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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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In this paper, the problem of control law design for decentralized homoge-
nous Multi-Agent systems ensuring the global stability and global perfor-
mance properties is considered. Inspired by the decentralized control law
design methodology using the dissipativity input-output approach, the prob-
lem is reduced to the problem of satisfying two conditions: (i) the condition
on the interconnection and (ii) the condition on the local agent dynamics.
Both problems are e�ciently solved applying a (quasi-) convex optimization
under Linear Matrix Inequality (LMI) constraints and an H∞ synthesis. The
proposed design methodology is applied to the control law design of a syn-
chronous PLLs network.

Multi-Agent systems, decentralized H∞ control, dissipativity input-output approach,
LMI optimization, consensus, cooperation, PLL network synchronization.
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1 INTRODUCTION

1 Introduction

Recently, the behavioral analysis and control problems of large scale systems composed
of distributed interactive subsystems are raising interests in the system and control com-
munity. The ability for large scale systems to cover broad application areas, their robust-
ness to possible subsystem failures and advances in the microelectronics (the explosion of
computing capabilities and miniaturization) are the keys points for such gain of interests.
Unmanned aerial vehicles, mobile robots, satellites, formation control, sensor networks
and many more are typical applications that take bene�ts of advances in this �eld. The
problem considered in these applications can be classi�ed in the following sub-classes:
the consensus or agreement protocol, coordination and rendez-vous problems, synchro-
nization or time agreement problems etc.. A nice overview of recent results on the topic
can be found in [1] and [2, 3].
Generally a decentralized control law strategy i.e. the strategy where the local con-

trollers are placed and designed in each subsystem is adopted in order to solve the
aforementioned problems. The motivation to proceed as such a way is that the classical
approaches to design a control law for large scale systems fail due to their size. Moreover
for the sake of implementation, it is much more practical to implement decentralized
control laws than centralized ones. Decentralized controllers use the external informa-
tion (output or states signals) coming from a subset of subsystems (for instance neighbor
subsystems). Very often this external information is compared to the local signals in
order to provide the control law ensuring desired properties not only for local subsystem
but also for the global system. A general description of the control design problem can
eventually be formulated in the following way: design a decentralized control law for the
global system that uses local controllers ensuring both properties: the global stability
and global performance requirements. While the �rst property i.e. the stability is a
necessary condition for the correct large scale system operation, the global performance
speci�cations (e.g. reference tracking, �xed time convergence, control signal limitation,
disturbance attenuation etc.) is additionally needed for some type of applications.
An example of such an application is the control law design for an active clock distribu-

tion network consisting of Phase-Locked Loops (PLLs) deployed in an array. This active
clock distribution network can be used as an alternative way to distribute the clock in a
synchronous many-core microprocessor system. This approach has numerous advantages
in terms of perturbation rejection, robustness properties and power consumption [4�9].
In these systems, phase and frequency synchronization is crucial to ensure the right sys-
tem operation. Issues of minimal global system bandwidth, maximal control signal level,
noise and external perturbations rejection must be taken into account as well. The two
�rst requirements �x the convergence speed and limit the power consumption of the
whole system, while the two last ones are critical to distribute the clock properly in a
noisy and perturbed chip environment. Indeed, the power supply noise, the temperature
variations and operation mode alterations are the main disturbance sources in integrated
circuits. The control law thus should not only ensure the stability of the global system
but should also satisfy the global performance speci�cations.
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1 INTRODUCTION

Design methods for a stand-alone PLL are well-known in Microelectronics [10, 11]. A
PLL is composed of a Voltage Controlled Oscillator (VCO), a Phase Detector (PD), a
frequency divider and a control �lter that ensures the stability and performance spec-
i�cations. For an array of distributed coupled PLLs, the standard approaches consist
in neglecting the global network interconnection and designing the PLLs as if they were
independent. After interconnecting these independent PLLs based on a given network
topology, one should check if the overall network stability and/or performance speci�ca-
tions are conserved. Reasons to proceed this way is obviously the simplicity of the method
that is based on standard well-known Control System Theory and Microelectronics tools.
However, due to the mutual coupling and the multiple feedbacks inside the PLL clock

distribution network, stability and performance are not generally guaranteed for the
global network even if each PLL in the network is properly designed locally. The impact
of the global network interconnection can be very important: it is then necessary to de-
sign the control law under the constraint of global stability and performance. However,
considering the global network interconnection aspects can strongly complicate the con-
trol design procedure compered to the simple local design problem. As it will be revealed
in the present paper it is actually possible to take bene�ts of the local design approach
with additional constraints ensuring the global stability and/or the global performance
as well. Unfortunately, this problem is beyond the scope of usual design methods issued
from the Microelectronic.
Actually, the problem of analysis and synthesis of such a decentralized large scale

system was investigated in the Control System Theory through two di�erent approaches
(i) the Multi-Agents system approach and (ii) the Decentralized control approach.
The Multi-Agent system is a network of intelligent subsystems called agents, where

each agent exchanges some information with its neighbor agents, transforms this informa-
tion and uses it in order to achieve some desired global network behavior. Multi-Agents
are composed of two parts: the controller and the plant to be controlled. The controller
of the Multi-Agents produces the command signal based only on the locally available
information (states or measured agent outputs). Very often the authors of this approach
consider that the agents are identical. One of the most important results to understand
the behavior of such a networked identical Multi-Agent system for the Linear Time In-
variant (LTI) case is the work [12] where the authors give a necessary and su�cient
stability condition for such LTI network. Using the graph theory methodology the au-
thors of [12] transform the condition of the N Multi-Agents network global stability into
a condition of simultaneous stability for the N independent subsystems. These inde-
pendent subsystems are composed of the same controller and plant as the single agent
with some di�erence only in the feedback gain. This gain, in general complex, is de�ned
by the eigenvalues of the interconnection matrix which in [12] is the Laplacian matrix
coming from the Graph Theory. We thus obtain a global stability criterion representing
by some aspects the generalization of the Nyquist stability criterion to large scale sys-
tems. In this case, the global stability analysis complexity is drastically reduced since
it is tested through a condition involving only one agent and the eigenvalues of the in-
terconnection graph Laplacian. The most important idea of [12] which is common to all
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1 INTRODUCTION

further Multi-Agents system approach results is that a global system property (stability)
can be transposed into a local subsystem property (simultaneous stability) with an ad-
ditional interconnection information (Laplacian eigenvalue gains). The adjective �local�
means that the property is satis�ed for the subsystem which is independent of others
subsystems and interconnection. As it was pointed out before, a local property is much
more easier to guarantee than a possibly very complex global system property. However
in contrast to the classical approach this additional interconnection information can be
used to ensure that the local property is conserved in the global case as well. We retain
this important idea for the further development of an original control law design method.
The �global-local connection� result in [12] gave rise to a large number of various papers

that use the same transformation. Most of them analyze the system stability. Indeed,
based on di�erent approaches such as passivity, L2 gain [13�18], more general Integral
Quadratic Constraint (IQC) characterization [19,20], the authors propose a generalization
of the stability analysis in [12] to a set of additional stability analysis problems includ-
ing heterogeneity, nonlinear interconnections, e�ects of delay propagation and structure
switching, etc.. Concerning the performance level analysis, these papers cover only con-
vergence rate requirement which is an immediate consequence of the stability analysis.
The questions for more general performance analysis for LTI systems are studied in [21] in
the context of H2 and H∞ performance and in [22,23] using global performance transfer
functions obtained by the direct Mason rule. These studies give insight into the network
synthesis i.e. into the appropriate choice of the interconnection structure that ensures a
certain level of performance. However, very often in di�erent applications, the intercon-
nection structure is �xed and/or a performance level has to be satis�ed independently.
It is actually possible, for a �xed interconnection topology, to ensure the global stability
and a level of performance by an appropriate choice of local controller dynamics i.e.
decentralized control design.
There are very few results in the control law design in the Multi-Agent system ap-

proaches covering each particular problem. There is no, for our best knowledge, any
e�cient methods for the control law design of a general Multi-Agent network even in the
case of identical LTI subsystems (with general kind of interconnection and general agent
dynamics) that ensures the global stability and the general global level of performance.
The di�cult point usually comes from both either from the interconnection complexity
or from the complexity of the agent dynamics [24].
One of the extensions to the control design uses the idea of simultaneous stabilization

proposed in [12]. The authors of [25] apply the static state feedback control law as a
solution of a Linear Matrix Inequality (LMI) optimization problem. It is only possible
in the case for which the relative states are available for the control (static control).
Otherwise, the observer based solution (dynamic control) is used in [24, 26, 27] and [28].
However, the authors of the observer based control did not propose e�cient method to
compute it and only the questions of the global stability and a convergence rate to the
steady-state are considered. Moreover, for the control law discussed in [24, 26�28], a
communication network which is able to transmit arbitrary information (controller and
observer states) is required. Another extension covering the problem of the control law
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1 INTRODUCTION

design is based on the optimization under Bilinear Matrix Inequality (BMI) constraints
of [29�31]. The authors solve the BMI optimization problem by the homotopy method
initially proposed in [32] and developed in [33]. Unfortunately, this optimization problem
is not a convex optimization problem and the algorithm for its resolution for a general
case is not e�cient. It does not always converge and requires an initialization point that
has obviously a huge in�uence on the �nal result. Moreover, the problem only focuses
on stability issues and not on performance.
The problem of the external reference tracking by the Multi-Agent network with sim-

ple integrator dynamics is investigated in [34]. But here again the transmission of an
additional information (agent velocity) is needed. The performance requirement in the
form of an H∞ norm on a global transfer function with speci�c input and output is
considered in the control law design in [35]. However the authors deal with the symmet-
ric interconnection topology and with one performance speci�cation that concerns the
measurement disturbance rejection on one speci�c output. If the �rst assumption can be
relaxed considering augmented complex version of the LMIs condition given in [35], the
second assumption limits the input/output signal choice needed to specify more general
performance requirements related to the application. Additionally, the solution presented
in [35] seems to be conservative since the common to all subsystem Lyapunov matrix is
chosen to have a block diagonal structure which is needed to reconstruct the state matrices
of the dynamic controller.
In contrast with the Multi-Agent approach, the design problem of networked systems

was deeply investigated in the Decentralized control of large-scale systems, see e.g. [36�
41]. The decentralized control problem consists in designing (local) controller for each
subsystem in order to ensure the global stability and some global performance properties
for the overall system. The decentralized controllers do not necessary use only the relative
node output information as in the Multi-Agents system case, they can use any type of
information transmitted through the network which is de�ned by the plant.
Many methods were proposed for the decentralized control design but for our current

application the most promising one is method proposed in [41]. Based on the input-
output approach [39], the authors of [41] propose to design local controllers for global
stability and performance of the general heterogeneous large scale system by using convex
optimization involving LMI constraints. Nevertheless, since in the proposed approach,
the subsystems are not necessarily identical, the complexity of the design conditions
strongly depends on the number of subsystems. This potentially leads to large opti-
mization problems since, for every single subsystem, a set of LMI constraints has to be
introduced. Furthermore, in order to achieve an e�cient design method, the proposed
approach is based on only su�cient conditions that gives potentially conservative results.
On the other hand in practice, the subsystems to control are very often identical or at
least with the same structure. Reasonably speaking, this property should be exploited
as in the case of Multi-Agent systems [12] to release some constraints on the controller
design procedure, its complexity and conservatism.
In the present paper, initially motivated by the active clock distribution network ap-

plication example, we propose to develop a new e�cient method of control law design for
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2 NOTATION AND PRELIMINARIES

