparing the number of particles trapped inside the barrier for the controlled and
uncontrolled potentials. The time evolution of the percentage of particles Nconfined

0  25 50 75 100
0

20

40

60

80

100

t/(2π)

N
co

n
fin

e
d (

%
)

Figure 7. Time evolution of the percentage of confined particles which stay inside
the barrier i.e. with (r, θ) such that r ≤ αR(θ, t) where α = 1.2. The parameters
of the potential are the same as in Fig. 6. This picture shows the results without
(in solid black curve) or with the control (in dashed blue curve) computed from
2000 particles. The control obtained with 32 probes on a circle of radius r = r0
is also shown (in dash-dotted red curve without measurement constraints or in
dotted green curve with a measurement on 5× 128 points).

which stay inside the barrier is shown in Fig. 7. For a = 0.4, up to t = 100×2π, there is
12% of particles that remain confined within the prescribed region without the control
(see Fig. 3) in comparison to 90% for the controlled potential (see Fig. 6). We notice
that the control does not lead to 100% of trapped particles (the dashed blue curve
in Fig. 7) as expected from Eq. (12) since the numerical algorithm (performed on a
grid) induces an approximation of the exact control. This is also to be expected from
the discrepancy between the measured potential and the actual one which prevents
the computation of a very accurate controlled potential. However the fact that a
significant number of test particles are trapped inside the transport barrier shows
that the proposed control is robust in the numerical implementation. This robustness
allows us to take into account experimental constraints. Here we have considered
that the controlled potential is applied through a set of probes. Two constraints
were considered: First, the geometry with which the probes are introduced should
be as simple as possible. Second, the number of probes necessary for an effective
implementation of the controlled potential should be relatively small and compatible
with what is currently applied in linear plasma devices.
The first constraint is addressed by aligning the probes on a fixed circle of radius
r = r0 (see Fig. 8); the second one by using Mprobes = 32 probes and measuring its
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effects on the number of trapped particles. We assume that each probe creates an
electrostatic potential with a Gaussian decrease of its influence in both the radial and
poloidal direction. The potential created by the probe i at the position (r, θ) = (r0, θi)
is given by

Vi(r, θ, t) = Ai(t)e
−(r−r0)

2/2σ2

e−(θ−θi)
2/2σ2

θ , (14)

where Ai(t) is the amplitude of the electric potential of the probe i at time t and
σ = 0.6 (respectively σθ = 2π/Mprobes) is the spatial decrease of the electric potential
in the radial (respectively poloidal) direction.
If the potential introduced at r = r0 is such that the implemented potential at

Figure 8. The perturbations of the electric potential created by 32 probes at
t = 0. The parameters of the potential are the same as in Fig. 6. The gray dots
show the position of the probes and the solid red curve is the position of the
barrier R(θ, 0). The 5 black crosses correspond to the position of one line of the
measurement points which give the dotted green curve in Fig. 7.

r = R(θ, t) is as close as possible to the potential Vc−V depicted in Fig. 5 (by adjusting
the amplitudes Ai(t)) using the ordinary least square method, as shown in Fig. 9,
then our numerical results show that already with 32 probes, the control strategy
is effective in reducing radial transport as shown in Fig. 7. More quantitatively, we
found that at t = 100 × 2π, the number of trapped particles which is about 12%
without the control is increased up to 29% with 32 probes without measurement
constraints and up to 21% with 32 probes with a measurement on 5× 128 grid points.
In addition to robustness, an important advantage of the proposed strategy concerns
the relatively small modifications of the potential. The mean average in angle θ and
time t (denoted 〈·〉) of the potential modifications on the radial position r = r0,
i.e. 〈|V (r0, θ, t) − Vc(r0, θ, t)|〉, is about 30% of the mean average of the potential
〈|V (r0, θ, t)|〉 for a = 0.4. This has to be compared with a simpler version of the control
which consists in creating a potential barrier around r = r0 such that Vc(r = r0, θ, t)
is small. In order to obtain the same quantity of trapped particles (Nconfined ∼ 90%
up to t = 100× 2π), it would be necessary to cancel 90% of the electrostatic potential
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Figure 9. Values of Vc − V at r = R(θ, t) at time t = 0 (in solid blue curve) and
electric potential generated by 32 probes (in dashed red curve). The parameters
of the potential are the same as in Fig. 6.

which has to be compared with 30% of the modifications introduced by the proposed
strategy with the same parameters as in Fig. 6.