LTI large scale system composed of identical general LTI subsystems. It (i) like in the
Multi-Agent approach, reduces the design problem to one agent dynamics control design
including an additional interconnection design constraint; (ii) like in the decentralized
control, allows to design local (node) controllers ensuring desired global stability and
performance properties. Furthermore, we succeed in exploiting the similarity between
the nodes in order to potentially reduce the conservatism of the design approach.
The paper is organized as follows: the second section gives the used notations and

preliminaries; in the third section, we describe the general problem formulation consid-
ered here; local analysis conditions for the global stability and performance analysis are
presented in section four; the control law design based on these local conditions, its res-
olution algorithm as well as a numerical application is presented in the sections �fth,
sixth and seventh respectively; as a conclusion perspectives of the oncoming studies are
presented.

2 Notation and Preliminaries

In this section, we present various de�nitions and preliminary results needed to under-
stand and formalize the problem discussed in this paper.
The superscript �T � de�ne a real matrix transpose while the superscript �∗� de�ne

its analogue for the complex matrices that is complex conjugate transpose. Matrix IN
de�ne a square N×N identity matrix while 0n×m is a n×m zero matrix. The dimension
of the identity or zero matrix is omitted (I and 0) if it is clear from the context.

De�nition 1. The Kronecker product between two matrices A and B denoted by ⊗ is
de�ned as:

A⊗B = [aijB] (1)

De�nition 2. Lower Fractional Transformation (LFT) of G =

[
G11 G12

G21 G22

]
and F is

denoted G ? F and de�ned by:

G ? F = G11 +G12F (I −G22F )−1G21 (2)

with ? the Redhe�er (star) product
The Upper Fractional Transformation (UFT) can be de�ned in the same way using

the same notations:

F ? G = G22 +G21F (I −G11F )−1G12 (3)

De�nition 3 (Dissipativity). A causal operator G with input r and output ϕ is strictly
{X,Y, Z}−dissipative, if there exist a real ε > 0 and real matrices X = XT , Y, Z = ZT
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3 PROBLEM STATEMENT

such that

[
X Y
Y T Z

]
is a full rank matrix and for all τ > 0 with ϕ = G (r) :

ˆ τ

0

[
r (t)
ϕ (t)

]T [
X Y
Y T Z

] [
r (t)
ϕ (t)

]
dt ≤ −εI

ˆ +∞

−∞

[
r (jω)
ϕ (jω)

]∗ [
X Y
Y T Z

] [
r (jω)
ϕ (jω)

]
dω ≤ −εI

(4)

if the inequality (4) is satis�ed with ε = 0 the operator is then called {X,Y, Z}− dissi-
pative.

If in addition, the operator G is a stable LTI causal operator then equation (4) can be
simpli�ed into: [

I

G (jω)

]∗ [
X Y

Y T Z

][
I

G (jω)

]
≤ −εI,

for almost ∀ω ∈ R+

(5)

3 Problem statement

A large-scale system investigated in this paper is a more general description of the Multi-
Agent systems and can be modeled as an interconnection of N identical subsystems (or
agents) Ts (see Fig.1). For the sake of clarity and without loss of generality, the case of
square subsystem i.e. the subsystem Ts with the same number p of inputs and outputs
is considered. Each subsystem is assumed to be LTI and causal and that it can be
divided into two parts: (i) the part of the subsystem that has to be controlled (or plant)

G =

[
G11 G12

G21 G22

]
and (ii) the part implementing this control (or controller) F . The

subsystems are regrouped to form a global block-diagonal LTI operator T̃ while their

interconnections are described by a stable LTI system M =

[
M11 M12

M21 M22

]
.

ϕ =

T̃︷ ︸︸ ︷
(IN ⊗ Ts) r[

r

z

]
=

[
M11 M12

M21 M22

]
︸ ︷︷ ︸

M

[
ϕ

w

] (6)

with Ts = G ? F , r (t) , ϕ (t) ∈ RpN , w (t) ∈ Rnw , z (t) ∈ Rnz .

Throughout the paper, we consider the local and global stability as well as the local
and global performance speci�cations. The corresponding local system is depicted in
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3 PROBLEM STATEMENT

Fig. 2 and described by:

[
εpi
yi

]
=

Ğ︷ ︸︸ ︷[
Ğ11 Ğ12

Ğ21 Ğ22

] [
rpi
ui

]
ui = F yi

(7)

with rpi (t) ∈ Rnr , εpi (t) ∈ Rnε , yi (t) ∈ Rny , ui (t) ∈ Rnu .
It is very important to distinct these properties for both cases. The local stability

means the stability of one independent subsystem (7) without other subsystems and
interconnection (one separated node) while the global stability is the stability of the
overall system de�ned by (6). The local performance is evaluated for the one separated
subsystem (7) augmented by some performance inputs εpi and outputs rpi while the global
performance is evaluated for the overall system (6) with corresponding global performance
inputs w and outputs z. These inputs de�ne the dimension and the structure of the
operators Ğ and M respectively.
The performance speci�cations for global case are expressed by the minimization of

the H∞ norm of the transfer function T̃p = T̃ ? M , while the performance speci�cations
for local case are expressed by the minimization of the H∞ norm of the transfer function
Tp = Ğ ? F . Provided that systems are stable, it allows us to ful�ll two issues:

1. Ability to use weighting transfer functions to more accurately specify the perfor-
mance speci�cation in the frequency domain. Indeed, each performance speci�ca-
tion can be stated as a problem of an output signal time constraint satisfaction.
Practically, usual time domain constraint can be enforced by frequency domain
constraint for a properly chosen transfer function (see [42]). For more details and
how this can by applied for application example of PLL network synchronization
see Section 7 of this paper.

2. By an appropriate choice of external input and output signals, one should be able
to cover not only the synchronization problem of the PLL network but also a more
general problem that includes any possible problems of networked Multi-Agents
systems and more general Decentralized control system: consensus, coordination,
cooperation of subsystems. It is possible to cover additional performance require-
ments as well which, as mentioned in introduction, could be crucial for the real
application.

In the further part of the paper, we focus on the following general problem.

Problem 1 (General problem formulation). Given an LTI system G, and an intercon-
nection LTI model M , �nd an LTI system F such that it

1. Stabilizes each subsystem (7) and Fig.2 separately as well as the overall network
(6) represented Fig.1;
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φN

r1

φ

φiri

rN

r

M

T̃ 

Ts

G

F

φ1

G

F

G

F

z w

Ts

Ts

Figure 1: Considered global system LTI model

Ğ 

F

rpi ɛpi

yiui

Figure 2: Considered local subsystem LTI model
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4 LOCAL CONDITIONS FOR THE GLOBAL STABILITY AND PERFORMANCE

2. Ensures local performance speci�cations by the H∞ norm minimization of the trans-
fer function Tp = Ğ ? F between performance inputs rpi and outputs εpi;

3. Ensures global performance speci�cations by the H∞ norm minimization of the
transfer function Tw→z = T̃ ? M between performance inputs w and outputs z.

The described problem will be solved in several steps. First, we derive a result that
similarly to the result in [12] reduce the global stability condition into local conditions.
However the conditions themselves are di�erent compered to those proposed in [12].
Indeed, as it was pointed out in the introduction to design a control law that satis�es the
conditions of the Theorem 3 or 4 in [12] the problem of the simultaneous stabilization
has to be solved. This problem is known to be a di�cult to solve and there can be found
only su�cient or only necessary conditions of its resolution (see [43]). For these reasons,
the approach of the graph separation argument [39] is proposed in this work. It allows
us to separate the local subsystem dynamics constraint and interconnection dynamics
constraint so that the simultaneous stabilization is no longer required. Second for an given
input-output dissipativity characterization, we propose the design method ensuring these
local conditions and thus the stability of the global system. Since the proposed design
method is based on the H∞ synthesis, it is then straightforward to ensure besides the
global stability also the local performance. Then an original approach of relative weighted
transfer functions is proposed in order to ensure the global performance speci�cations as
well. Finally, an algorithm of the appropriate choice of the dissipativity characterization
and of the control law design are summarized.

4 Local conditions for the Global stability and performance

In the �rst part of this section, local conditions on the one subsystem dynamics Ts and
on the interconnection matrix dynamics M are derived to ensure the global stability
based on the input-output approach and the graph separation argument. Next, these
conditions are extended to ensure besides the global stability the global performance as
well.
In the input-output design approach, the system is often described or characterized

by a quadratic constraint involving only input and output system signals. A general
input-output characterization is the dissipativity property [39] that for the MIMO case
is formulated in De�nition 3.
If the subsystems Ts (respectively the interconnection system) are characterized by a

dissipativity property, it is possible to ensure the stability of the overall network ensur-
ing a dissipativity property on the interconnection system (respectively the subsystems
Ts). Using this fact, the global stability can be transformed into local conditions as
summarized by the following theorem:

Theorem 1. Suppose that the system described by the equation (6) is well posed and
causal. Given real p × p matrices X = XT

, Y , Z = ZT , if there exists real symmetric
positive de�nite matrix P ∈ RN×N such that

11



4 LOCAL CONDITIONS FOR THE GLOBAL STABILITY AND PERFORMANCE

(i) the interconnection LTI system M11 is {P ⊗X,P ⊗ Y, P ⊗ Z}−dissipative (or strictly
dissipative);
(ii) local subsystem Ts is strictly

{
−Z,−Y T ,−X

}
−dissipative (or dissipative).

Then the overall system is stable in the input-output sense.

Proof. First note that the global transfer function of the global system presented in Fig.1
has the following form :

M ? T̃ = M22 +M21T̃
(
I −M11T̃

)−1
M12. (8)

Since by the de�nition the interconnection LTI system M is stable, the stability of the

global transfer function (8) is equivalent to the stability of the system T̃
(
I −M11T̃

)−1

which is an simple interconnection of the subsystem T̃ with LTI system M11 i.e. Fig.1
without external inputs w and outputs z.
By means of subsystems identity, the strict dissipativity property (ii) on the local

operator Ts can be reformulated as a strict
{
−IN ⊗ Z,−IN ⊗ Y T ,−IN ⊗X

}
-dissipativity

property of the global diagonal operator T̃ :

[
Ip

Ts (jω)

]∗ [ −Z −Y T

−Y −X

] [
Ip

Ts (jω)

]
≤ −εI

⇔
[
IN ⊗ Ts (jω)
IN ⊗ Ip

]∗ [ IN ⊗X IN ⊗ Y
IN ⊗ Y T IN ⊗ Z

] [
IN ⊗ Ts (jω)
IN ⊗ Ip

]
≥ εI

, for almost ∀ω ∈ R (9)

Post- and pre-multiplying of the condition (9) by an invertible full rank matrix D⊗ Ip

and using the property of the Kronecker product [44] :

(IN ⊗ Ts) (D ⊗ Ip) = (D ⊗ Ip) (IN ⊗ Ts)

(D ⊗ Ip)T (D ⊗ Ip) =
(
DT ⊗ Ip

)
(D ⊗ Ip) =

(
DTD ⊗ Ip

)
one obtains:

 IN ⊗ Ts (jω)

IN ⊗ Ip

∗  (IN ⊗X)
(
DTD ⊗ Ip

)
(IN ⊗ Y )

(
DTD ⊗ Ip

)
(
IN ⊗ Y T

) (
DTD ⊗ Ip

)
(IN ⊗ Z)

(
DTD ⊗ Ip

)
 IN ⊗ Ts (jω)

IN ⊗ Ip

 ≥ εI

which for P = DTD > 0 is equivalent to

 T̃ (jω)

Ip×N

∗  P ⊗X P ⊗ Y

P ⊗ Y T P ⊗ Z

 T̃ (jω)

Ip×N

 ≥ εI, for almost ∀ω ∈ R (10)

Using the assumption (i) on the interconnection matrix M11 and that (10) is actually

the condition of strict
{
−P ⊗ Z,−P ⊗ Y T ,−P ⊗X

}
-dissipativity property for the global
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4 LOCAL CONDITIONS FOR THE GLOBAL STABILITY AND PERFORMANCE

diagonal operator T̃, we apply the graph separation argument of [39] (Theorem 1) to

obtain the stability of the interconnected system T̃
(
I −M11T̃

)−1
and thus the overall

network (6) represented in Fig.1.

Remark 1. Following the Theorem 1 proof, the reader can make an objection concerning
the usefulness of the matrix P . Indeed, the Theorem 1 can be proved without using
the symmetric positive de�nite matrix P , one can actually apply the graph separation
argument Theorem directly on the

{
−IN ⊗ Z,−IN ⊗ Y T ,−IN ⊗X

}
-dissipativity condition

(9) of the global operator T̃ . However, the conditions of the Theorem 1 are only su�cient
since the graph separation argument used in its proof provides only su�cient and not
necessary stability condition. Using a symmetric positive de�nite matrix P in the case
of identical subsystems reduces the potential conservatism of Theorem 1. Indeed, the
matrix P is a parametrization matrix that adds some degrees of freedom on the dissi-
pativity characterization choice. Actually in the case of identical subsystems satisfying
dissipativity condition (ii) the global diagonal operator T̃ satis�es the global dissipativity
condition not only for the identify matrix IN as in (9) but also for all possible symmet-
ric positive de�nite matrix P . For our purpose, it is su�cient to �nd only one such
matrix which is not necessary equal to identity. Formally speaking, the global operator
can be represented as T̃ = IN ⊗ Ts only in the case of identical subsystems. Moreover
in that particular case, the Kronecker product permutation based on the permutation
of the matrix D with identity matrix IN can be applied in order to obtain the strict{
−P ⊗ Z,−P ⊗ Y T ,−P ⊗X

}
-dissipativity condition (10) with a symmetric positive de�nite

matrix P . Therefore, by applying the graph separation argument Theorem with these
extended conditions, one can test the global stability not for the all possible full global
operator T̃ but only for all possible block identical one which results in the conservatism
diminution. One thus exploits the structure of the operator and its more accurate dissi-
pativity characterization.

Remark 2. In almost all application cases, Theorem 1 dissipativity conditions (i) and
(ii) are applied with additional constraint on the X,Z characterization matrix:

X = XT ≤ 0;
Z = ZT ≥ 0.

(11)

The �rst constraint of (11) X = XT ≤ 0 implies that:

• the synthesis problem, i.e. the problem of the control law design F (see Figure 2)
ensuring the subsystem Ts stability and its dissipativity condition (see condition (ii)
of the Theorem 1) can be expressed in the form of a convex optimization problem
(see the case B in [45]).

• the quadratic constraint (i) of Theorem 1 for the open loop interconnection matrix
(i.e. with M11 = 0) is automatically ensured.

13



4 LOCAL CONDITIONS FOR THE GLOBAL STABILITY AND PERFORMANCE

The second constraint of (11) Z = ZT ≥ 0 implies that:

• zero (Ts = 0) also satis�es the quadratic constraint (ii) of Theorem 1 and if a
control law can be found such that Ts satisfy the quadratic constraint (ii), it is
actually the case for ∀θTs for ∀θ : θ ∈ [0, 1]. This is, in fact, a robust stability
property that corresponds to the robust graph separation Theorem detailed in [46];

According to the above discussion, the Theorem 1 can be transformed into more suitable
for the design form. To do this, the following loop shifting transformation is applied :

T̂ = (−X)
1
2
(
Ts +X−1Y

) (
Z − Y TX−1Y

)− 1
2 . (12)

The equation (12) is necessary well de�ned since the de�nition of the dissipativity
matrices (11). As a consequence, the dissipativity condition (ii) of the Theorem 1 is
transformed into standard H∞ form : ∥∥∥T̂∥∥∥

∞
< 1. (13)

As it will be illustrated in the following part of the paper, thanks to this transformation,
an application of the standard H∞ synthesis to considered design problem is possible.
Thus, the next version of the Theorem 1 can be formulated as follows.

Theorem 2. Suppose that the system described by the equation (6) is well posed and
causal. Given real p×p matrices X = XT ≤ 0, Y , Z = ZT ≥ 0, if there exists real symmetric
positive de�nite matrix P ∈ RN×N such that
(i) the interconnection LTI system M11 is {P ⊗X,P ⊗ Y, P ⊗ Z}−dissipative;
(ii) the local subsystem Ts is such that:∥∥T̂∥∥∞ < 1 (14)

with T̂ = (−X)
1
2
(
Ts +X−1Y

) (
Z − Y TX−1Y

)− 1
2

then the overall system is stable.

Proof. The proof is ful�lled by proving that the strict
{
−Z,−Y T ,−X

}
− dissipativity prop-

erty of the operator Ts is satis�ed by the assumption on the H∞ constraint (14) and by

the further applying of the Theorem 1. Indeed, note that the H∞ norm constraint (14)

is equivalent to the frequency quadratic constraint:

 T̂ (jω)

Ip

∗  −Ip 0

0 Ip

 T̂ (jω)

Ip

 ≥ ε1I (15)

for almost ∀ω ∈ R and for ε1 ∈ R : ε1 > 0.

By post and pre-multiplying of both side of (15) by matrix
(
Z − Y TX−1Y

) 1
2 , which is

positive semi-de�nite by the de�nition ofX, Z matrices, and replacing T̂ by its expression

14



4 LOCAL CONDITIONS FOR THE GLOBAL STABILITY AND PERFORMANCE

one obtains:

 Ts (jω)

Ip

∗  Ip 0

Y TX−T Ip

 X 0

0 Z − Y TX−1Y

 Ip X−1Y

0 Ip

 Ts (jω)

Ip

 ≥ ε2I, (16)

for almost ∀ω ∈ R with 0 < ε2 ≤ ε1σ
(
Z − Y TX−1Y

)
where σ (A) is the minimal

singular value of the matrix A.

The last inequality is equivalent to[
Ip

Ts (jω)

]∗ [ −Z −Y T
−Y −X

] [
Ip

Ts (jω)

]
≤ −ε2I (17)

for almost ∀ω ∈ R.
From the dissipativity De�nition 3, (17) states that Ts is strictly

{
−Z,−Y T ,−X

}
−dissipative.