Acknowledgments

The authors would like to acknowledge the VINETA Nonlinear Plasma Dynamics
Group of IPP-Greifswald for helpful discussions. We acknowledge financial support
from the Agence Nationale de la Recherche (ANR EGYPT). This work was also
supported by the European Community under the contract of Association between
EURATOM, CEA, and the French Research Federation for fusion study. The
views and opinions expressed herein do not necessarily reflect those of the European
Commission.

References

[1] Wootton A., Carreras B., Matsumoto H., McGuire K., Peebles W., Ritz C., Terry P. & Zweben
S., Phys. Fluids B 2 (1990) 2879.

[2] Scott B., Phys. Plasmas 10 (2003) 963.
[3] Pettini M., Vulpiani A., Misguich J., Deleener M., Orban J. & Balescu R., Phys. Rev. A 38

(1988) 344.
[4] Ciraolo G., Briolle F., Chandre C., Floriani E., Lima R., Vittot M., Pettini M., Figarella C. &c

Ghendrih Ph., Phys. Rev. E 69 (2004) 056213.
[5] Tronko N., Vittot M., Chandre C., Ghendrih P. & Ciraolo G., J. Phys. A: Math. Theor. 42

(2009) 085501.
[6] Chandre C., Ciraolo G., Doveil F., Lima R., Macor A. & Vittot M., Phys. Rev. Lett. 94 (2005)

074101.
[7] Windisch T., Grulke O. & Klinger T., Physics of Plasmas 13 (2006) 122303.
[8] Brochard F., Gravier E. & Bonhomme G., Phys. Plasmas 12 (2005) 062104.
[9] Burin M., Tynan G., Antar G., Crocker N. & Holland C., Phys. Plasmas 12 (2005) 052320.



Transport barrier for the radial diffusion due to the E ×B drift 13

[10] Grulke O. & Klinger T., New J. Phys. 4 (2002) 67.
[11] Windisch T., Grulke O. & Klinger T., Phys. Scr. T122 (2006) 15.
[12] Klinger T., Latten A., Piel A., Bonhomme G. & Pierre T., Plasma Phys. Control. Fusion 39

(1997) B145.
[13] Brandt C., Grulke O. & Klinger T., Plasma Phys. Control. Fusion 52 (2010) 055009.
[14] Ghendrih Ph., Sarazin Y., Attuel G., Benkadda S., Beyer P., Falchetto G., Figarella C.F., Garbet

X., Grandgirard V. & Ottaviani, M. Nucl. Fusion 43 (2003) 1013.
[15] Morrison P. J., AIP Conf. Proc. 88 (1982) 13.
[16] Morrison P. J., Phys. Plasmas 12 (2005) 058102.
[17] Northrop T., Ann. Phys. 15 (1961) 79.
[18] Littlejohn R., J. Math. Phys. 20 (1979) 2445.
[19] Cary J. R. & Brizard A. J., Rev. Mod. Phys. 81 (2009) 693.
[20] Morrison P. J., Rev. Mod. Phys. 70 (1998) 467.
[21] Truc A., Plasma Phys. Control. Fusion 26 (1984) 1045.
[22] Ciraolo G., Ghendrih Ph., Sarazin Y., Chandre C., Lima R., Vittot M. & Pettini M., J. Nucl.

Mater. 363 (2007) 550.