Remark 3. The dissipativity condition on the interconnection LTI systemM11 (condition

(i) of the Theorem 2) can be transformed to an LMI condition in decision variable P for

some given X = XT ≤ 0, Y , Z = ZT ≥ 0:
In the case of a constant interconnection matrix M11 ∈ RpN×pN , it is straightforward:

∃P ∈ RN×N : P = PT > 0,

[
IpN

M11

]T [
P ⊗X P ⊗ Y
P ⊗ Y T P ⊗ Z

][
IpN

M11

]
≤ 0; (18)

In the case of a dynamic stable LTI interconnection system M11 :
[
IpN M11

]T
=

C (sI −A)
−1
B + D with its state-space representation matrices A ∈ Rn×n, B ∈ Rn×pN ,

C ∈ R2pN×n, D ∈ R2pN×pN , one can obtain the following LMI condition applying the

Kalman-Yakubovich-Popov (KYP) lemma [47]:

∃P ∈ RN×N : P = PT > 0

∃R ∈ Rn×n : R = RT > 0

,


A B

I 0

C D


T



0 R

R 0

0

0
P ⊗X P ⊗ Y

P ⊗ Y T P ⊗ Z




A B

I 0

C D

 ≤ 0. (19)

The Theorem 1 and Theorem 2 allow to transform the condition of the global stability
of the overall system (6) into a condition on the interconnection M11 (18) or (19) and a
condition on the local subsystem dynamics Ts (14). This result can thus be combined
with the usual local control design methods in order to obtain the control law ensuring
a priori the global stability. The similar result can be obtained to ensure the global
performance as well. This is demonstrated in the following theorem:

15



4 LOCAL CONDITIONS FOR THE GLOBAL STABILITY AND PERFORMANCE

Theorem 3. Suppose that the system described by the equation (6) is well posed and
causal. Given real p × p matrices X = XT ≤ 0, Y , Z = ZT ≥ 0 and a bound η > 0 if there
exists symmetric positive de�nite matrix P ∈ RN×N such that
(i) the interconnection LTI system matrixM is

{
X̃, Ỹ , Z̃

}
−dissipative with X̃ = diag

(
P ⊗X,−η2I

)
,

Ỹ = diag (P ⊗ Y, 0), Z̃ = diag (P ⊗ Z, I) i.e.:

[
I

M (jω)

]∗ 
P ⊗X 0 P ⊗ Y 0

0 −η2I 0 0
P ⊗ Y T 0 P ⊗ Z 0

0 0 0 I

[ I
M (jω)

]
≤ 0 (20)

for almost ∀ω ∈ R;
(ii) the local subsystem Ts satis�es the condition (14) i.e.:∥∥∥T̂∥∥∥

∞
< 1 (21)

with T̂ = (−X)
1
2
(
Ts +X−1Y

) (
Z − Y TX−1Y

)− 1
2 ,

then the overall system (6) is stable and the H∞ norm of the transfer function Tw→z =
M ? T̃ is less or equal to η i.e.:

‖Tw→z‖∞ < η. (22)

Proof. First we prove the stability and then the bound on the global transfer function
H∞ norm.
The global stability is ensured by applying the Theorem 2. Indeed, the condition (ii)

of the Theorem 2 is exactly the same as the condition (ii) of the present Theorem and
thus is satis�ed by (21).
For the other hand, the condition (20) can be equivalently expressed in the form of

I 0
M11 (jω) M12 (jω)
M21 (jω) M22 (jω)

0 I


∗ 

P ⊗X P ⊗ Y 0 0
P ⊗ Y T P ⊗ Z 0 0

0 0 I 0
0 0 0 −η2I




I 0
M11 (jω) M12 (jω)
M21 (jω) M22 (jω)

0 I

 ≤ 0

(23)
for almost ∀ω ∈ R, which implies[

I
M11 (jω)

]∗ [
P ⊗X P ⊗ Y
P ⊗ Y T P ⊗ Z

] [
I

M11 (jω)

]
≤ −MT

12M12 ≤ 0. (24)

for almost ∀ω ∈ R.
The last condition implies that the interconnection systemM11 is {P ⊗X,P ⊗ Y, P ⊗ Z}−

dissipative i.e. the �rst condition of the Theorem 2 is satis�ed too. Therefore, by applying
the Theorem 2 the global stability of the system (6) represented in Fig.1 is proved.
Let us now prove the condition on the H∞ bound. The condition (20) implies the{
X̃, Ỹ , Z̃

}
- dissipativity of the interconnection systemM with characterization matrices

16



4 LOCAL CONDITIONS FOR THE GLOBAL STABILITY AND PERFORMANCE

de�ned as X̃ = diag
(
P ⊗X,−η2I

)
, Ỹ = diag (P ⊗ Y, 0), Z̃ = diag (P ⊗ Z, I) for some

P = P T > 0. It is equivalent to the following quadratic condition for some ε1 > 0:

∀w,∀τ > 0,

ˆ τ

0

[
ϕ (t)
w (t)

]T [
I
M

]T 
P ⊗X 0 P ⊗ Y 0

0 −η2I 0 0
P ⊗ Y T 0 P ⊗ Z 0

0 0 0 I

[ I
M

] [
ϕ (t)
w (t)

]
dt ≤ −ε1I

(25)
After performing some transformation and taking into account the system descrip-

tion (6) one obtains:

ˆ τ

0

[
z (t)
w (t)

]T [
I 0
0 −η2I

] [
z (t)
w (t)

]
dt

≤ −
ˆ τ

0

[
ϕ (t)
r (t)

]T [
P ⊗X P ⊗ Y
P ⊗ Y T P ⊗ Z

] [
ϕ (t)
r (t)

]
dt − ε1I

(26)

for ∀τ > 0, ∀w and r, ϕ, z de�ned by (6).
The left hand part of (26) expresses the relation between external input w and output

z signals of the global system (6) while its right hand side is de�ned in terms of the input
r and the output ϕ signals of the upper diagonal bloc T̃ of the global system (ϕ = T̃ r
see Fig.1).
Recall that the condition (21) de�nes the strict

{
−Z, − Y T , −X

}
− dissipativity prop-

erty of the operator Ts. As it has been proven in the proof of the Theorem 1 it is
equivalent to the strict

{
−P ⊗ Z,−P ⊗ Y T ,−P ⊗X

}
- dissipativity property for the global

diagonal operator T̃ and thus for ∀P = P T > 0 with ϕ = T̃ r the following condition
holds:

ˆ τ

0

[
ϕ (t)
r (t)

]T [ −P ⊗X −P ⊗ Y
−P ⊗ Y T −P ⊗ Z

] [
ϕ (t)
r (t)

]
dt ≤ −ε2I (27)

for some ε2 > 0.
Summing two conditions (27) and (26) together one obtains:

ˆ τ

0

[
z (t)
w (t)

]T [
I 0
0 −η2I

] [
z (t)
w (t)

]
dt ≤ −(ε1 + ε2)︸ ︷︷ ︸

ε

I (28)

The last condition implies that the H∞ norm of the global transfer function Tw→z (s)
is less or equal to η > 0 which concludes the proof.

Remark 4. The dissipativity condition (20) on the interconnection LTI system M can

be transformed to an LMI condition in decision variables P and R for some given X =

XT ≤ 0, Y , Z = ZT ≥ 0 in a similar way as in Remark 3 with a new interconnection
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5 CONTROL LAW DESIGN

system M and its new
{
X̃, Ỹ , Z̃

}
−dissipativity characterization de�ned in condition (i)

of the Theorem 3.

Remark 5. With a slight modi�cation, the last part of Theorem 3 can be transformed into
KYP lemma. Indeed, replacing the one node dynamics by a pure integrator dynamics
Ts = 1/s where s denote the Laplace operator and the interconnection system by a real

matrix M̃ =

[
A B
C D

]
where A, B, C, D are the state-space representation matrices

of the transfer function Tw→z, results in the KYP lemma where the graph separation
argument is applied to the interconnection of the passive systems i.e. X = 0, Y = −I,
Z = 0.

In the present section the local conditions needed to by satis�ed for the global stability
and global performance are presented based on the input-output approach. The next
section demonstrates how to �nd a controller such that these conditions are satis�ed i.e.
how to design the control law solving the Problem 1.

5 Control law design

First, to propose an e�cient control law design approach in this section we consider that
the dissipativity characterization i.e. matrices X = XT ≤ 0, Y , Z = ZT ≥ 0 are given.
Then in the next section a methodology of the appropriate dissipativity characterization
choice is proposed.
Let us �rst consider the global stability case as in the previous section. Taking into

account the Theorem 2 statements, one notes that the stability test of global system
is reduced to the satisfaction of two conditions. First one is a dissipativity condition
on the interconnection system M11 (18) or (19), second one is an H∞ norm constraint
(14) on the transfer function T̂ involving only one local subsystem dynamics i.e. a local
condition.
Based on Theorem 2 the control law design ensuring the local and global stability i.e.

the �rst part of the considered Problem 1 can be reformulated in the following way:
For given X = XT ≤ 0, Y , Z = ZT ≥ 0 �nd:

1. a symmetric positive de�ned matrix P such that the condition (18) or (19) is sat-
is�ed;

2. a controller F that ensures the H∞ norm local constraint (14).

The solution of the �rst part of the described control problem is a solution of an LMI
feasibility problem (see Remark 3). As it is well known, one can easily test the problem of
a LMI condition feasibility by applying the convex optimization algorithm [48,49] which
can be e�ciently solved. For these reasons we restrict ourselves on the second part of
the control law problem.

18
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F Ts

+

+

G

T̂

r ϕ

β
ϕSα

rS

Figure 3: Transformed model for H∞ standard design ensuring the global stability; α =

(−X)−
1
2 , β =

(
Z − Y TX−1Y

)−1
2

5.1 H∞ control law synthesis

The constraint (14) of Theorem 2 is actually a constraint on the local subsystem dynamics
Ts and thus for �xed X, Y , Z, it can be easily ensured by an H∞ control law synthesis see
Fig.3. As it can be seen from Fig.3, the local subsystem dynamics Ts was transformed into
the standard H∞ problem. Solving the standard H∞ problem by LMI optimization [48]
or Riccati equation method [42], a controller F can be found that stabilizes the system
in Fig.3 and thus local subsystem dynamics. Moreover, it minimizes the H∞ norm of the
linear operator between external signals rS and ϕS i.e. those of the transfer function T̂ .
If its H∞ norm is less or equal to γ < 1, the condition (14) is thus satis�ed.
The described control law synthesis together with the LMI optimization feasibility

problem (18) or (19) results in control law design ensuring the global stability that
is �rst part of the Problem 1. This H∞ control law synthesis applied only for one
separate subsystem of the network and the discussed convex LMI optimization for the
interconnection system allows a signi�cant reduction of the control law design problem
complexity ensuring the global stability. One should compare this proposed approach
versus the complex full network dynamics control problem or the problem of simultaneous
stabilization initially suggested by Theorem 3 of [12] and used in [24,25,35].
However, we will not directly apply this design result, we will rather exploit extensively

H∞ design for MIMO systems [42] by adding the desired performance inputs and outputs
in order to ensure local performance speci�cations besides the stability i.e. second part
of the Problem 1.

5.2 Local performance

As in the stability case, in this section, we derive local conditions on the subsystem
that with the condition on the interconnection system ensures some local performance
speci�cations and global stability.
As it was pointed out before, we introduce to the local subsystem additional external

performance inputs rpi and outputs εpi as well as the corresponding inputWi and output
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Ĝ 

F

rs

rpi ɛpi

φs

Wi Wo
r̃pi ɛ̃pi

G̃  

Figure 4: Extended local system model for the performance speci�cation

Wo weighted functions Fig.4 in order to design a control law ensuring local performance
level. In this section we describe a general approach once the external signals were
introduced while the procedure how to introduce these signals for a speci�c application
case is reported on the numerical example of the section 7.
The system G̃ represented in Fig.4 correspond to the system Ğ in (7) and in Fig.2

augmented by the stability input and output rs and ϕs respectively needed to construct
the system T̂ as in Fig.3. The corresponding subsystem Ĝ (in Fig.4) is a version of the
subsystem G̃ without weighting functions Wi and Wo.
By applying now standard H∞ design to the local extended system model G̃, a con-

troller F that stabilizes the closed loop system (local stability), and ensures the H∞ norm
constraints on the transfer function between external signals (29) can be computed.

‖Ti→o (s)‖∞ =

∥∥∥∥ Trpi→εpi (s) TrS→εpi (s)
Trpi→ϕS

(s) TrS→ϕS
(s)

∥∥∥∥
∞
≤ γ (29)

If a control law ensuring (29) with γ < 1 is found, the local stability is then guaranteed
and by the norm propriety one has:

 1) ‖TrS→ϕS
(s)‖∞ < 1

2)
∥∥Trpi→εpi (s)

∥∥
∞ =

∥∥Wo (s)Tr̃pi→ϕ̃pi
(s)Wi (s)

∥∥
∞ < 1

(30)

The �rst condition in (30) ensures the global stability (Theorem 2) while the local
performance constraints speci�ed by an appropriate choice of the weighted functions Wi

and Wo are ensured by the second condition of (30). Two �rst parts of the Problem 1
are thus solved by the proposed control law design.

5.3 Global performance

The second constraint in (30) only ensures the performance locally since a unique local
subsystem was considered in theH∞ design. However, for the application purpose, how it
was pointed out in the introduction, some performance speci�cations have to be ensured
also for the global network taking into account some external inputs and outputs as well as
the overall network dynamics. More precisely, local controllers have to be designed such
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Figure 5: Direct performance transfer function

that the global transfer function Tw→z satis�es the second constraint of (30) whatever the
network interconnection matrix is i.e. the last part of the Problem 1. Since depending
on the application there can be a number of various performance transfer functions a
following its classi�cation is proposed. We call the direct performance transfer functions
the global transfer functions the inputs and outputs of which directly enter and leave the
same subsystem. A direct performance transfer function for the �rst subsystem case is
presented in Fig.5. The cross performance transfer functions are the transfer functions
that have the inputs and outputs applied to the two di�erent subsystems. The situation
where inputs are applied to the �rst subsystem and outputs come from the ith subsystem
corresponding to a cross performance transfer function is depicted in the Fig.6. To be
able to encompass the general case a general performance Tw→z presented in Fig.1 is
considered in the remained part of the section. It de�nes by the way a more general
interconnection matrix M which is not necessary equal to the Laplacian or Adjacency
matrices often used in the Multi-Agents system approaches.
The control design result of this paper ensuring the last third part of the considered

Problem 1 is actually inspired by the discussion in the introduction concerning classical
local methodology of the �lter design in the PLLs clock distribution network. Once such
local control law design is performed the global stability is usually tested and the di�er-
ences between local and global performance transfer functions is analyzed. In the same
way a logical extension of the existing methodology to a control law design that ensures a
bound on this �local-global di�erence� is proposed. We will further see that it is actually
possible to minimize this bound by an appropriate control law design and a suitable dis-
sipativity characterization choice. This approach will be called hereafter an approach of
the relative performance and the corresponding weighted transfer function which express
the �di�erence between global and local transfer functions� a relative weighted transfer
function. The relative weighted transfer function Tg is the global transfer function which
can be easily chosen to compare various (direct or cross) global performance transfer
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Figure 6: Cross performance transfer function

functions with the local ones Tg = f
(
Trpi→εpi , Tw→z

)
. Only one restriction has to be

satis�ed is that the relative weighted function needs to be expressed in the form of an
UFT (or equivalently LFT see De�nition 2) in subsystem dynamics Ts. This means that
the upper (respectively lower) bloc is bloc-diagonal consisting of the subsystem dynamics
Ts as presented in the Fig.7. In the application example it will be illustrated that this
restriction is a pertinent one and being not very strong it allows to cover a big set of
performance transfer function cases. In the Fig.7, the bloc T̆ consists of two parts: the
N network nodes Ts dynamics, and the k local node Ts dynamics that are needed to con-
struct the relative weighted transfer function Tg. The augmented system M̃ describes the
interconnection topology between them which is summarized by the following equation
similar to (6):

ϕ̃ =

T̆︷ ︸︸ ︷
(IN+k ⊗ Ts) r̃[

r̃

z̃

]
=

[
M̃11 M̃12

M̃21 M̃22

]
︸ ︷︷ ︸

M̃

[
ϕ̃

w̃

]
(31)

with Ts = G ? F , r̃ (t) , ϕ̃ (t) ∈ Rp(N+k), w̃ (t) ∈ Rnw̃ , z̃ (t) ∈ Rnz̃ .

The control law synthesis result solving the Problem 1 is summarized in the following
theorem:

Theorem 4. Suppose that the system described by the equation (31) is well posed and
causal. Given real p × p matrices X = XT ≤ 0, Y , Z = ZT ≥ 0 and a bound η > 0 if there
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Figure 7: Global relative performance transfer function Tg in the form of an UFT in Ts

exists symmetric positive de�nite matrix P̃ ∈ R(N+k)×(N+k) such that

[
I

M̃

]∗ 
P̃ ⊗X 0 P̃ ⊗ Y 0

0 −η2I 0 0

P̃ ⊗ Y T 0 P̃ ⊗ Z 0
0 0 0 I

[ I

M̃

]
≤ 0 (32)

for almost ∀ω ∈ R;
the decentralized control law F ensuring

‖Ti→o‖∞ < 1 (33)

solves the Problem 1 i.e. it:
(i) Stabilizes each subsystem (7) and Fig.2 separately as well as the overall network (31)

represented in Fig.7;
(ii) Ensures given local performance speci�cation de�ned by some local weighting func-

tions Wi and Wo by minimization of the H∞ norm of the transfer function Trpi→εpi (s)
de�ned in (30) between performance inputs rpi and outputs εpi i.e.∥∥Trpi→εpi∥∥∞ < 1; (34)

(iii) Ensures given global performance speci�cation by minimization of the H∞ norm of
the relative weighted transfer function Tg (s) between performance inputs w̃ and outputs
z̃ de�ned in (31) and Fig.7 i.e.

‖Tg‖∞ ≤ η. (35)

Proof. We prove that the controller F solves the three parts of the Problem 1 in a
successive order.
(i) The local stability follows from the condition (33) since an unstable system can-
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not have bounded H∞ norm. The global stability in its turn is ensured by applying
the Theorem 2 with new interconnection system M̃ and symmetric positive de�nite
matrix P̃ . Indeed, recall from the Theorem 3 proof that the condition (32) implies{
P̃ ⊗X, P̃ ⊗ Y, P̃ ⊗ Z

}
− dissipativity of the matrix M̃11 i.e. the �rst condition of the The-

orem 2, while the condition (33) implies the condition (30) and thus the second condition
of the Theorem 2. As a conclusion the controller F solve the part (i) of the Problem 1.
(ii) The part (ii) of the Problem 1 is satis�ed by the condition (33) together with the

second equation of (30).
(iii) The condition (35) is ensured by the direct applying of the Theorem 3 with new

interconnection system M̃ and symmetric positive de�nite matrix P̃ . The controller F
solves thus the last part (iii) of the Problem 1 which concludes the proof.

Remark 6. The condition (32) can be transformed to an LMI condition in decision vari-
ables P̃ and R̃ for given matrices X = XT ≤ 0, Y , Z = ZT ≥ 0 similarly to the
Remark 3.

The Theorem 4 allows to design the control law ensuring the local and global stability, a
local performance level and that the di�erence between this local and global performance
de�ned by the relative weighted function Tg is not greater than η. For the given matrices
X = XT ≤ 0, Y , Z = ZT ≥ 0, the condition (32) is an LMI constraint and a convex
optimization algorithms [48,49] can be applied in order to minimize the bound η and thus
minimize the di�erence. However, depending on the considered application problem, it
could be di�cult to �nd the X, Y , Z values such that the conditions of the Theorem 2
and/or Theorem 4 de�ne a non empty set or are satis�ed with required level of the
local and global performance de�ned by (33) and η respectively. For these reasons the
following section discuss a possible choice of the appropriate X, Y , Z values applying
the quasi-convex optimization tools.

6 Choice of X, Y , Z

First, we discuss the choice of the X, Y , Z values for the Theorem 2 conditions i.e. the
case of the global stability test only. The appropriate choice of the dissipativity charac-
terization for the control law design conditions i.e. those of the Theorem 4 are discussed
after. For the sake of clarity, the study focuses on the case of a static interconnection
represented by a real matrix M and SISO subsystems i.e. p = 1, x, y, z are scalars and
Ts has scalar input and output. The dynamical LTI system interconnection case could
be treated in a similar way.

6.1 Theorem 2 conditions

Let us take a closer look at the dissipativity conditions of Theorem 2 (17) or (14) and
(18). The dissipativity constraint (17) of the Theorem 2 is actually a constraint on a
transfer function Ts of a single subsystem (or agent). It can be recast for ε > 0 in the
form of
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Figure 8: Typical Nyquist plot of a transfer function Ts

[
Ts(jω)

1

]∗ [
x y
y z

] [
Ts(jω)

1

]
> ε (36)

⇐⇒ (Ts(jω)− c)∗(Ts(jω)− c) < r2 + ε (37)

and can be interpreted as : "the Nyquist plot of the transfer function Ts(jω) is inside

the circle with center c = − y
x and radius r =

√
y2

x2 − z
x". The Fig.8 presents a typical

Nyquist plot of Ts(jω) in the case of the PLL design which can be obtained by an usual
one subsystem local design. The corresponding circle is plotted in full red line. To relax
the constraint (37) (and thus conditions (17) and (14)) for a �xed circle center c, one has
to maximize the radius r. The only way to increase the radius r is to increase − z

x which
is positive by de�nition of x, and z.
The other condition (18) for P = P T > 0 is transformed as follows:(

M11 +
y

z
I
)T

P
(
M11 +

y

z
I
)
≤
(
y2

z2
− x

z

)
P (38)

It can be noted that increasing − z
x and thus the radius of the circle in Fig.8 will auto-

matically constrain the condition (38). Unfortunately, one cannot relax both constraints
in the same time and an optimization problem thus has to be solved which can be formu-
lated as follows : ��nd the values of x, y, z such that the condition (38) is satis�ed and

that it maximizes the circle radius r =
√

y2

x2 − z
x with a �xed center c for the condition

on the local transfer function (37) represented in Fig.8�.

To solve the described problem, without lost of generality, one redundant variable

can be suppressed by setting for example z = 1. This is equivalent to dividing both

inequalities (18) and (36) by z > 0 and performing the change of variables: x̃ = x
z ≤ 0,

ỹ = y
z . Next, one can recast the condition (38) in terms of variables r and c and for
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symmetric matrix P formulate the following optimization problem:

min
χ,P

χ = 1
r2

such that P > 0

MT
11PM11 ≤ 1

r2︸︷︷︸
χ

(cM11 − IN )
T
P (cM11 − IN )

(39)

For a given c, the minimization problem of χ (and thus maximization of r) for decision
variables P ∈ RN×N and χ ∈ R+ is a problem of the generalized eigenvalue mini-
mization [48]. Being a quasi-convex optimization problem, it is easily solved using e.g.
Matlab. One obtains thus the maximum radius r for the circle constraint on the transfer
function Ts (37) for which the dissipativity condition on the interconnection matrix M11

(18) is satis�ed. Next, it can be easily veri�ed that for the feasibility of condition (18)
on the interconnection matrix, the center of the circle c has to be constrained by:

|c| =
∣∣∣y
x

∣∣∣ ≤ 1

2max
i

(
∣∣∣Re(λM11

i

)∣∣∣) (40)

where λM11
i is the i-th eigenvalue of M11.

By varying c in the domain de�ned by (40), the best couple of c and r can be found
in the sense of relaxation of the Ts transfer function circle constraint (37) and as a con-
sequence of the condition (14). Finally a simple transformation of {r, c} ⇒ {x, y, z = 1}
is performed in order to obtain the needed {x, y, z}−dissipativity characterization.
It should be noticed that the relaxation of the constraint (37) (and thus conditions

(17) and (14)) gives more �exibility for the local performance constraint satisfaction (see
(29) and (30)).

6.2 Theorem 4 conditions

The condition (32) is equivalently expressed in terms of center c and radius r of the circle

as de�ned in the previous subsection:

P̃ > 0

[
I

M̃

]T 
−P̃ 0 cP̃ 0

0 −η2I 0 0

cP̃ 0
(
r2 − c2

)
P̃ 0

0 0 0 I


[

I

M̃

]
≤ 0

(41)
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One can then transform the condition (41) applying a Factorization into the condition

P̃ > 0[
I

M̃

]T 
I 0 −cI 0
0 I 0 0
0 0 I 0
0 0 0 I


T 

−P̃ 0 0 0
0 −η2I 0 0

0 0 r2P̃ 0
0 0 0 I



I 0 −cI 0
0 I 0 0
0 0 I 0
0 0 0 I

[ I

M̃

]
≤ 0

(42)

and perform the change of variable P̂ = r2P̃ and β = η2r2 to obtain the following
optimization problem:

min
χ,P

χ = 1
r2

tel que

P̂ > 0

ΦT


0 0 0 0
0 0 0 0

0 0 P̂ 0
0 0 0 I

Φ ≤ 1

r2︸︷︷︸
χ

ΦT


P̂ 0 0 0
0 βI 0 0
0 0 0 0
0 0 0 0

Φ

(43)

where Φ =


I 0 −cI 0
0 I 0 0
0 0 I 0
0 0 0 I

[ I

M̃

]
.

For �xed β and c the optimization problem (43) with decision variables P̂ ∈ R(N+k)×(N+k)

and χ ∈ R+ is a minimization problem of the maximal generalized eigenvalue [48].
This problem can be easily solved using e.g. Matlab. Finally, a simple transformation
{r, c} ⇒ {x, y, z} is performed to obtain the {x, y, z}−dissipativity characterization.

Remark 7. Though the minimization of χ in (43), one maximizes the radius of the circle
r and thus releases the constraint on the local node dynamic (14), and in the same time
minimizes the relative performance transfer function upper bound η. Indeed, since the
ratio β = η2/χ is a �xed constant, the minimization of χ implies the minimization of η2 =
χβ. The parameter β is a tuning parameter for the condition (43). If the optimization
problem (43) has no solution or the computed radius r = 1/

√
χ constraints too much

the condition (14), β should be increased to release the condition of the optimization
problem (43).

Remark 8. The optimization problem (43) resolution allows to �nd both (i) the dis-
sipativity x,y,z characterization needed to be ensured by the controller for the global
stability and (ii) the upper bound on the relative weighted transfer function Tg (s) that
is a maximal distance η between the local and global performance transfer functions.
This upper bound is determined before the control design �xing a priori the bound on
the �distance� between global and local performance transfer functions. The minimiza-
tion of this bound together with a proper choice of the local performance constraints
ful�ll the global performance constraint once the controller is designed.
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6.3 Control law design algorithm

To summarize, the control law design solving the Problem 1 is reduced to the problem
set-up i.e. an appropriate choice of the global relative and local weighted functions and
the further resolution of (i) the optimization problem (43) and (ii) the problem of local
H∞ control law design ensuring the constraint (33) of Theorem 4. It can be summarized
by the following control law design algorithm:

Algorithm 1 Algorithm of the control law design

1. Select the global relative weighted function Tg that can be transformed into an UFT (or
LFT ) in local dynamics Ts and evaluates the �di�erence� between global and local node
transfer functions;

2. Set the tuning parameter β which de�nes the ratio between the squared bound η2 on the
relative weighed function Tg and decision variable γ of the optimization problem (43);

3. Solve the optimization problem (43) in order to minimize χ and thus minimize η and
maximize the radius r releasing the constraint on the local dynamic Ts (see equation (33)
of Theorem 4);

4. Select the weighting functions ensuring the local performance speci�cations de�ned by
(34);

5. Apply the H∞ control design to the extended system of Fig.4;

6. If a controller giving γ < 1 is found, then the Problem 1 is solved i.e. the local and global
stability and the local and global (in terms of the relative weighed transfer function Tg)
performance are guaranteed;

7. If no controller is found or if the corresponding value of γ is high, so that the constraint
(33) of the Theorem 4 cannot be satis�ed, either �reduce� the weighing function constraints
i.e. local performance speci�cations or increase the value of the ratio β and then go to
step 3.

7 PLL Network design

7.1 Model description

In this section, an active clock distribution network is investigated that consists ofN = 16
PLL nodes generating periodical signals on the chip and one external reference connected
to the �rst PLL node. Each PLL in the network communicates with its neighborhood in
horizontal and vertical (2D grid) directions in order to mutually synchronize (see Fig.9).
A Phase-Locked Loop is a feedback system that generates a periodic signal synchronized
(in frequency and/or in phase) with an external periodic signal. In the case of multiple
input PLL, as in an active clock distribution network, the local signal is synchronized with
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Figure 9: The active clock distribution network

its input signals phase/frequency average. By construction, each PLL node is composed
of a Voltage Controlled Oscillator (V CO) generating the local periodic signal, Phase
(frequency) Detectors (PDs) that measures the phase (frequency) di�erence between
local VCO signal and the mi external input signals, an averaging sum block (Σ/mi) and
a Filter (F ). The �lter whose input is the averaged phase error signal delivers a V CO
command needed for the synchronization. Generally, one can use an additional block, a
frequency divider (1/d), inserted straight after V CO in order to synchronize the internal
V CO on a low frequency external signal while having a high frequency V CO output.
Additionally, each PD can be shared and placed in the middle of any couple of adjacent
PLL nodes in order to reduce possible delays between them and the number of used
PDs.
The problem of the system design can be expressed as �designing an active clock distri-

bution network Fig.9 that achieves frequency and phase synchronization of all PLL VCOs
within a speci�ed time with some speci�ed clock signal purity�. The main parameters of
V COs and PDs as well as the network topology are �xed by the technology process and
clock generation requirements: clock frequency, PLL node number and its localization in
the array, V CO and PD resolution etc.. In the present study, the control law design of
each local PLL �lter F is under consideration. From a control system point of view, the
designed control law has to ensure the global network stability and a set of performance
speci�cations.
To design the �lter of a stand-alone PLL, one usually models it in the phase domain

[10,11,50]. A periodic signal is represented by its phase growing as a ramp with a certain
slope corresponding to the instantaneous oscillator frequency. Then the possibly non-
linear phase domain PLL model is linearized around an operating point. One must then
design a control law that ensures the stability and the desired performance properties of
the PLL LTI model.
In the context of a coupled PLL network, one can use the same design methodology.

One major non-linear issue of such PLLs network known as mode-locking states will not
be addressed in this paper but can be circumvented independently as in [4, 5, 9].
The linearized phase domain model of the PLL network in Fig.9 is presented in Fig.10.

Here Kpd stands for the phase detector linear gain, mi is a constant normalization factor

equals to the input number of the i-th PLL node, F (s) and Pr (s) = KV CO/Kd
s are

respectively the corrector and the V CO transfer functions with KV CO as a linear V CO
gain and the frequency divider gain Kd = d.
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Figure 11: Transformed phase domain model of the PLL node

By substituting the inputs position and averaging summators, the equivalent system
can be obtained as depicted on Fig.11.
The overall system can now be expressed in the form of Fig.1 and (6) with the inter-

connection matrix M where M11 is the N ×N matrix1 where ith, jth element is equal to
1
mi

if ith node receives the information from jth node and to 0 otherwise. The reference
input is taken into account by mi as an additional input i.e. for the �rst node m1 = 3.
The remain part of the interconnection matrix M has to be de�ned regarding to the
considered performance speci�cations.
In Fig.1, Fig.11 and (6) G represents the part of a local PLL that has to be controlled.

G includes the V CO transfer function, the PD and frequency divider gains. F is the
controller transfer function to be designed, T̃ is the diagonal LTI matrix consisting of
the N identical LTI models Ts on the diagonal. In our application the subsystem Ts
(elementary PLL node) is a single-input single-output (SISO) system thus p = 1. The
vector r is the average adjacent node input values vector, ϕ is the PLL outputs vector i.e.
its local phase values. All numerical values of the considered clock distribution network
are summarized in Table 1.

1This interconnection matrix is similar to the normalized Adjacency matrix considered in [12] except
that the lines corresponding to the PLL nodes that receive the external reference input do not sum
up to 1.
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Figure 12: Associated PLL network graph

Table 1: Numerical values of the considered clock distribution network

Parameter Numerical value

Reference frequency fref = 50 kHz

Frequency divider factor Kd = d = 4

V CO central frequencies
random initialized

around d · fref ± 25%

V CO gain KV CO = 40 Hz/c. u.

PD gain KPD = 21.2 e. u./rad

Number of inputs
mi = {1, 2, 3, 4} depending

on PLL position
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Table 2: Performance requirements

Synchronization
Reference (ramp)

tracking

Perturbation

rejection

Input/output V CO/PD

noise rejection,

temperature and power

perturbation rejection

Control

limitations
Moderate control

7.2 Performance speci�cation

Beside the stability of the overall system, the clock distribution system must ensure some
performance speci�cations that are summarized in Table 2 for the present application.
The �rst and most important speci�cation is the synchronization issue of all PLLs in
frequency and phase with an external periodic reference signal. In the phase domain
model, this speci�cation consists in tracking a ramp reference signal. The global sys-
tem must reject the input/output PD/V CO noise and possible perturbations as well.
Usually, one must �lter the V CO �icker noise in the system bandwidth and the high
frequency (HF) noise of the PD [10]. The temperature and power disturbances as well
as central frequency variations of the V COs can be modeled as a constant or a slightly
varying perturbation on the V CO input that has to be rejected. The last speci�cation
is the limitation on the control signal magnitude that has to be reasonable for practical
implementation reasons especially in the HF range due to the noise command excitation
reasons.
As it was mentioned in the section 3, the performance speci�cation is often expressed

as a time domain constraint on a speci�ed output signal. It can be equivalently expressed
it in the frequency domain constraint on a speci�ed transfer function. As an example,
the �rst performance speci�cation will be discussed in details.

7.2.1 Local PLL performance

Synchronization A phase domain LTI model of the PLL is represented in Fig.13 with
corresponding input and output signals. Here, fi is the central V CO frequency which
is constant , ri is the external periodic signal that is a ramp in the phase domain, ϕi is
the V CO phase signal, εi is the local tracking error and ui is the corrector command.
Synchronization is achieved when the output ϕi reaches the reference ri asymptotically
in a given time. Equivalently, the output signal ϕi is constrained by red bounds depicted
in Fig.14.
The time constraint speci�cation is usually enforced by bandwidth constraint on the

transfer function between the reference input ri and the tracking error output εi: S =
Tri→εi . It is actually the local sensitivity function of the closed loop. To track a ramp
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Figure 14: Time domain constraint for synchronization performance speci�cation

reference, it is well known from the �nal value theorem that the sensitivity function must
have two pure zeros and thus a +40 dB/dec slope constraint in low frequency (LF) range.
Additionally following the well known rule of thumb, the PLL cut-o� frequency ωc is
inversely proportional to the response time and therefore it can constraints its maximum
value. The performance speci�cations can be expressed in the frequency domain as
represented in Fig.15. These speci�cations can be enforced by applying H∞ control (as
discussed in section 5.2) with appropriate weighted functions Wr and Wε applied to the
input and output signals respectively (see Fig.16). The inverse ofWrWε de�nes frequency
constraints to obey as presented in the left part of the Fig.16.

+40 dB/dec
Ramp tracking

Response time

ωc

Figure 15: Frequency domain constraints for synchronization performance speci�cation
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Figure 16: PLL phase domain representation with its augmented LTI model and associ-
ated frequency constraints

Table 3: Frequency domain performance speci�cations

Performance
objective

Sensitivity function
to be constrained

Constraint
Corresponding

weighted
functions

Reference (ramp) tracking
S (s) =

(1 + Pr (s)F (s))−1

+40 dB/dec in

LF range
(Wε (s)Wr (s))−1

PLL bandwidth,V CO

output noise and

perturbation rejection

S (s) =

(1 + Pr (s)F (s))−1

low gain in LF

range
(Wε (s)Wr (s))−1

V CO input noise and

perturbation rejection

PrS (s) = Pr (s)×
× (1 + Pr (s)F (s))−1

+20 dB/dec in

LF and low gain

in all frequency

range

(
Wε (s)Wf (s)

)−1

PD and reference high

frequency noise rejection

Ts (s) = Pr (s)F (s)×
× (1 + Pr (s)F (s))−1

low gain in HF

range

(
Wu (s)Wf (s)

)−1

Control dynamic range

limitation

FS (s) = F (s)×
× (1 + Pr (s)F (s))−1

low gain in LF

and moderate

gain in HF range

(Wu (s)Wr (s))−1
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Figure 17: Resulting PLL phase domain LTI model with corresponding weighted
functions

Perturbation rejection and control limitation In a same way, frequency constraints
can be obtained for other local closed loop transfer functions (complementary, load and
noise) based on the remaining performance speci�cations. Rejection of the V CO output
noise in the PLL bandwidth is ensured by having low gain of the sensitivity function S
in LF range. Moreover, rejection of the V CO input noise as well as temperature, power
and central frequency �uctuations is ensured by having a low gain and +20 dB/dec slope
in LF range of the load sensitivity function Tf→ϕ = PrS respectively. The PD as well
as the reference HF noise is rejected by low gain on the HF range of the complementary
sensitivity function Tr→ϕ = Ts. The dynamic range of the command is limited by �xing
a maximum level on the magnitude of the noise sensitivity function Tr→u = FS.
We thus obtain a criterion of the 4 blocks, resulting PLL phase domain model and

corresponding weighted functions are represented in Fig.17 and summarized in Table 3.
For more details of proper frequency constraints choice with corresponding input/output
weighted functions, one should see [42].

7.2.2 Global performance

The previous discussion is valid for one local PLL subsystem. But we are actually in-
terested in the global performance of the overall system and thus frequency constraints
have to be satis�ed for each PLL node taking into account the global network intercon-
nection. Since one can satisfy the frequency constraints for the local transfer functions
and a maximal �distance� between these transfer functions and the corresponding global
performance transfer functions, one could express the global performance using the rel-
ative weighted function Tg (s) approach described in the previous section. For the sake
of clarity, we consider the global performance only for the �rst node. The global perfor-
mance for all other nodes as well as the global cross node performance can be treated
similarly.
Since the performance is usually expressed as frequency constraints in the logarithm

scale, the �distance� between two transfer functions should be evaluated in terms of its
ratio. Let the transfer function Sg (s) be a global transfer function between an external
reference w = ref entering the �rst node and the �rst node tracking error z = ref − ϕ1
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(see Fig.1). For this case one has M11 de�ned as previously and

M12 =
[ 1

3
0 · · · 0︸ ︷︷ ︸

N−1

]T

M21 =
[
−1

N−1︷ ︸︸ ︷
0 · · · 0

]
M22 = 1

(44)

The corresponding local transfer function is the sensitivity transfer function S (s) between
the �rst node input r1 and its tracking error ε1 = r1 − ϕ1 without taking into account
global interconnection (see Fig.13).
Let's choose the relative weighted function Tg (s) in the form of

Tg (s) =
Sg (s)

S (s) + α
(45)

where α ∈ R+.
The global performance is then evaluated by �nding the upper bound η on the H∞

norm of Tg (s) :
‖Tg (s)‖∞ ≤ η ⇔ |Tg (jω)| ≤ η,∀ω ∈ R (46)

In the log scale, (46) is equivalent to:

20log10 (|Sg (jω)|)− 20log10 (|S (jω) + α|) ≤ 20log10 (η) = µ⇐⇒
|Sg (jω)|dB − |S (jω) + α|dB ≤ µ

, ∀ω ∈ R (47)

In the frequency range where α � |S (jω)|, the parameter α can be neglected. The

relative weighted function can thus be expressed as Tg (s) ≈ Sg(s)
S(s) and the condition (47)

is equivalent to:
|Sg (jω)|dB − |S (jω)|dB ≤ µ, ∀ω ∈ R (48)

In other words, in the log scale the magnitude of the global performance transfer function
is bounded by the corresponding magnitude of the local transfer function plus µ dB. This
situation is depicted on Fig.18.
The next step consists in expressing the chosen relative weighted transfer function

Tg (s) in the form of an LFT in local node dynamics Ts. Since by de�nition S (s) =
1− Ts (s), one obtains the graphical representation of (45) in Fig.19.
The schema depicted on Fig.19 is easily transformed in the schema of Fig.7 with k = 1
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and:
T̆ = IN+1 ⊗ Ts

M̃ =


1

1 + α

1

1 + α
M21

1

1 + α
M22

0 M11 M12

1

1 + α

1

1 + α
M21

1

1 + α
M22


r̃ =

[
q r1 · · · rN

]T
, ϕ̃ =

[
p ϕ1 · · · ϕN

]T
, w̃ = w, z̃ = q

(49)

One should use the parameter α in the relative weighted transfer function (45) expres-
sionto ensure the well-posedness of the relative weighted transfer function (45). Indeed,
for α = 0, i.e. the condition (48) is valid for all frequency range, and because the sensitiv-
ity function S tends to zero in low frequency range (integrator behavior in the open loop
F (s)Pr (s)), one obtain a division by zero while evaluating the expression of the relative
weighted transfer function (45). Consequently, one has to impose a non-zero value for α
to ensure validity of the condition (48) in a signi�cantly wide frequency range. If param-
eter α is de�ned such as 20 log10 (α) < −40dB , the frequency range where α cannot be
neglected is not relevant enough. That is because it results in an already small tracking
error that can be neglected. As a conclusion, by evaluating the upper bound µ on the
relative weighted transfer function (45) the magnitude of the global performance transfer
function Sg will not be for sure greater than the magnitude of the local performance
transfer function S plus µdB in the frequency range where α� |S (jω)|.
It is possible to choose the relative weighted transfer function in the form of

T ∗g (s) =
Sg (s)

S (s) + α
Ts (s) (50)

This a weighted version of (45) with the additional weighting function represented by the
local transfer function dynamics Ts itself. Since the typical complementary sensitivity
transfer function Ts has a low gain in the HF range, the upper bound on the frequency
response magnitude of W ∗g (s) in HF range is reduced. It results in allowing less im-
portance in this frequency range to the di�erence between local and global performance
transfer functions in the optimization problem. It can be proved [22, 23] that in HF
range the both performance transfer functions coincide. However in the present study,
for the sake of clarity the simple form of the relative weighted transfer function (45) is
considered.
It turns out that if µ is the upper bound on the chosen relative weighted transfer

function (45) i.e. corresponding to the sensitivity transfer function S, then it is necessary
the upper bound for all other similar weighted transfer functions corresponding to the
complementary sensitivity transfer function Ts, the noise sensitivity transfer function FS
and the load sensitivity transfer function PrS. Indeed, let's illustrate this property on
the example of the load sensitivity transfer function PrS (s). The corresponding global
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performance transfer function is denoted by PrSg (s). Let the new load relative weighted
transfer function be described as:

TPrSg (s) =
PrSg (s)

PrS (s) + αPrS
(51)

with αPrS = α ∈ R+. For the frequency range where αPrS < |PrS (jω)|, the load
relative weighted transfer function becomes

TPrSg (s) =
PrSg (s)

PrS (s)
=
Pr (s)Sg (s)

Pr (s)S (s)
=
Sg (s)

S (s)
= Tg (s) (52)

The condition (52) shows that the load relative weighted transfer function TPrSg (s) is
equal to the relative weighted transfer Tg (s) in interesting us frequency range and thus
has the same upper bound η. This implies that the global performance transfer function
PrSg (s) magnitude is not greater than the sum of the local load sensitivity function
PrS (s) magnitude and µdB.
Same arguments can be used in order to demonstrate that the same upper bound

can be used on similar relative weighted transfer functions for noise and complementary
sensitivity functions. This result can be conservative with respect to some performance
transfer functions since it covers the worst case. Very often the worst case (that is the
most important) concerns the local sensitivity transfer function S and its corresponding
global analogue Sg. All other performance transfer functions are de�ned by S and Sg
respectively.
Regarding the cross performance transfer functions (see Fig.6 as an example), it is

possible to proceed in two ways. First, the corresponding cross performance transfer
function constraint can be directly taken into account by appropriate choice of the relative
weighted transfer function T crossg (s) = f

(
Scrossg (s) , S (s)

)
. Second, based on [22, 23]

works, all cross performance transfer functions can be bounded in low and high frequency
by combining direct performance transfer functions and local sensitivity functions Ts (s),
S (s). An appropriate choice of the frequency constraints on these transfer functions
results in the global cross performance constraint ful�llment. For these reasons, the
relative performance weighted function Tg (s) de�ned as (45) is considered hereafter.
The next step consists in solving the optimization problem (43) result of which is given

in the next section.

7.3 Algorithm solution

In this section, the control law design algorithm (Algorithm 1) described in Section 6.3
is applied to the model described by (31) and section 7.1 with the numerical values of
the Table 1. Here again to simplify the discussion, we consider the global performance
only for the �rst node. We choose thus the local external input signals rTp1 = [r1, f1]T

and the local output that has to be minimized εTp1 = [r1 − ϕ1, ϕ1]T corresponding to the
�rst PLL node as in the Fig.17 and Fig.2 according to the performance speci�cations in
Table 3 and 2. The corresponding global not weighted performance input and output
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Figure 20: Local weighting functions

are according to Fig.1 w = ref and z = ref − ϕ1.
After few iterations of the proposed algorithm, we obtain the following solution:

1. Selected relative weighted transfer function is in the form of (45);

2. The obtained tuning parameter of the optimization problem (43) β = 3.8 · 103

3. The solution of the optimization problem (43) for α = 5.1 · 10−3 (−45.85 dB in log
scale) and center c = 0.1+j0 is x = −1.2426, y = 0.1243, z = 1, radius r = 0.9027
and corresponding value of µ = 36.9 dB.

4. The local weighting functions chosen based on Table 2 and Table 3 are presented
in Fig. 20 and have the following numerical values:

WS (s) = Wε (s)WRef (s) =
0.36 (s+ 998.2)

s+ 0.22
;

WGS (s) = Wε (s)WV CO (s) =
2.5 (s+ 998.2)

s+ 0.22
;

WKS (s) = Wu (s)WRef (s) = 0.0073;

WT (s) = Wu (s)WV CO (s) = 0.05.

(53)

5. The solution of the H∞ control design after order reduction gives a PI controller :
F = 5.99(s+19.96)

s with γ = 0.99 and
∥∥T̂∥∥∞ = 0.997. The corresponding local sensi-

tivity and global performance transfer functions are presented in Fig.21. It con�rms
the result in [51] that the PI consensus algorithm is su�cient for the synchroniza-
tion of identical networked clocks. Moreover, it actually extends this results since
any symmetric assumption on the network topology here was considered.

The Fig.21 presents the local sensitivity functions (blue dashed line) as well as the
corresponding global sensitivity function (blue full line) of the �rst PLL node. One
notices that for the global bound on the relative transfer function µ = 36.9 dB, both local
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Figure 21: Local sensitivity (blue dashed line), global performance transfer functions for
the �rst PLL node (blue full line) and corresponding frequency constraints
(red dotted line) and global constraints taking into account the global bound
µ (green dashed-dotted line)

sensitivity function S (s) and the corresponding global transfer function Sg (s) respect
�xed frequency constraints (red dotted line) that con�rms the result of section 5.3. The
Fig.22 presents the frequency response of the resulting relative weighted transfer function
(45) with the upper bound that is actually equal to µ. It is a very important to note
that only su�cient conditions, used in the Theorem 4, for the present numerical example
provide weakly conservative result.
Concerning the other performance transfer functions, as it was said before, the same

upper bound µ is conservative and the corresponding global constraints on Fig.21 are
showed only for illustration matters. The associated global performance is de�ned by the
performance transfer function Sg (s) and one can observe on Fig.21 that the frequency
constraints are satis�ed.
One can, however, determine the more precise value of the upper bound µ for the

global transfer function Tglob corresponding to the complementary sensitivity function Ts
once the control law was designed. Indeed, let us consider the relative weighted transfer
function T Tsg (s) de�ned as

T Tsg (s) =
Tglob (s)

Ts (s)
(54)

There is no need to de�ne a parameter α since there is no division by zero in low
frequency range (as limω→0 (|Ts (jω)|) = 1). As a consequence, the bound that will be
found is valid for all frequency range. Instead of simplifying the relation (54) as it was
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Figure 22: Resulting relative weighted transfer function Tg (s)
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Figure 23: Improved bound on the performance transfer functions Ts

done previously in order to obtain the same upper bound µ, we propose to express in a
suitable form the entire relation (54). To do so, notice that the overall transfer function
(54) can be equivalently written in the form of Fig.7 with k = 0 and:

T̂ = IN ⊗ Ts

M̃ =

[
M11 M12

M11 (1, :) M12 (1, 1)

]

r̃ =


r1

...

rN

 , ϕ̃ =


ϕ1

...

ϕN

 , w = b, z = r1

(55)

where M12 (1, 1) is the �rst element of the �rst line of the matrix M12 and M11 (1, :) is
the �rst line of the matrix M11.
Using the same x,y,z found in the third step of the Algorithm 1 and solving the

optimization problem to minimize η under constraint (32), the new bound based on the
relative weighted transfer function T Tsg (s): µT = 1.166 dB is found that is much less
conservative in comparison to µ = 36.9 dB (see Fig.23).
Observing the resulting performance transfer functions in both local and global cases,

it can be noticed that discrepancies between the two cases exist. The magnitude of the
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local sensitivity function S is lower that the magnitude of the corresponding global per-
formance transfer function Sg . That results in a longer time response (smaller bandwidth
for the system) in the latter case. This is con�rmed by the di�erence on the complemen-
tary sensitivity function Ts and Tgl. Nevertheless the slope of +40 dB/dec ensured by
the �lter design is still conserved in the global case of sensitivity transfer function S and
thus each node can globally track the ramp reference : synchronization on the master
clock is ensured. The same observations can be done for the noise sensitivity function
FS and the load sensitivity function PrS. Discrepancies between local and global per-
formance transfer function depend on the interconnection topology which in this study
was considered given. Interested reader can, however, �nd some additional information
concerning the performance analysis for some interconnection cases in [22,23].

8 Conclusion

In this paper, a general control law design methodology for homogenous LTI Multi-Agent
systems was proposed. The condition of the overall network stability and performance
exploiting the identity of the agents and based on the input-output dissipativity prop-
erties was transformed to a condition on the interconnection matrix and a condition on
the local node dynamics. The �rst condition is satis�ed by an appropriate dissipativity
properties choice that is reduced to a quasi-convex optimization problem by �xing some
decision variables. The second condition is satis�ed by a local H∞ synthesis. Both prob-
lems can be e�ciently solved in the general case. As an example, the control law design
for the synchronization of a PLLs network was presented.
As a perspective to this work the following idea should be pointed out. In order to

further reduce the di�erence between the global and local performance levels the combi-
nation of the proposed control law method and an appropriate interconnection topology
choice could be performed. Moreover other type of perturbations such as non-linearity
of the subsystems as well as of the interconnection, delays, switching interconnection
topology are the subject of the ongoing work.
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